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ABSTRACT 

We demonstrate direct growth of two-dimensional (2D) and three-dimensional (3D) graphene 

structures on glass substrates. By starting from catalytic copper nanoparticles of different densities 

and using chemical vapour deposition (CVD) techniques, different 2D and 3D morphologies can be 

obtained, including graphene sponge-like, nano-ball and conformal graphene structures. More 

important, we show that the initial copper template can be completely removed via sublimation during 

CVD and, if need be, subsequent metal etching. This allows optical transmissions close to the bare 

substrate, which, combined with electrical conductivity make the proposed technique very attractive 

for creating graphene with high surface to volume ratio for a wide variety of applications, including 

antiglare display screens, solar cells, light-emitting diodes, gas and biological plasmonic sensors. 

 

1. Introduction 

Graphene, a two-dimensional (2D) carbon material, has a wide variety of potential applications due to 

its unique electrical and optical properties, mechanical strength, flexibility and chemical stability. 

Since its discovery, several techniques have been developed to grow it with high quality and over 

large area substrates. These include chemical vapor deposition (CVD) and plasma-enhanced CVD 

(PECVD) usually carried out on transition metal foils that act as catalysts to favor the dissociation of a 

hydrocarbon gas. An important factor to control the number of graphene layers is the carbon solubility 

of the catalyst, as it enables different growth mechanisms (carbon adsorption, absorption or 

segregation). In the case of Cu, single layer graphene can grow in a controlled manner because of the 

adsorption mechanism due to low carbon solubility. For this reason, 25 to 35 μm-thick Cu foils have 
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become the standard surface for CVD or PECVD graphene growth [1]. The graphene is then 

transferred to the desirable substrate, e.g. glass in our case, by using sacrificial layers, the most 

common one being polymethyl methacrylate (PMMA). Often, the electrical, optical and mechanical 

properties of the transferred graphene are affected by organic residues. To avoid time consuming, 

cumbersome transfer and poor performance associated to residues, direct growth on dielectric 

substrates has been investigated. For example, it has been achieved by using an interfacial ultrathin 

metal film that acts as a catalyst and retracts during growth leaving graphene on the dielectric area. As 

a final step the residual metal can be completely removed using simple etching processes [2–5]. 

Recently, more complex three dimensional (3D) structures with high quality and large surface-to-

volume ratio have been obtained starting from 3D-shaped catalytic templates. Also, it was 

demonstrated a significant control of size and shape thanks to the catalyst morphology, which can be 

modified to obtain, for example, graphene spheres, tubes or networks [6,7]. Ni foams are an example 

of a 3D-shaped catalyst that produces high quality 3D-graphene (3D-G) networks with excellent 

conductivity [8,9]. Other studies have demonstrated the growth of 3D-G by using more specific 

catalysts, e.g. MgO, Ni-coated pyrolyzed films and metallic salts. Of interest are structures grown by 

PECVD while a voltage is applied, which are known as “carbon nanowalls” [10,11]. If good quality is 

preserved, 3D-Gstructures are attractive as they possess 2D-graphene properties with a larger 

“effective” surface area. In addition, the combination of 3D-G with other functional materials could 

lead to the development of new surfaces for a wide variety of applications, including antiglare display 

screens, solar cells, light-emitting diodes (LEDs), supercapacitors, batteries, gas and biological 

sensors [12]. The challenges associated to grow 3D-G structures consist in extending the aforesaid 

technique to different catalyst materials and geometries and, similarly to 2D graphene, avoiding 

transfer processes that usually involve etching of the metal catalyst, use of polymers and lithography.  
 

In this work we address these challenges and demonstrate 2D- and 3D-G structures starting from 

properly defined catalytic Cu templates. Nano-structuring of the initial Cu structures is achieved using 

lithography-free methods that allow to process large areas (up to 2x2 inches). Notably, Cu deposition 

and nano-structuring can be carried out on a wide range of substrate materials and inside the same 

CVD chamber as that used for the subsequent graphene growth, these being clear advantages for 

future industrialization. To demonstrate the versatility of the proposed technique, we investigated the 

growth of three graphene structures with different properties, optical, electrical and morphological, 

obtained by proper tailoring of the initial Cu template: (i) the arrangement of non-aggregated Cu 

nanoparticles (Cu NPs) in different layers that produced the formation of a 3D-G sponge-like 

structure (3D-GS); (ii) one layer of isolated Cu NPs that produced 3D-graphene nanoballs (3D-GB); 

(iii) the aggregation of Cu NPs forming larger catalytic structures that produced 2D graphene (2D-G) 

networks. 
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It is worth noting that in previous work the Cu NPs tended to coalescence during graphene growth 

making it difficult to control the size and shape of the catalyst particles. Instead, our process allows 

control of Cu NPs template. Along the way, we have improved adhesion by surface treatment or by 

partially embedding the Cu template in glass. The resulting high quality graphene nano-structures 

present low defects sites, high surface to volume ratio, high optical transmission while still preserving 

electrical properties. 

 

2. Experimental procedure 

2.1.  Cu deposition on glass substrate 

Fused silica substrates from Corning Inc. (High Purity Fused Silica, HPFS®) with a size of 2x2 inches 

were used in this work. The substrates were cleaned using conventional organic solvents followed by 

O2/Ar (50:50) plasma cleaning at 50 W for 3 min, thus obtaining an hydrophilic surface (contact angle 

below 5 degrees) which ensures a good adhesion of the Cu template. For the production of all 

graphene structures, Cu has to be first deposited onto the substrate. For 3D-GB and 2D-G, Cu was 

deposited from a copper (II) oxide (CuO) suspension in water (Nanophase Technologies or Alpha 

Aesar, 46.8%) onto cleaned glass. The dispersion was mixed and then sonicated for 10 min. After that, 

samples were located inside a dipping vessel. For both structures, the primary particle size of the 

dispersion was 17-23 nm. The deposition of CuO NPs on glass was carried out through varying 

concentration (1-10 wt/wt%) by diluting the stock solution and dip speed at 224 mm/min without 

additional modification of the solution. High concentrations resulted in multilayer coatings but at 

lower concentrations we observed a discontinuous (island type) coating deposition with few layers of 

particles in some regions with agglomerates with 100 nm heights, larger than 100 nm agglomerates 

were also seen. This was the procedure for obtaining CuO NPs for 3D-GB production. However, for 

producing bigger CuO particles for 2D-G structures, we observed that increasing the number of lower 

withdrawal speed dip runs (50-150 mm/min) led to an increase in particle density without addition of 

multilayers. Adhesion of CuO NPs for 2D-G was increased by embedding the particles in the glass. 

This was performed by running various temperature profiles inside a Vulcan furnace using air at 

temperatures 850-1100ºC. The optimal temperature for particle adhesion was ~975ºC for 1 h. After 

that, for both CuO NPs structures, a reduction step for the catalyst activation was performed inside an 

oven or CVD at 600ºC for one hour or longer. Reduced Cu(0) nanoparticles were observed as a 

plasmon resonance at 586-590 nm in the absorption spectra. The ability to do the in situ reduction and 

graphene growth in a CVD reactor helps reducing the sample handling and process steps were reduced 

inside an oven or CVD using H2 at 600ºC for approximately one hour. 

For 3D-GS, Cu was thermally evaporated on glass slides. Samples were located inside a quartz tube or 

CVD equipment at vacuum (5·10-3 mbar) and 1100ºC where Cu was evaporated from a Sigma Aldrich 

foil with a thickness in the 25 to 35 µm range. The foil was located at the center of the quartz tube 
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while the fused silica substrate at the extremity of the chamber. By changing the position of the 

substrate, Cu NPs of different diameters could be obtained, thus allowing different size graphene 

structures. We located the sample approximately 6 inch away from the Cu foil located in the center, 

where the substrate temperature was 250ºC and Cu NPs had a mean diameter (∅̄CuNPs) of 100 nm. 

The corresponding 3D-GS structure will have dimensions similar to the Cu template. 

 

2.2. Graphene growth on Cu NPs by CVD 

Graphene was grown by CVD (Black Magic 4-inch, AIXTRON) under the following conditions: 

CH4:H2 (1:4, for 2D-G and 3D-GB) and C2H2:H2 (1:0, 1:2, 1:4, for 3D-GS), 0.2 mbar for 3D-GS and 

25 mbar for 3D-GB and 2D-G, heating rates of 50-75ºC/min, temperatures of 900ºC for 3D-GS and 

1000ºC for 3D-GB and 2D-G, and time of 30 minutes.  
 

2.3. Cu removal from graphene structures 

For 2D-G and 3D-GS structures, the Cu catalyst is removed by sublimation. An increase of 

temperature up to 1100ºC is performed under Ar/H2 environment for 10 minutes. In the case of 3D-

GBs, the Cu pre-pattern is removed by wet etching using diluted ammonium persulfate for 10 min.  
 

2.4. Cu NPs and graphene structures characterization 

The evolution of the growth was monitored by means of Atomic Force Microscopy (AFM, 

Bruker/Veeco Dimension 3100) and FEI-Scanning Electron Microscopy (FE-SEM, FEI Inspect F). 

Structural characterization was carried out by energy-dispersive X-ray spectroscopy (EDX, Oxford 

INCA) to confirm that Cu catalyst was removed. EDX measurements were carried at 10 different 

points. The accelerating potentials varied between 5kV and 15kV, depending on the nature of the 

sample. Complementary information was obtained by Raman spectroscopy at 532 nm excitation 

wavelength using a 100X microscope lens (Renishaw inVia). The spectra were acquired in 1100 to 

2900 cm-1 Raman shift range. For all structures, the surface was statistically studied through mapping. 

Electrical sheet resistance measurements (Rs) were carried out using a 4-point probe equipment.  

 

3. Results and discussion 

The synthesis of 3D and 2D graphene structures (3D-GB, 3D-GS and 2D-G) are illustrated in Fig. 1. 

Using Cu as a common catalyst for all structures, the growth consisted in three steps: (i) Cu pre-

patterning by dip-coating of CuO particles on the substrate or by thermal evaporation of Cu from a Cu 

foil (see previous section 2 for more details); (ii) catalytic CVD graphene growth; and (iii) removal of 

residual Cu by wet etching, sublimation or both.  

In the following we present characterization results for all structures obtained in this work. 
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Figure 1. Fabrication of 3D and 2D-graphene structures. (i) Cu template formation on the substrate by 

CuO particles dip-coating or by thermal evaporation from a Cu foil. Pictures on the right side show 

the final Cu structures on the substrate: isolated, large Cu NPs embedded in glass or multi-layer Cu 

NPs. (ii) CVD growth of graphene on the Cu template. (iii) Removal of residual Cu by wet etching or 

thermal sublimation.  

3.1. 3D Graphene nanoballs (3D-GB) 

The 3D-GB structures required a systematic control of the initial Cu template before graphene growth. 

Figure 2 (a-b) shows top and 30º SEM pictures of the Cu NPs after deposition and subsequent H2 

reduction. It can be observed that Cu NPs are spread over the surface presenting a distribution similar 

to that in solution and, contrary to previous work [13], without large aggregation. This was achieved 

by having cleaned glass surface to reduce the contact angle to <5º, thus easing the deposition of NPs 

and improving their adhesion to the substrate. Glass is typically cleaned using Semiclean™ KG 

solution soaks at 70 °C in an ultra sound wash and ultrasound rinse in DI water. Then the substrates 

are dried in air at 80 °C. Prior to the coating process the glass were plasma cleaned (March PM-100, 

Nordson) at 50 W for 3 min using an O2/Ar (50/50 mix) to ensure the removal of any organics on the 

surface after the washing or storage steps. This cleaning process and the concentration of CuO 

solution and dip-coating parameters (withdrawal speed, immerse time) allow the controlling of the 

monolayer deposition, Cu NPs density and aggregate size. For example, Fig. 2 (a) shows 

a ∅̄CuNPs dispersion centered at 150 nm after H2 reduction of CuO particles in the CVD reactor. 

Graphene is deposited in situ in the CVD reactor. Figure 2 (b) and (c) show the 30º tilted view of the 

Cu NPs before and after graphene deposition, respectively. One can appreciate the morphological 

change with the particle reducing their surface contact angle, getting closer to each other and 

graphene growing in between. After graphene deposition, the sample was dipped in diluted 

ammonium persulfate solution to etch Cu. The resulting 3D-GBs are shown in the SEM picture of 

Fig. 2(d) presenting diameters similar to those of the original Cu NPs. In addition, they are completely 

catalyst-free, as confirmed by the EDX spectra in Fig.S1 (see supplementary information, SI).  

To assess the quality of the 3D-GBs, Raman measurements were performed. The inset of Fig. 2(e) 

shows a representative Raman spectrum where the typical three graphene peaks are clearly evident: D, 

(i) CU PRE-PATTERNING (ii) CVD GRAPHENE GROWTH

• Dip-coating of CuO particles

• Thermal evaporation 
of Cu from Cu foil

7.5-25 mbar
T=900-1000ºC
t=30 minutes
CH4:H2 or C2H2:H2

Ar
CXHY:H2

(iii) CU THERMAL/WET ETCHING

Quartz reactor 
or CVD 

chamber

Previous 
structures 

of Cu/glass

3D graphene
nanoballs
(3D-GB)

3D graphene
sponge structures
(3D-GS)

2D graphene
network
(2D-G)
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G and 2D bands, at 1350, 1580 and 2700 cm-1, respectively. According to the graphene monolayer 

criteria [14,15], graphene quality can be measured in terms of intensity ratio (ID/IG) between D and G 

peaks. The lower the ID/IG the higher the quality, while the ratio (I2D/IG) between 2D and G peaks is 

expected to be equal or higher than 2. By Raman mapping over a large area (20x20 µm2), we could 

confirm that 3D-GBs were homogeneously distributed (see SI, Fig.S2). Fig. 2(d) shows a Gaussian 

distribution of I2D/IG with a mean value of 2.25 in a representative area of the sample. This value 

confirms that 3D-G structures are single layer. Moreover, it is important that the graphene structures 

are less defective if compared to previous literature, where a high D peak value was reported [13,16]. 

Also, it is worth to comment that a tiny D’ peak is present on the right of the G peak due to structural 

defects [17]. Finally, optical transmission measurements were carried out at the different steps of the 

growth process. The initial Cu NPs produce a strong plasmonic dip in transmission which explains the 

pale red color of the samples, while the high transmission in the near-infrared is expected as in that 

region the wavelength becomes much larger than the particle size. The growth of graphene reduces 

only slightly the transmission that in fact changes mostly because of the rearrangement (size and 

surface distribution) of the Cu NPs. As expected the most dramatic transmission change took place 

after wet etching of Cu. The final 3D-GB structures show very little absorption with respect to the 

initial fused silica substrate (Fig. 2(f)). At 550 nm, the transmittance is approximately 90%. If one 

considers the reflection (7%), the absorption is about 3%. This value is close to the theoretical 

absorption of single-layer graphene (2.3%). Because the 3D-GBs are isolated and the substrate is 

electrically not conductive, Rs could not be measured.  

The 3D-GBs may have applications where large surface to volume ratios are advantageous, such as 

supercapacitor, electrochemistry and catalytic chemistry. The electron confinement associated to the 

nanoballs could also produce localized surface plasmon resonances (LSPRs). We did not observe 

those as they are expected at large wavelengths (in the mid infrared region) and require graphene 

doping beyond the intrinsic levels. In the future we plan to electrical gate the nanoballs by, for 

example, adding an additional graphene layer to create a common electrical contact and obtain in this 

way the doping level to observe LSPR. LSPRs are very attractive for chemical and biochemical 

sensing [18]. 
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Figure 2. Characterization of 3D-GB structure. (a) SEM image of Cu NPs deposited on glass and 

after H2 reduction process. (b) and (c) SEM at 30º of deposited Cu NPs without and with graphene, 

respectively. The particles profile in (c) is smoother due to NPs change and graphene coverage. (d) 

3D-GB after Cu removal. (e) Statistical distribution of Raman I2D/IG peak ratio, with average value of 

2.25±0.33, over an area of 20x20 µm2. For ID/IG peak ratio, the average value was 1.32±0.21. In the 

inset, a representative spectrum shows the three typical Raman peaks of graphene (D, G and 2D) with 

an additional D’ peak as a consequence of defects in the graphene structure, (f) Optical transmittance 

measurements of: Cu NPs as deposited on glass after H2 reduction (orange), Cu NPs covered with 

graphene (wine), 3D-GB after Cu removal (green) and bare substrate (in black). 

 

 

3.2. 3D Sponge-like graphene (3D-GS) 

The 3D-Gs can meet the requirement of large scale applications: high quality, uniformity, 

transparency and conductivity. As previously mentioned, an accurate control of the evaporation time 

and location of the sample within the reaction chamber allowed tailoring the size of the resulting Cu 

NPs. As an example, Fig. 3 (a) shows the Cu NPs structure with a narrow size distribution centered at 

30 nm diameter and 75 nm height, (see SI, Fig.S3(a)). By increasing the reaction temperature to 

800ºC, the particles aggregated and increased their diameter and height up to 200 nm (see SI, 

Fig.S3(b)). After graphene deposition at 900ºC, the Cu template was sublimated at 1100ºC leaving no 

detectable Cu, as shown by EDX measurements (see SI, Fig.S4). The resulting 3D-GS structures are 

shown in Fig. 3(c). They present a sponge finger-like interconnected structure. It is worth noting that 

Raman mapping on these structures seems to reproduce the sample surface, for example in Fig. 3(d) 

we see the intensity mapping related with the 2D peak. This indicates continuity and homogeneity of 
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the graphene. In contrast to other samples, the mappings do not show any feature that can be related to 

surface motifs, and intensity fluctuations are likely to be related to variations of graphene density or 

quality. The corresponding distribution of I2D/IG is shown in Fig. 3 (e) and is a narrow peak with mean 

value of 0.5. This suggests the presence of few-layer graphene as can be also seen in the 

representative Raman spectra, see the inset. The graphene structure thus resembles the Cu template, 

closely packed and formed by several layers. 

 

 
Figure 3. Characterization of 3D-GS. SEM of: (a) Cu NPs as deposited at 250°C, and (b) after 

being treated at 800ºC. Note the size increase. (c) 3D-GS after CVD coating of graphene at 

900°C for 30 minutes and the consequent thermal sublimation of Cu at 1100ºC for 30 min. (d) 

Raman mapping over 20x20 µm2 area showing the intensity of 2D peak (I2D). (e) Distribution of 

I2D/IG extracted from the Raman mapping in (d) with an average value of 0.55±0.03. For ID/IG 

ratio, the average value was 0.80±0.05.The inset shows a representative spectrum of Raman 

mapping.  

 

Another important fact is that the overlap between the different layers forming the nano-structures 

enables electrical conductivity. Rs of these structures can be tuned from 1 to 20 kOhm/sq depending 

on the thickness and morphology of the Cu template; i.e. process conditions. Note that optical 

transmittance and sheet resistance are closely related (see SI, Fig.S5 for a summary of structures 

obtained with slightly different process conditions). The structures previously described and obtained 

at C2H2:H2 1:1 gave a range of transmittance of 47-70% at 2-5 kOhm/sq. However, the change of 

gases ratio can increase the transmittance up to a value of 80% while Rs values vary from 3 to 20 

kOhms/sq.  
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3.3. 2D graphene (2D-G) 

By modifying the initial Cu template we were able to promote the growth of 2D dimensional 

graphene using similar process conditions as those described above for 3D-GB. The increase of dip 

coating steps of CuO particles on glass, followed by the corresponding reduction under H2 flow, 

resulted in the large Cu isolated motifs shown in Figure 4(a). As in previous procedures, part of the 

Cu NPs would evaporate before graphene deposition due to the high reaction temperatures. To avoid 

this, a surface treatment of the glass was necessary. It consisted in embedding the Cu particles into the 

glass surface as previously described in section 2.1. The graphene was then deposited, and the Cu is 

finally sublimated at 1100ºC. The result is a transparent substrate covered with 2D-G, see Figs. 4(b) 

and (c). The slight curvature of the substrate confirms the effective embedding of initial Cu structures. 

Raman mapping was performed giving a distribution of I2D/IG with an average value of 1.13, Fig. 4(d). 

The typical spectra (in the inset) reveal high quality graphene as the D peak is very low. Within the 

lateral resolution of our Raman spectrometer, the maps (see SI, Fig.S6) indicate full surface coverage 

of the 2D-G structure. Regarding electrical measurements, the 2D nanostructure was not measured as 

it was difficult to contact on the dielectric substrate. Future work could contemplate the gating of the 

graphene nanostructures by using Si/SiO2 as the initial substrate. The optical transmittance before 

CVD (orange) and after Cu etching (green), together with bare substrate is shown in fig. 4 (e). Values 

up to 90% (at 550 nm wavelength) were observed, very close to the initial bare glass substrate. The 

high optical transmittance confirms the complete removal of the Cu template (see also EDX in SI, 

Fig.S7), a very promising feature for a wide range of applications, such as transparent electrodes and 

interfacial layers. 

 
Figure 4. Characterization of 2D-G structure. (a) SEM images of Cu embedded particles in glass 

before graphene deposition. (b-c) Top and cross section SEM of graphene after thermal 

(d)
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sublimation of Cu. (d) Raman distribution of I2D/IG with an average value of 1.13±0.41 over an 

area of 20x20 µm2. For ID/IG ratio the average value was 0.79±0.16. Inset: Raman spectra of 2D-

G on Si/SiO2. (e) Transmittance measurements of the embedded Cu (orange line), 2D-G after Cu 

removal at 1100ºC (green line) and the initial bare substrate (black line). 

 

Table 1. Summary of main properties related to 2D and 3D graphene structures developed by 

CVD technique and tuning the Cu template catalyst. 

Properties 
Graphene structure 

3D-GB 3D-GS 2D-G 

Catalyst Isolated Cu NPs Layered Cu NPs Large Cu NPs 

Graphene growth 
1000ºC, 30 min,  

CH4:H2 (1:4) 

900ºC, 30 min,  

C2H2:H2 (1:1) 

1000ºC, 30 min,  

CH4:H2 (1:4) 

I2D/IG 2.25±0.33 0.55±0.03 1.13±0.41 

ID/IG 1.32±0.21 0.80±0.05 0.79±0.16 

Transmittance, 633 nm (%) 91.2 46.5 92.2 

Rs (kOhms/sq) - (*) 2.2 - (*) 

(*) Rs was not measured as the structures are isolated/not continuous over a dielectric. 

 

4. Conclusions 

We have demonstrated a new technique to grow 2D and 3D graphene structures on glass substrate by 

starting from a predefined catalytic copper particle template. Different morphologies with a high 

surface to volume ratio can be produced, from sponge-like to nanoball and conformal graphene 

structures, with also very high transparency. These can find important application in antiglare display 

screens, solar cells, light-emitting diodes, gas and biological plasmonic sensors. 
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