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Abstract

This work presents a series tapping station for integrating Offshore Wind Power Plants

(OWPP) into a (Line Commutated Converter High Voltage Direct Current) LCC-

HVDC transmission system. The tapping station allows to integrate wind power

resources without building a new HVDC link and it is based on a Current Source

Converter (CSC). However, the CSC requires a minimum DC current to extract the

power coming from the OWPP which may not be guaranteed depending on the power

conditions of the HVDC corridor. For this reason, this paper proposes a coordinated

operation and control of the CSC and the OWPP. A steady-state analysis is performed

to determine the appropriate AC voltage level of the CSC. A power reduction algo-

rithm is presented to limit power extraction during a reduction in the current of the

HVDC transmission system and under loss of communications between the CSC and

the OWPP. The proposed algorithm and the performance of the system are validated

through simulation results
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1. Introduction

Currently, offshore wind energy appears to be a promising renewable source and

it is expected that the installed capacity in Europe will reach 66 GW by the end

of 2030 [1]. The traditional HVAC transmission suffers from important drawbacks

when Offshore Wind Power Plants (OWPP) are located far from the coast. Then, the

preferred technology is High Voltage Direct Current (HVDC) since it offers lower losses

when long distances and undersea cables are considered [2], [3].

Traditionally, HVDC technology employs Line Commutated Converters (LCCs)

based on thyristors [4]. LCC-HVDC is a mature and reliable technology with many

stations interconnecting mainland and islands, using point-to-point connections. Fig. 1

shows the existing LCC-HVDC transmission links using undersea cables in the Northern

Europe [5]. These links can be located near to potential OWPP. However, one impor-

tant drawback of HVDC is the difficulty of supplying or injecting reduced amount of

power in the vicinity of the HVDC corridor. The HVDC tapping station is a possible

solution to overcome this issue [6], [7], [8]. These HVDC taps can be designed to be

bidirectional, thus they are able to inject or consume power. This concept allows to

integrate offshore wind energy without building a whole HVDC link, a key factor in

terms of reduction investment. An LCC-HVDC parallel tap based on Voltage Source

Converters (VSC) is proposed in [9] for integration of wind power. Nonetheless, it does

not allow power reversal in the LCC link while the tapping station is operational. A

series tapping station based on a CSC for offshore wind power integration was intro-

duced in [10]. CSCs has been considered for high voltage purposes in several papers:

[11] presents a CSC based Static Synchronous Compensator (STATCOM), an HVDC

link based on two CSCs is introduced in [12], an hybrid system with one CSC and a

LCC is proposed in [13], [14] and several cascaded CSCs in both OWPP side and grid

side of the HVDC link are suggested in [15], [16]. Several more applications can be

found in [17]. It has also been considered as a full-power converter for wind turbines

[18], [19], [20]. CSC is suitable to be in series with LCC-HVDC as they share some

features, for instance, DC current flows always in the same direction and voltage can
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be bidirectional. CSC technology allows the regulation of active and reactive power

independently, it has black-start capability and the required filters are smaller than

LCC-HVDC. CSCs require switches with reverse-blocking voltage capability. A diode

can be placed in series with the IGBT to achieve this behaviour [21]. Other options

are: Reverse-Blocking IGBT (RB-IGBT) with intrinsic diode, Gate Turn-Off thyristor

(GTO) and Integrated Gate Commutated Thyristor (IGCT) could also be considered

[22],[23].

[Figure 1 about here.]

This paper extends the work presented in [10]. A series tapping CSC for integrating

offshore wind energy into an LCC-HVDC link is discussed. A coordinated control of the

CSC and the OWPP is designed. A steady-state analysis considering the modulation

limit of the CSC is performed for different voltage levels and powers. A Power Reduction

Algorithm (PRA) is proposed in order to address system control when the CSC is not

able to extract all the power from the OWPP. Three scenarios are simulated to test the

behaviour of the system: a DC current reduction in the HVDC link with and without

the proposed PRA and a loss of communications between the CSC and the OWPP.

The paper is organized as follows: Section 2 describes the studied system. Section

3 presents the system modelling. Section 4 introduces the operation and control of

all power converters. The steady-state analysis based on the modulation limit of the

CSC is presented in Section 5. Section 5 also illustrates several considerations on system

reliability and proposes a PRA. Dynamic simulations to verify the system control under

normal operation with the DC current reduction and under loss of communication are

depicted in section 6. Finally, section 7 summarises the conclusions of the work.

2. System description

Fig. 2 shows the LCC-HVDC transmission system and the interconnection of an

OWPP by means of a bidirectional CSC connected in series with the HVDC link.

[Figure 2 about here.]
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The LCCs are twelve-pulse bridges with their two corresponding transformers (star-star

and star-delta). The converter stations include proper tuned AC filters and they are

connected to two different AC grids. CSC is a two-level converter made of six switches

with reverse blocking voltage capability (IGBT with a diode in series) [21]. Finally,

the OWPP is composed of m clusters of n turbines each. The wind turbines are based

on full-power converter Permanent Magnet Synchronous Generator (PMSG). System

parameters can be found in Table 1 and Table 2.

3. System modelling

3.1. LCC-HVDC transmission system

The modelling of LCC stations is based on the CIGRE benchmark [24]. LCC1 is

acting as a rectifier and LCC2 is operating in inverter mode.

3.2. Current Source Converter

The CSC is modelled as a two-level converter. A multilevel topology can also be

considered for the real implementation [25]. Modulation is based on [26]. It is directly

connected to the AC capacitors of the OWPP as depicted in Fig. 3.

[Figure 3 about here.]

Park’s transformation used is:
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2
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The plant of the system are the AC capacitors which can be described in the qd reference

as (2). ixq
ixd

−
imq
imd

 =

 0 ωeCwf

−ωeCwf 0

vcq
vcd

+

Cwf 0

0 Cwf

 d

dt

vcq
vcd

 (2)

where, ixqd is the current modulated by the converter, imqd is the current coming from

the OWPP and vcqd are the components of the capacitor voltage. ωe is the grid frequency

and Cwf is the capacitance of the AC capacitors.
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3.3. Offshore Wind Power Plant

Only one single wind turbine is modelled and it is assumed that all wind turbines

have the same wind speed in order to simplify the analysis. The wind turbine is mod-

elled using the three blade horizontal axis characteristic. It is coupled with a gearless

Permanent Magnet Synchronous Generator (PMSG). The machine is connected to a

full-rated VSC in back-to-back configuration. The behaviour of a whole OWPP is ob-

tained through an aggregate model [27]. Fig. 4 illustrates the model of one wind

turbine.

[Figure 4 about here.]

3.3.1. Wind turbine

The wind turbine is modelled according to the power equation [28]:

Pt =
1

2
CppAv

3
wind (3)

where, Cp is the power coefficient, p is the density of air, A is the swept area of turbine

blades and vwind is the wind speed. The turbine is gearless coupled to a PMSG, thus,

the transmission equation is [28]:

Γm − Γe = Jt
d

dt
ωt (4)

where, Γm and Γe is the mechanical and electrical torque, respectively. Jt is the inertia

of the wind turbine and the PMSG and ωt is the rotational speed of the turbine.

3.3.2. Generator side VSC

Both VSCs are modelled using the average model described in [29]. The generator

side VSC is connected to the PMSG and the system is modelled using equation (5) [30].vsq
vsd

 =

 rs ωtpLs

−ωtpLs rs

isq
isd

+

Ls 0

0 Ls

 d

dt

isq
isd

+ λmpωt

1

0

 (5)

where, vsq and vsq are the stator voltages, rs and Ls are the stator resistance and

inductance, respectively. p is the pole pairs of the generator and λm is the flux linkage.
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The PMSG is based on a round-rotor, therefore, the electrical torque is proportional to

q component of stator current (6).

Γe =
3

2
pλmisq (6)

3.3.3. Grid side VSC

The grid side VSC is connected to the AC grid of the OWPP. The equation describ-

ing the system is [31]:vtq
0

−
vbq
vbd

 =

 rwf ωeLwf

−ωeLwf rwf

ibq
ibd

+

Lwf 0

0 Lwf

 d

dt

ibq
ibd

 (7)

where, vt is the voltage before the coupling inductances, vb is the voltage modulated by

the converter. ib is the current through the converter, Lwf is the inductance value and

rwf is the parasitic resistance of the coupling inductances. The full-rated converter also

includes a Dynamic Breaking Resistor (DBR), modelled as a current source, described

by equation (8).

Idbr =
Ebtb
Rdbr

q (8)

where, Ebtb is the DC voltage of the full-rated converter, Rdbr is the resistance value of

the DBR and q is de modulation factor of the DBR switch.

4. System control design

4.1. LCC-HVDC transmission system

The LCC-HVDC link is operated according to the following strategy: LCC rectifier

regulates DC current to the nominal value in normal operation while LCC inverter con-

trols the DC voltage. The Vdc reference in the inverter is compared with the measured

DC voltage of the link, V2, and introduced in a PI obtaining the firing angle. The I∗dc

reference comes from the Voltage Dependent Current Order Limiter (VDCOL) and it

is compared with the measured value and introduced in a PI obtaining the firing angle

of the rectifier. The input for the VDCOL is the measured DC voltage of the link, V1.

VDCOL allows to operate the system with low currents when the voltage reference of
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the LCC inverter is also reduced. It also diminishes DC current reference if a fault

appears on the inverter side. Controllers are tuned to achieve a first order response

using the average model presented in [32]. A scheme of the control methodology is

depicted in Fig. 5. The VDCOL is depicted in Fig. 6.

[Figure 5 about here.]

[Figure 6 about here.]

4.2. Current Source Converter

The CSC maintains constant AC voltage in the OWPP AC grid and it absorbs

the incoming power of the OWPP. For this work, it is assumed that all available wind

power will be injected into the LCC link independently of the power demand in the LCC

transmission system. The control is designed using an average model of the converter

based in three ideal current sources and vector control strategy is applied [10]. The

control scheme is based on a voltage loop and is depicted in Fig. 3. The system (2) is

decoupled using (9), what leads to (10):ixq
ixd

 =

îxq + imq + ωeCwfvcd

îxd + imd − ωeCwfvcq

 (9)

îxq
îxd

 =

Cwf 0

0 Cwf

 d

dt

vcq
vcd

 (10)

where îxq and îxd are the new decoupled current variables. From equation (10), transfer

function for the capacitors can be deduced for both qd components:

Vcq(s)

Îxq(s)
=

1

Cwfs

Vcd(s)

Îxd(s)
=

1

Cwfs
(11)

The transfer functions of the system are two integrators. Applying Internal Model

Control (IMC) technique to tune the controllers to achieve a first order response, a

proportional controller is obtained. However, any disturbance introduces steady-state

error. For this reason, a IMC methodology improved for disturbance rejection is applied

[33], obtaining a proportional-integral-derivative (PID) controller.
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4.3. Wind turbine

Wind turbine operates following the optimum power curve [28] for low winds. A

pitch control and an pitch actuator are included in the system in order to limit power

extraction. When the measured electrical power, PPMSG, is exceeding the reference,

the pitch control increases the pitch angle to reduce the power extraction and maintain

the turbine operating at nominal power, Pnom. Pitch control is designed according gain

scheduling technique [34]. Fig. 7 shows the operation characteristic Pt − vwind of the

wind turbine [34].

[Figure 7 about here.]

The control scheme of the wind turbine is depicted in Fig. 8.

[Figure 8 about here.]

4.3.1. Generator side VSC

Control design is based on the average model of the VSC [29]. The generator side

uses the classical vector control and it is operating with maximum torque control [30].

The electrical torque is proportional to the q component of the stator current (6) and

d component of the current is set to 0. It extracts the maximum power of the wind

turbine by driving it to the optimal rotational speed, ωopt. The control scheme includes

one current loop to regulate q and d components of the stator current. The obtained

controllers are two PI designed using IMC methodology [31] in order to achieve a first

order response. The control scheme is depicted in Fig. 8.

4.3.2. Grid side VSC

Control design is based on the average model of the VSC [29]. The grid side converter

uses the classical vector control with two cascaded control loops [31]: The inner loop

controls current qd components independently while the outer loop regulates the DC

voltage. Reactive power is kept to 0, controlling ibd to 0. The PI controllers are

also tuned with IMC technique [31]. The Dynamic Breaking Resistor (DBR) is in

charge of keeping the DC voltage below its maximum value. It is activated according a
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proportional control law when the DC voltage of the VSC, Ebtb, is within two voltage

levels: (E1 and E2) [35]. The modulation factor of the DBR switch is described as:

q =
Ebtb − E1

E2 − E1

(12)

where, Ebtb is the measured DC voltage.

[Figure 9 about here.]

The control scheme of the grid side VSC is illustrated in Fig. 9

5. Power reduction algorithm

5.1. Steady-state analysis during DC current reduction

CSCs based on self-commutating devices modulate current waveforms, instead of

voltage waveforms. For a given DC current there is a maximum waveform amplitude

that the converter is able to synthesize. Equation (13) express the maximum amplitude

of one of the phases [21].

ix−peak =
√
i2xq + i2xd =

√
3

2
MIdc (13)

where, M is the modulation factor with a maximum value of 1 to work under over

modulation [21] and ix−peak is the amplitude of the current waveform. The DC current

of the HVDC link varies within a range established by the VDCOL and the power

transfer between LCC stations. This fact may limit the injection of wind power in the

HVDC transmission system when current is reduced. In order to address DC current

reduction and its effects, the following equation system (14) is solved:

i2mq + i2md =
3

4
I2dc − 2imdωevcq − ω2

eC
2
wfv

2
cq (14a)

P =
3

2
vcqimq (14b)

Q =
3

2
vcqimd (14c)

Q = −
ωeLeq(i

2
mq + i2md)

2r2
(14d)
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where, P and Q are the active power and reactive power at the AC capacitors. Leq is

the equivalent inductance of the OWPP AC grid and r is the relation of the transformer

between the CSC and the AC grid. Combining equation (2) with (13), equation (14a)

is obtained. Equations (14b) and (14c) are the active and reactive power, respectively,

at the AC capacitors. No losses are considered between the VSCs of each wind turbine

and the CSC in order to simplify the steady-state analysis. Equation (14d) calculates

reactive power considering the equivalent inductance of the OWPP AC grid and the

current module after the transformer because it is assumed that each VSC injects no

reactive power in the OWPP AC grid. Solving the previous system permits to find

the points where the system is operating with the maximum AC current which the

converter is able to synthesize. Relations between P , vcq and Idc are depicted in Fig.

10 and Fig. 11 using the results of the previous equation system (14a)-(14d). Fig. 10

shows that the higher the DC current, the higher the maximum power that can be

extracted from the OWPP. Fig. 11 shows that AC voltage needs to be higher when

there is a DC current reduction in order to inject the same power.

[Figure 10 about here.]

[Figure 11 about here.]

For this study a Vcq voltage of 50 kV has been considered. The chosen voltage

allows a power transfer of 69% of nominal power at a DC current of 1.1 kA (minimum

value of the VDCOL). When the current rises to 1.6 kA, nominal power of OWPP

is guaranteed. In case of need of power reduction, during a drop of DC current, an

algorithm to address this problem is presented in section 5.3.

5.2. Considerations on system reliability

The addition of the CSC based series tapping station can decrease the reliability

of the system if some measures are not taken into account. A solution more indepen-

dently in terms of operation can be an HVDC point-to-point connection for the OWPP.

Nonetheless, it would require an additional main converter and DC cables of several
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kilometres, a considerable increase in cost. The main considerations are presented be-

low:

Firstly, the CSC must have bypass switches in order to bypass the converter and

allow the operation of the system as a conventional LCC-HVDC link when it is desired.

Secondly, communications between the LCC stations and the CSC are required.

For instance, it may be necessary due to market regulation or technical causes that

the OWPP modify its power injection. In such situations, both LCC stations should

be able to command to the CSC station to initiate or finalize its operation, as well as,

changing its power reference.

Finally, the issue raised in Section 5.1 about DC current reduction is addressed

using a power reduction algorithm in Section 5.3

5.3. Proposed Power Reduction Algorithm (PRA)

Three different approaches can be considered to address the DC current reduction

in the LCC-HVDC link: The first approach is to guarantee that in the worst case

(minimum DC current in the HVDC link), the CSC must be able to extract the nominal

power of the OWPP. The second approach is introducing a power reduction algorithm

in the OWPP to diminish wind power when DC current is low. The third approach is

to adapt the VDCOL algorithm to the CSC and OWPP requirements.

The third option is not desirable as the OWPP represents a 10% of the nominal

power of the link and the idea is not to modify the control and operation algorithms of

the transmission system. The first approach simplifies the control design as it ensures

that for any wind power, the CSC is capable of injecting all power into the HVDC link.

Nonetheless, it requires high AC voltages in the OWPP that can lead to a cost increase

not affordable by the increment in wind power extraction. The second approach permits

lower AC voltage but needs an additional power reduction algorithm and communica-

tions between the CSC and the wind turbines. For this work, the second approach has

been considered and the procedure implemented is as follows.

The first step is saturating the q component of the current of the grid side VSC

of each turbine according with maximum value of im that the CSC is able to absorb.
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From expression (14a) and considering the transformer ratio and the total number of

wind turbines in the OWPP, the maximum peak value of current injected by each grid

side VSC is:

icr =

√
1

r2m2n2

(
3

4
I2dc − 2ωeimdvcq − ω2

eC
2
wfv

2
cq

)
(15)

where, icr is the maximum value of the q component of the current through grid side

VSC of each turbine, ib. r is the transformer ratio, m is the number of wind turbine

clusters and n is the number of wind turbines in each cluster. This current limitation

is transformed in a power limitation by means of expression (16).

Pcr =
3

2
vtqicr (16)

This power limitation is assumed to be shared equally by all wind turbines. Pitch

control also receives the new power reference, Pcr, and chooses the minimum value

between this one and the nominal power of the turbine Pnom. The power reference sent

to the pitch controller is set to be lower than Pcr in order to have a better control of the

VSC voltage by the grid side VSC. A value of a 95% of Pcr has been set after performing

an heuristic analysis. Then, it increases pitch angle to limit power extraction. Pitch

control is much slower than current control in the VSC, therefore, the generator side

VSC is absorbing wind power but it cannot be injected into the AC grid. This leads to

a transient increase of the DC voltage of the back-to-back converter. A DBR is used to

eliminate the exceeding power during these few seconds. During loss of communications

between the CSC and the wind turbines, the wind turbines set the power reference to

the worst possible scenario (the power that the CSC is able to inject for a DC current of

1.1 kA). Fig. 12 shows the control scheme of one wind turbine with the power algorithm

implemented.

[Figure 12 about here.]

Several other approaches could also be considered. For instance, current could be

saturated in the generator side VSC, which is equivalent to limit the electric torque.

Then, the rotor of the PMSG would be accelerated and the pitch control also would

increase pitch angle to keep the turbine below nominal power. This strategy avoids
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the DBR to be activated and the exceeding energy is used to accelerate the turbine

increasing its mechanical stress. A combination of both ideas can also be an option.

Nevertheless, they are not considered in this study since mechanical analysis is not

performed.

6. Dynamic simulations

The simulations are performed considering switching models for LCCs and CSC,

and average models for VSCs. The system parameters used for the simulations are

listed in Table 1 and 2. Table 3 shows the control parameters. Section 6.1 and section

6.2 present the simulation results of a DC current reduction in the HVDC link with and

without PRA, respectively. Section 6.3 presents the results during a communication

loss between the CSC and the OWPP.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

6.1. Start-up and DC current reduction without PRA

Fig. 13 depicts the variables of the HVDC link and the CSC station and Fig. 14

shows the variables of one wind turbine. At the initial instant, the CSC is bypassed and

LCC1 is acting as a rectifier and LCC2 as an inverter. The voltage of the HVDC link

is ramped until its nominal value (Fig. 13a) while the current is regulated by LCC1

according to the VDCOL (Fig. 13b). The system is operating without absorbing power

from the OWPP. At instant t = 3.5 s the wind farm is energized. Fig. 13d shows

how the AC voltage of the AC grid, vcq, is regulated at 50 kV and the DC bus of the

full-rated of each wind turbine is raised until the nominal value (Fig. 14e). During this

instant the CSC is consuming power, thus, component imq has a positive value as it

can be seen in Fig. 13f. The generator side VSC starts to apply the maximum power

extraction algorithm at t = 4 s (Fig. 14b), and the OWPP starts to inject power into
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the LCC-HVDC link (Fig. 13c). Fig. 13a shows a negative voltage for the CSC since

it is injecting power to the HVDC link. It can be seen that V1 is lower than V2, as

part of the power is provided by the CSC (Fig. 13c). Fig. 14a depicts the wind profile

and Fig. 14c the pitch angle of the wind turbine. The power from the generator is

shown in Fig. 14d as PPMSG and Pbtb is the power injected by each full-power converter

to the OWPP grid. DC currents inside the full-power converter are illustrated in Fig.

14f. The AC voltage and the AC current in the CSC can be seen in Fig. 13d and

Fig. 13g, respectively. Fig. 13g compares the modulated current of phase a, ixa, with

the reference signal for modulation, ixa
∗. It can be noticed that ixa

∗ is lower than the

modulation limit, Mlim. After instant 7 s, the voltage reference of station LCC2 is

reduced (Fig. 13a). Fig. 13b depicts how the VDCOL is also diminishing the DC

current to 0.55 pu. This current reduction leads to a decrease of the wind power that

the CSC is able to inject due to the current modulation. Fig. 13h shows that the

reference current, ixa
∗, to extract the power is higher than the modulation limit, Mlim.

After instant, t = 10s, the CSC is not able to control the AC voltage (Fig. 13e).

[Figure 13 about here.]

[Figure 14 about here.]

6.2. Start-up and DC current reduction with PRA

Fig. 15 and Fig. 16 show the simulation results considering the same conditions

that in Section 6.1 but with the PRA implemented. Fig. 15 depicts the variables of the

HVDC link and the CSC station and Fig. 16 shows the variables of one wind turbine.

Before instant t = 7s the system is evolving with no difference compared with Section

6.1. After this instant, Fig. 15b depicts how the VDCOL is diminishing the DC current

to approximately 0.55 pu. This current reduction leads to a decrease of the wind power

that the CSC is able to inject due to the modulation limit. The power limitation is

calculated in the CSC station and sent considering no delays to all the turbines as Pcr.

Pitch controller increases pitch angle to decrease the extraction of wind power as it can

be seen in Fig. 16c. Fig. 16d depicts how Pcr decreases and achieves a lower value
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than the power extracted by the generator PPMSG. In this case, the power injected by

each VSC back-to-back to the OWPP grid, Pbtb, is saturated also according to the DC

current reduction (Fig. 16d). This leads to a transient increase of the VSC voltage

(Fig. 16e) that activates the DBR during a reduced period of time in order to eliminate

the exceeding power. Fig. 16f shows the DC currents in the VSC. Ibtbm is the current

coming from the generator side VSC that has the same value that the current injected

into the OWPP AC grid, Ibtbg, unless during the activation of the DBR. The current

through the DBR is depicted as Idbr. In this case, Fig. 15h shows that the reference

signal, ixa
∗, reaches the modulation limit, Mlim, but it does not increase beyond this

limit. As a result, the CSC is able to regulate the AC voltage of the OWPP to the

reference level (Fig. 15e).

[Figure 15 about here.]

[Figure 16 about here.]

6.3. Communication loss

Fig. 17 and Fig. 18 show the simulation results for a loss of communication between

the CSC station and the wind turbines. Fig. 17 depicts the variables of the HVDC link

and the CSC station and Fig. 18 shows the variables of one wind turbine. At instant

t = 2 s, there is a loss of communications and it are restored at t = 10 s. During this

scenario the CSC is applying a negative voltage in the HVDC link (Fig. 17a). Fig. 17b

shows how the LCC1 is regulating the DC current to the nominal value. A fraction of

the power demanded by terminal LCC2 is provided by the CSC as it can be seen in

Fig. 17c while it is controlling the AC voltage of the OWPP to a constant value (Fig.

17d). Fig. 17e shows the component q and component d of the current coming from the

OWPP. This graphic illustrates a decrease of current due to the loss of communications.

Fig. 17f also shows the sinusoidal waveform of the AC voltage at the OWPP. Fig. 18a

shows the wind speed in each wind turbine. Graphic 18b depicts the rotational speed of

the wind turbine and the optimal speed to extract the maximum power. It can be seen

that during the loss of communications the VSC drives the turbine to work below the
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optimal speed in order to reduce the power. Pitch angle in Fig. 18c is also increased

to reduce power extraction. In Fig. 18d, Pcr is presented and is diminished during the

communication loss to the minimum value (equivalent to have a DC current of 1100

A). Pcr becomes lower than the power of the generator, PPMSG; therefore, the power

reduction algorithm is started and increases pitch angle to reduce the power extracted

from the wind. The power injected into the AC grid by the VSCs, Pbtb, is also saturated

according to Pcr, though, it is set to be a 5% higher in order to have a better control

of the DC bus. In Fig. 18e the voltage of the DC bus of each VSC is increasing when

PPMSG is higher than Pcr. The DC currents of the back-to-back of each wind turbine

are presented in Fig. 18f. It can be seen that during the first instants after second t = 2

and before t = 10 s, PPMSG is much higher than Pcr, thus, the DBR is activated to

eliminate part of the power due to the raise of VSC DC voltage. The current extracted

by the grid side VSC, Ibtbg, follows the same shape than the one from the generator side

VSC, Ibtbm, however the first one is lower when the DBR is eliminating power.

[Figure 17 about here.]

[Figure 18 about here.]

7. Conclusions

This work conducts the operation and control of a series CSC in order to integrate

offshore wind energy into an LCC-HVDC transmission system. The operation and

control is addressed during normal operation, DC current reduction and communication

loss. An steady-state analysis shows that during DC current reduction in the HVDC

link, the capability to inject power into the link is also reduced for a constant voltage in

the OWPP AC grid. A power reduction algorithm is proposed to address this scenario.

Simulation results during DC current reduction illustrates that the power algorithm

reduces the power extraction using pitch control and the grid side VSC injects power

according to the maximum current value that the CSC is able to modulate. The DBR

is activated to reduce the transient increases in the VSC voltage. Simulation results

during communications loss show that the power limitation is set to the minimum value

16



considering the minimum possible DC current in the HVDC link. The system reduces

the power injection using the same power algorithm and increases power extraction

again when communications are restored. The simulation results validate the operation

and control of the CSC and the proposed power reduction algorithm.
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Figure 15: Simulation results for CSC start-up and DC current reduction with PRA: LCC-HVDC and
CSC variables
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Figure 16: Simulation results for CSC start-up and DC current reduction with PRA: Wind turbine
and VSCs variables
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Figure 17: Simulation results during loss of communication: LCC-HVDC and CSC variables
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Figure 18: Simulation results during loss of communication: Wind turbine and VSCs variables
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Table 1: LCC-HVDC parameters

LCC-HVDC transmission system
Nominal power PHVDC 1000 [MW]
Nominal voltage VHVDC 500 [kV]
Nominal current IHVDC 2 [kA]

Cable length l 200 [km]
Cable resistance rcable 0.25 [Ω/km]
Cable inductance lcable 5.9 [mH/km]
Cable capacitance ccable 0.13 [µF/km]
AC grid 1 voltage Vac1 345 [kV]
AC grid 2 voltage Vac2 230 [kV]

AC grid 1 inductance Lac1 0 [mH]
AC grid 2 inductance Lac2 16.5 [mH]
AC grid 1 frequency fac1 50 [Hz]
AC grid 2 frequency fac2 50 [Hz]
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Table 2: CSC and OWPP parameters

Current Source Converter
Nominal AC voltage Vc 61.2 [kV]

AC capacitor Cwf 20.6 [µF]
HVDC transformer leakage inductance Ltr2 8.14 [mH]

HVDC transformer resistance Rtr2 0.256 [Ω]
HVDC transformer relation r 0.8 -

Switching frequency fs 1000 [Hz]
Equivalent inductance of the OWPP AC grid Leq 12.8 [mH]

Offshore Wind Power Plant
Number of wind turbines per cluster n 4 -

Number of wind turbine clusters m 5 -
Full-rated VSC voltage Ebtb 7 [kV]

VSC transformer leakage inductance Ltr1 41.59 [mH]
VSC transformer leakage inductance resistance Rtr1 1.31 [Ω]

VSC capacitance Cbtb 1 [µF]
VSC coupling inductance Lbtb 103 [mH]

VSC coupling inductance resistance Rbtb 1.63 [Ω]
DBR high voltage level E2 1.1 [pu]
DBR low voltage level E1 1.05 [pu]

DBR value Rdbr 11.86 [Ω]
Wind turbine power Pnom 5 [MW]

Wind turbine rotational speed ωnom 15.7 [rpm]
Wind turbine inertia Jt 43.8 [Mgm2]

Wind turbine swept area A 10,568 [m2]
Cut-in speed vin 4.5 [m/s]
Cut-off speed voff 25 [m/s]

Pitch actuator speed vpitch ±8 [/s]
Pairs of poles p 100 -

Stator inductance Ls 8.4 [mH]
Stator resistance rs 0.08 [Ω]
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Table 3: Control parameters

LCC kpb 5.1995
kp1 0.0315 kib 81.5
ki1 0.9053 kpe 0.0439
kp2 1.7e-7 kie 1.0622
ki2 0.0010 Generator VSC

CSC kps 1.676
kpc 0.0091 kis 16
kic 1.0965 kpw 8.39e-05
kdc 7.5e-7 kiw 1.08e-04
Grid VSC kaw 43.6186
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