
 
 

 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 
 

Copyright 2016 AIP Publishing. Aquest article pot ser descarregat 
només per a ús personal. Qualsevol altre ús requereix autorització 
prèvia de l'autor i AIP Publishing. 

El següent article va aparèixer en 

Dabbagh, F. [et al.] (2016) On the evolution of flow topology in 
turbulent Rayleigh-Bénard convection. Physics of fluids. Vol. 28, issue 
11, p. 115105-1 - 115105-25. Doi: 10.1063/1.4967495 

i es pot trobar a http://dx.doi.org/10.1063/1.4967495. 

Copyright 2016 AIP Publishing. This article may be downloaded for 
personal use only. Any other use requires prior permission of the author 
and AIP Publishing. 

The following article appeared in  

Dabbagh, F. [et al.] (2016) On the evolution of flow topology in 
turbulent Rayleigh-Bénard convection. Physics of fluids. Vol. 28, issue 
11, p. 115105-1 - 115105-25. Doi: 10.1063/1.4967495 

and may be found at http://dx.doi.org/10.1063/1.4967495. 

 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://dx.doi.org/10.1063/1.4967495
http://dx.doi.org/10.1063/1.4967495


On the evolution of flow topology in turbulent Rayleigh-Bénard convection

F.Dabbagh,1, a) F.X.Trias,1, b) A.Gorobets,1, 2, c) and A.Oliva1, d)

1)Heat and Mass Transfer Technological Centre, Technical University of Catalonia,

ETSEIAT, c/Colom 11, 08222 Terrassa, Spain

2)Keldysh Institute of Applied Mathematics, 4A, Miusskaya Sq., Moscow 125047,

Russia

(Dated: 28 October 2016)

1



Small-scale dynamics is the spirit of turbulence physics. It implicates many attributes

of flow topology evolution, coherent structures, hairpin vorticity dynamics and mech-

anism of the kinetic energy cascade. In this work, several dynamical aspects of the

small scale motions have been numerically studied in a framework of Rayleigh-Bénard

convection (RBC). To do so, direct numerical simulations have been carried out at

two Rayleigh numbers Ra = 108 and 1010, inside an air-filled rectangular cell of aspect

ratio unity and π span-wise open-ended distance. As a main feature, the average rate

of the invariants of the velocity gradient tensor (QG, RG) have displayed the so-called

“teardrop” spiraling shape through the bulk region. Therein, the mean trajectories

are swirling inwards revealing a periodic spin around the converging origin, of a con-

stant period that is found to be proportional to the plumes lifetime. This suggests

that the thermal plumes participate in the coherent large-scale circulation and the

turbulent wind created in the bulk. Particularly, it happens when the plumes elon-

gate substantially to contribute to the large-scale eddies at the lower turbulent state.

Supplementary small-scale properties, which are widely common in many turbulent

flows have been observed in RBC. For example, the strong preferential alignment of

vorticity with the intermediate eigenstrain vector, and the asymmetric alignment be-

tween vorticity and the vortex-stretching vector. It has been deduced that in a hard

turbulent flow regime, local self-amplifications of straining regions aid in contracting

the vorticity worms, and enhance the local interactions vorticity/strain to support

the linear vortex-stretching contributions. On the other hand, the evolution of in-

variants pertained to the traceless part of velocity-times-temperature gradient tensor

have also been considered in order to determine the role of thermals in the fine-scale

dynamics. These new invariants show an incorporation of kinetic and thermal gra-

dient dynamics that indicate directly the evolution and lifetime of thermal plumes

structures. By applying an identical approach, the rates of the new invariants have

shown a symmetric cycling behaviour decaying towards two skew-symmetric con-

verging origins at the lower Ra number. The trajectories near origins address the

hot and cold coherent plumes that travel as an average large-scale heat flux in the

sidewall vicinities, and denote a periodic spin period close to the plumes lifetime. At

the hard turbulent case, the spiraling trajectories travel in shorter tracks to reveal

the reduced lifetime of plumes under the dissipative and mixing effects. The turbu-
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lent background kinetic derivatives get self amplified and the trajectories converge

to a zero-valued origin indicating that there is no contribution from the plumes to

the average coherent large scales of heat flux. These and other peculiar scrutinies

on the small scale motions in RBC have been enlightened, and may have a fruitful

consequence on modelling approaches of buoyancy-driven turbulence.
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I. INTRODUCTION

“Turbulent flow constitutes an unusual and difficult problem of statistical mechanics,

characterized by extreme statistical disequilibrium, by anomalous transport processes, by

strong dynamical nonlinearity, and by perplexing interplay of chaos and order” (Kraich-

nan1). Nevertheless, understanding the qualitative contents of the governing equations of

turbulence can elucidate many physics therein. Namely, generic structural properties of the

mathematical governing objects, called (strange) attractors, which are invariants in some

sense, include many ingredients of turbulence physics (Tsinober2). Hence, the key point is

in the small scale motions, and their universal qualitative aspects commonly found in a wide

variety of turbulent flows. They result from the subtle balance between convective transport

and diffusive dissipation to be definitely blameworthy of generating the hairpin vorticity

dynamics, non-Gaussianity, strain/dissipation production and the cascade of kinetic energy

mechanisms. Studying their evolution gives us fundamental perspectives of flow topology

and thus, many physics of turbulence become intelligible.

Since the early 90s, a major attention has been given to the important role of velocity

derivatives in the topological classification of fluid motions3 and the small-scale dynamics4,5.

Thereby, several universal features of the small scale turbulence are observed, e.g. the in-

clined “teardrop” shape of the joint probability density function (PDF) of QG (the second)

and RG (the third) invariants of the velocity gradient tensor, and the essential preferential

alignment of vorticity with the intermediate eigenvector of the rate-of-strain tensor. They

have been observed in various turbulent flow configurations such as isotropic turbulence5,

turbulent boundary layer6, channel flow7, turbulent mixing layer8 and turbulent jets9. How-

ever, their thermally driven analogues, as in the developed natural convection flow heated

from below and cooled from above, namely Rayleigh-Bénard convection (RBC), are far from

being satisfactory.

Buoyancy-driven flow in RBC has always been an important subject of scientific stud-

ies with numerous applications in environment and technology. It constitutes a canonical

flow that approaches many natural and industrial processes such as ventilation of indoor

spaces, cooling of electronic devices and coherent circulations in solar collectors, oceans
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and atmosphere. In spite of its well-defined mathematical formulae, in principle given by

Navier-Stokes (NS)–under Boussinesq approximation–and energy equations (see Section II),

the resultant dynamics is strongly featured by intrinsic instabilities, counter-gradient diffu-

sion, augmented pressure fluctuations and strong interactions between kinetics and thermals

diversely distributed over flow regions. This nature has inspired significant inherent com-

plexities in the view of turbulence models, and the proper reproduction to the coherent

large-scale circulations in RBC11. Therefore, understanding the dynamics of small scale mo-

tions and their lifetime evolution can play a major role in the scope of turbulence modeling.

Indeed, a considerable advancement that unravels many involved physics of the problem

has been obtained across theories12,13, experiments and numerical studies (see Chilla and

Schumacher14 as an overall recent reference). The small-scale properties were a focal point

for many authors, e.g. Lohse and Xia15, who investigated the so-called Bolgiano-Obukhov

scaling existence within RBC. Moreover, the direct numerical simulation (DNS) of Schu-

macher16 and experiments of Gasteuil et al.17 have monitored the turbulent local evolution

of the thermal plumes in a Lagrangian frame to explore important statistical aspects of

heat and momentum transport mechanisms. Some authors focused on studying the sub-

stantial turbulent components of thermal and kinetic energy dissipation rates, which tightly

collaborate with high fluctuations and small-scale intermittency18,19. Only Schumacher et

al.20 have recently shed light on the universality picture of small scales in RBC regarding

their scaling law performance. Even more recently, Park and Lee10 have addressed a new

study of the coherent structures in RBC using the joint PDF of the velocity gradient tensor.

Their analysis10 is limited to a soft turbulence regime, and no descriptions on the universal

features of the small scale motions, the mechanisms of their dynamics and flow topology

changes are given.

In this study, we provide an investigation on the dynamical universal features of small

scale motions in RBC, commonly observed in many turbulent flows. Basically, the aver-

age evolution of QG and RG invariants (defined in Section III) of velocity gradient tensor

G = ∇u, is studied within the bulk region to show the cyclical action of flow topology change

converging towards the origin. By doing so, we extend the averaging dynamical approach

applied to isotropic turbulence4,5 and a turbulent boundary layer (BL)6, to include the

topology dynamics of RBC through the bulk. Important insights concerning the dynamics
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at hard turbulent regime, and the characteristic lifetime of the coherent energy containing

eddies are explored, where the universal essential alignments of vorticity with straining and

vortex-stretching geometries are addressed. On the other hand, an identical approach is

considered for the novel invariants Q
G̃θ

and R
G̃θ

(defined in Section IV) of the traceless part

of the velocity-times-temperature gradient tensor G̃θ = ∇(uT ) − 1/3tr(∇(uT ))I. The new

invariants are introduced as combinations of thermal and kinetic small-scale topology and

related predominantly with the dynamics of thermal plumes and turbulent heat flux. The

new dynamical equations are deduced and the material averaging procedure is applied in

order to provide new aspects of the life cycle of the small scales pertained to the thermals,

which become worthwhile in turbulence modeling of RBC.

The remainder of the paper is organized as follows. Details over the DNS study in the

current configurations of RBC are introduced in Section II. The universal features of fine-

scale dynamics and flow topology are discussed by analysing the averaged evolution of the

classical velocity gradient tensor invariants in Section III. The pioneering invariants of the

new velocity-times-temperature gradient tensor are considered and analysed identically in

Section IV. Finally, conclusions and future remarks are reported.

II. DETAILS OF THE DIRECT NUMERICAL SIMULATION

The data set used in this work is based on instantaneous fields of a DNS study in a

Rayleigh-Bénard framework. Namely, we simulate the incompressible NS and thermal energy

equations given by:

Du

Dt
=

√

Pr

Ra
∇2

u−∇p+ fff, ∇ · u = 0, (1)

DT

Dt
=

1√
RaPr

∇2T, (2)

where D/Dt = ∂/∂t + (u · ∇) is the Lagrangian derivative, p is the pressure, T is the

temperature and u = (u, v, w) is the velocity vector in Cartesian coordinates x = (x, y, z).

Equations (1) and (2) are written in a non-dimensional form using the height of the fluid layer

H , the temperature difference between the upper and the lower surfaces ∆Θ and the free-

fall velocity Uref = (αg∆ΘH)1/2 as references, where α is the volumetric thermal expansion

coefficient and g is the gravitational acceleration. Namely, Uref , ρU
2
ref , ∆Θ and H/Uref are
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used as characteristic scales for u, p, T and the time t respectively, where ρ is the fluid

density. fff = (0, 0, T ) indicates the body force vector using the Boussinesq approximation.

The current configurations are translated through a squared cross-section cavity of aspect

ratio Γ = W/H = 1 and longitudinal spanwise open-ended distance L/H = π (see Figure 1).

No-slip boundary conditions for velocity are imposed at the four solid walls. Regarding

temperature, the vertical walls are adiabatic, i.e. ∂T/∂y = 0, and the horizontal walls are

subjected to uniform dimensionless temperatures Thot = 0.5 and Tcold = −0.5 at the bottom

and the top walls, respectively. Periodic boundary conditions are applied for all quantities

in the longitudinal x-direction. The characteristic parameters of the system are introduced
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FIG. 1: Schematic representation of the studied Rayleigh-Bénard convective cell.

within the numbers of Prandtl Pr = ν/κ (here Pr = 0.7) and Rayleigh Ra = gα∆ΘH3/νκ

(108 and 1010), and in responding to that physics, the average Nusselt number Nu is given

by:

Nu =
√
RaPr〈wT 〉A − ∂〈T 〉A

∂z
, (3)

where the angular brackets operator 〈·〉 indicates the temporal average (likewise it denotes

the ensemble average in the statistical analysis), and the subscript symbol A refers to the

average over (x-y) plane at position z. ν is the kinematic viscosity and κ is the thermal

diffusivity.

Numerically, the governing equations (Eqs.1 and 2) are discretised in space on a Carte-

sian staggered grid using a finite-volume fourth-order symmetry-preserving scheme21 that

preserves the underlying symmetry properties of the continuous differential operators. Fol-

lowing an operator-based formulation, the discretised NS equations (Eq.1) are given by:

Ω
duh

dt
= −C(uh) +Duh −Mtppph + fffh, Muh = 0h, (4)

where uh is the discrete velocity vector, M is the discrete divergence operator and ΩΩΩ is a
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diagonal matrix, which contains the sizes of the control volumes. The resulting convective

coefficient matrix, C(uh), is skew-symmetric and the discrete diffusive operator, D, is a

symmetric negative-definite matrix. These global discretization properties ensure both the

stability and that the global kinetic-energy balance is exactly satisfied even for coarse meshes.

Therefore, the kinetic energy is not systematically damped by the discrete convective term,

or does not need to be damped explicitly to ensure stability of the method. Regarding

the time evolution of the cell-centered temperature, Th, it is discretised in the same way.

Then, for the temporal discretization, a second-order self-adapting explicit scheme is used22.

Unlike the conventional explicit integration schemes, it is not based on a standard Courant-

Friedrichs-Lewy (CFL) condition. Instead, the eigenvalues of the dynamical system are

analytically bounded, and the linear stability domain of the time-integration scheme is

adapted in order to maximize the time step, ∆t. More details can be found in Trias et

al.22. Finally, the velocity-pressure coupling is then solved by means of a classical fractional

step projection method23: a predictor velocity u
p
h is explicitly evaluated without considering

the contribution of the pressure gradient. Then, imposing the incompressibility constraint,

Mu
n+1
h = 0h, leads to a Poisson equation for pppn+1

h to be solved at each time step using the

Fourier-based solver24. Briefly, it is a scalable parallel solver that uses diagonalization by

means of a FFT in the periodic direction to uncouple the original 3D system into a set of

independent 2D systems. These 2D systems are solved using a preconditioned conjugate

gradient method except for the first lowest-frequency systems which are problematic for an

iterative solver. Those few systems are solved with a parallel direct Schur complement-based

method. The accuracy of the solution is automatically tuned during simulation in order to

provide the requested reduction of the divergence norm |Mu
n+1
h |/|Mu

p
h| 6 10−3 on each

time step. Finally, the absolute value of the resulting divergence norm is attained to 10−10.

The grids are constructed with a uniform grid spacing in the periodic x-direction, while the

wall-normal points are distributed following a hyperbolic-tangent function with an equal

number of nodes (Ny = Nz), given in z-direction (identical for y-direction) by

zi =
1

2

(

1 +
tanh{γz(2(i− 1)/Nz − 1)}

tanh γz

)

, i = 1, . . . , Nz + 1, (5)

where γz is the concentration factor in the z-direction. For details about the numerical

methods, algorithms and verification of the DNS code the reader is referred to Trias et al.25.

RBC is normally identified with predominant thermal and kinetic dissipative small scales
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which are distributed differentially in the near-walls and the bulk regions26. This has always

been an important demand to resolve both areas well in order to properly characterize the

flow dynamics. To do so, a refinement approach based on the Grötzbach estimate27 for the

Kolmogorov scales, which is given by:

ηGrö ≤
πPr1/2

((Nu− 1)Ra)1/4
for Pr ≤ 1, (6)

has been considered firstly for the low Ra number. By introducing ∆zmax as the maximum

grid spacing applied in the core where ∆zmax = ∆ymax = ∆x, various refinement ratios of the

Grötzbach criterion defined as ∆zmax/ηGrö ∈ [1.1 → 0.7], have been tested28. Furthermore,

an investigation has been performed in order to reduce the computational cost by maximizing

the equidistant spacing in the periodic x-direction (instead of setting it to ∆x = ∆zmax), at

the same Ra number. The numerical tests in this regard have led to a refinement ratio of

∆zmax/ηGrö = 0.9, and a coarsening tolerance for the homogeneous cell spacing in the range

∆x/∆zmax ∈ [1.25 → 1.5], without losing accuracy. These results have later been used to

choose the proper estimated grid at Ra = 1010 (see table I). On the other hand, the BLs are

resolved with NBL = 9 and 12 grid points for Ra = 108 and 1010, respectively. This exceeds

the resolution requirements proposed by Shishkina et al.29 and given, for Pr ≈ 0.7, by:

Nth.BL ≈ 0.35Ra0.15, 106 ≤ Ra ≤ 1010, (7)

Nv.BL ≈ 0.31Ra0.15, 106 ≤ Ra ≤ 1010, (8)

where Nth.BL and Nv,BL are the minimum required number of nodes within the thermal and

viscous BLs, respectively.

Data for the current statistical analysis is collected after at least 500 non-dimensional

time units [TU ] in order to be sure that the statistically steady state is reached and the

flow becomes out of the initial transient effects. Temporal integrations are then started and

continue during a sufficiently long time, τ = 500[TU ] and 200[TU ], for the low and high

Ra numbers, respectively. They guarantee a statistically stable turbulent heat transport

unchanged due to the presence of large-scale circulations, which erratically reverse their

directions over many large eddy turnover times30–32. In this case, the large eddy turnover

lasts about τeddy ∼ 7[TU ] (Ra = 108) and 5[TU ] (Ra = 1010). It has been defined as

τeddy = H/urms, where urms the root mean square of the bulk velocity. The instantaneous
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characteristics used in the statistical calculations are collected typically over several large

eddy turnover times, τst (see Table I), which sufficiently ensure the statistics convergence.

The bulk region considered in this paper is identified far enough from the solid boundaries

and the near-wall influences. Consequently, a subvolume Vbulk = {x = (x, y, z)|0.2 ≤ y ≤
0.8; 0.2 ≤ z ≤ 0.8}, has been chosen as a representative domain of the bulk, which lays

excessively out of the thermal BLs (see Figures 2a and 2b). In order to verify our selection,

the vertical midwidth profiles of the x-average root-mean-square temperatures are plotted

and displayed in Figure 2a for both cases. The profiles show maximum values at the outlets

of the thermal BLs to determine their thickness δT at the maximal thermal fluctuation33.

The corresponding distances read, z = 0.016 in the case of Ra = 108 and z = 0.0039 for

Ra = 1010, which match very well with the theoretical prediction of Grossmann and Lohse13

that reads δT = 0.5H/Nu (δRa=108

T = 0.0162, δRa=1010

T = 0.0039032).

All simulation parameters and grid details are displayed in Table I together with the

0

0.05

0.1

0.15

0.2

−0.07 0 0.07 0.14

z = 0.016

z = 0.0039

z

Trms

Ra = 1010

Ra = 108

(a) (b)

FIG. 2: (a) Vertical midwidth and x-average profiles of Trms showed in a closer view due to symmetry.

(b) represents an instantaneous temperature in (y, z) plane extracted from the DNS at Ra = 1010.

Nu number, which propose a scaling power equal to β ≈ 0.309 in the Ra-function corre-

lation Nu ∼ Raβ. This value corresponds very well to β = 0.29 proposed by Grossmann
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TABLE I: Summary of simulation parameters with the average Nu results where

ηDNS = (∆x∆ymax∆zmax)
1/3.

Ra ηGrö
∆zmax
ηGrö

∆x
∆zmax

ηDNS γz = γy Nx ×Ny ×Nz NBL ∆t[TU ] τ [TU ] τst[τeddy] Nu

108 1.09× 10−2 0.70 1.0 7.70 × 10−3 1.4 400× 208 × 208 9 1.45 × 10−3 500 40 30.9

1010 2.46× 10−3 0.92 1.36 2.50 × 10−3 1.6 1024 × 768 × 768 12 4.14 × 10−4 200 10 128.1

and Lohse theory13 for Pr ≈ 1 and Ra up to 1011. Moreover, it also agrees with the

DNS results of Scheel et al.34 obtained in a cylindrical cell of aspect ratio unity with the

same parameters (Pr = 0.7 and Ra ∈ [3 × 105 → 1010]), and the suggested correlation

Nu = (0.15± 0.01)× Ra0.29±0.01.
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FIG. 3: One-dimensional energy spectra in compensated formulae for the vertical velocity

k
5/3
x Eww(kx) and the temperature k

7/5
x ETT (kx), extracted along the midwidth periodic x-direction

in the core (z = 0.5) and inside the thermal BL (insets) at (a) Ra = 108 and (b) Ra = 1010.

Further demonstrations on the solution adequacy can be noted in the collapse of the kinetic
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and thermal energy spectra showed in Figure 3. It shows the compensated energy spectra

in the periodic x-direction for T and w, taken within the thermal BL (insets) and the core

(z = 0.5) midway between the lateral walls (y = 0.5), and averaged in time. In agreement

with many studies, e.g. Kaczorowiski and Wagner33, the velocity and temperature spectra

in the centre of the cell correctly match the Kolmogorov −5/3 and the Bolgiano −7/5

exponents, respectively across the inertial subrange. Hence, all the relevant turbulent scales

are resolved by the grids used, and both the inertial subrange and the dissipation range are

clearly identified for both turbulent cases in the main sets of Figures 3a and 3b.

Thermal plumes (mushroom-like) have an intrinsic role in activating the energy trans-

port mechanism through the bulk in RBC. In few words, the hot and cold plumes detach

respectively from the lower and upper plates. They arise in the bulk with the buoyant accel-

eration to eventually expand away transforming their portable thermal energy into kinetic

one and feeding the momentum33. Accordingly to that, and as can be seen in Figure 3, the

behaviour of the thermal and kinetic energy spectra in the bulk appears to be opposite to

that in the BL. The kinetic energy is placed higher than the thermal spectrum in the core,

while it is lower in the BL, as displayed in the insets. On the other hand, the horizontal

walls tends to damp the vertical kinetic energy in the near-wall vicinities, and make the

scaling exponents in the BL, different (smaller) than in the bulk. Analysis of the spectra at

different distances from the horizontal walls28,33, shows that the level of the kinetic energy

is continuously increasing towards the cell centre, while the temperature spectrum is slowly

decreasing outside the BL towards the core. That mechanism is basically related to the

thermal plumes evolution. Taking a closer view, the thermal energy at Ra = 108 is higher

than its counterpart at Ra = 1010 for the lowest wave-number (k
7/5
x ETT (kx) > 10−4). This

supports the idea that less shedding (conversion into kinetic energy) on thermals takes place

for Ra = 108. The plumes (mushroom-like) are developing farther into the bulk and survive

longer in comparison with the case of Ra = 1010. This dynamics is familiar in the research

studies of RBC, since many have confirmed the decreasing role of thermals, and the reduced

characteristic length scales when the Ra number is increased33.
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III. INVARIANTS OF THE CLASSICAL VELOCITY GRADIENT

TENSOR

Extensive background material concerning the crucial role of velocity gradients in the

topological classification of the flow and small-scale dynamics can be found in many works,

e.g. Chong et al.3, Cantwell et al.35, Blackburn et al.7, Soria et al.8, Perry and Chong36,

Mart́ın et al.4, Ooi et al.5 and others. A short review of the definitions and the physi-

cal meaning of the invariants of the velocity gradient tensor G = ∇u are given here for

incompressible flow. Namely:

PG = −tr(G) = −∇ · u = 0, (9)

QG = −1

2
tr(G2) =

1

4

[

ω
2 − 2tr(S2)

]

= QΩ +QS, (10)

RG = −det(G) = −1

3
tr(G3) = −1

3

[

tr(S3) + 3tr(Ω2S)

]

= RS − tr(Ω2S), (11)

where PG, QG and RG are the first, second and third invariant of G, respectively. It is useful to

recall that G can be decomposed into its symmetric and antisymmetric parts, S = 1/2(G+Gt)

and Ω = 1/2(G − Gt), respectively, where S denotes the rate-of-strain tensor, and Ω is the

rate-of-rotation tensor. Their invariants play an important role in the identification of

coherent structures3,5,7,9, and the development of new turbulence models37. For example,

the second invariant QΩ = −1/2tr(Ω2) = 1/4|ω|2 is proportional to the enstrophy density.

Therefore, it identifies tube-like structures with high vorticity ω = ∇ × u. The invariant

QS = −1/2tr(S2) = −1/4(ǫ/ν) is proportional to the local rate of viscous dissipation,

ǫ = 2νS : S. Notice that QΩ ≥ 0 and QS ≤ 0 and these two invariants are related to QG

with the identity (10). Hence, positive values of QG > 0 are related to areas of enstrophy

domination over viscous dissipative straining. Another important term is the third invariant

of S i.e. RS = −1/3tr(S3). It constitutes a part of the straining production (see Eq. 17), and

RG in the identity (11). Moreover, it correlates the three eigenvalues of S as RS = −σ1σ2σ3,

where σ1 ≥ σ2 ≥ σ3 are arranged in a descending order. Due to incompressibility, the

sum σ1 + σ2 + σ3 = 0, and the sign of RS follows the sign of the intermediate eigenvalue

to categorise the structures shape to tube-like RS < 0 or sheet-like RS > 0. Generally

speaking, when RG < 0 and QG ≫ 0, a positive enstrophy production is prevalent, and

stable tube-like vortex stretching structures (the so-called worms) predominate the vorticity
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FIG. 4: Classification of local flow topology following (QG, RG) invariants of velocity

gradient tensor for incompressible flow [taken from Ooi et al.5, reproduced with permission

from A. Ooi, J. Martin, J. Soria and M. S. Chong, J. Fluid Mech 381, 141–174 (1999).

Copyright 1999, Cambridge University Press] with SF/S: stable focus/stretching, SN/S/S:

stable node/saddle/saddle, UN/S/S: unstable node/saddle/saddle and UF/C: unstable

focus/compressing.

compression. However, when RG > 0 and QG ≪ 0, the straining production becomes the

dominant one and associates mostly with strong and unstable sheet-like viscous dissipative

structures. Figure 4 shows the four main classes of the possible flow topology in (QG, RG)

phase plane taken from Ooi et al.5, where more details thereof can be found in the above

references.

A. Universal aspects of turbulence structures

Many turbulent flows have revealed an inclined “teardrop” shape of the joint PDF

(QG, RG), which has been speculated as a kind of universality in the space of invariants2.

Despite the different global flow geometries created in many types of turbulence, e.g. an

isotropic turbulence5, turbulent boundary layer6, turbulent channel flow7 and others8,9, all

displayed the same feature of preferred (QG, RG) statistical correlation in areas dominated
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by small-scale vortex stretching and viscous dissipation structures. This behaviour as a

common aspect of 3D turbulence and its Gaussian-deviation property, is extended here to

include the buoyancy-driven flows in a Rayleigh-Bénard framework at hard turbulent regime.

−6 −4 −2 0 2 4 6

RG/〈QΩ〉
3/2

−8

−6

−4

−2

0

2

4

6

8

Q
G
/
〈Q

Ω
〉

−9

−8

−7

−6

−5

−6 −4 −2 0 2 4 6

RG/〈QΩ〉
3/2

−8

−6

−4

−2

0

2

4

6

8

Q
G
/
〈Q

Ω
〉

(a)

−8 −6 −4 −2 0 2 4 6 8

RG/〈QΩ〉
3/2

−10

−5

0

5

10

Q
G
/
〈Q

Ω
〉

−9

−8

−7

−6

−5

−8 −6 −4 −2 0 2 4 6 8

RG/〈QΩ〉
3/2

−10

−5

0

5

10

Q
G
/
〈Q

Ω
〉

(b)

FIG. 5: Joint PDF of normalized QG and RG invariants on logarithmic scale at (a) Ra = 108 and

(b) Ra = 1010 through the bulk (Vbulk), where the solid black line represents the null-discriminant

curve DG = (27/4)R2
G
+Q3

G
= 0.

To do so, the joint PDFs of QG and RG invariants through the bulk (Vbulk), have been

plotted in Figure 5. The invariants are normalized using 〈QΩ〉 (following Ooi et al.5) to

show the same “teardrop” shape as a universal feature of the small scale motions in both

turbulent cases. As can be seen, Figures 5a and 5b indicate that most of the flow domain

is occupied by coherent dynamics of small mean gradients around the origin; while the

rest of the flow i.e. fluctuations and small scales, obey substantially stable tube-like fo-

cus/stretching structures (QG > 0 and RG < 0), and unstable sheet-like node/saddle/saddle

topologies (QG < 0 and RG > 0 the so-called Vieillefosse tail).
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(a) (b)

FIG. 6: Structures of QG positive values drawn in a portion of the domain for (a) Ra = 108

(QG > 14.29) and (b) Ra = 1010 (QG > 128.9). (See movies of their dynamics MULTIMEDIA

VIEW). The solid black contours in (a) indicate the hot thermal plumes.

In order to gain an understanding of the spatial structure of turbulence, an instanta-

neous 3D visualization of QG iso-surface at high positive values is plotted in Figure 6. The

structures take the shape of the so-called worms2, which are classified as stable tube-like

focal stretching topology of intensive enstrophy values. As can be seen in Figure 6a, the

worms are characterized by large fragmentations with an elliptical cross-section in the case

of Ra = 108. They seem to be aligned in many places with the evolution of the thermal

plumes (hot 2D black contours), which expand in the bulk to support the prevalence of the

tube-like rotational topology.

Plotting the joint PDF map of QΩ and −QS invariants can provide significant physical

information about the dominant flow topologies respect to the kinetic energy dissipation.

For example, points of high enstrophy (QΩ), but very small dissipation (−QS), indicate

solid-body rotational structures (vortex tubes), while points of strong dissipation but little

enstrophy represent irrotational straining domination. Balanced distribution of QΩ = −QS

translates a vortex sheet topology that normally occurs in the BLs. As shown in Figures 7a

and 7b, the flow topology is mainly tube-like rotational in the bulk region, where the highest

local value of −QS is smaller than the highest local value of QΩ, and the joint PDF is skewed
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FIG. 7: Joint PDF of normalized QΩ and −QS invariants on logarithmic scale at (a) Ra = 108

and (b) Ra = 1010, through the bulk (Vbulk).

towards high QΩ with long-lived solid-body rotation.

When the flow becomes significantly turbulent at Ra = 1010, the turbulent background

velocity derivatives as −QS (the viscous strain and QΩ in concomitant), get self-amplified2.

They often surpass the original large-scale forces generated here by buoyancy, as reported

by Tsinober2. This self-growing of turbulent dissipation −QS can be clearly identified in the

(QΩ,−QS) map in Figure 7b. It works on contracting the worms to be composed in smaller

and numerous fragments within the bulk (see Figure 6b). Physically, the nonlinearities as the

enstrophy production (4tr(Ω2S) = ω ·ωS), become increased, and conduct the local growing

of the strain-dominated regions. While, an enhanced equilibrium between these nonlinear-

ities (e.g. the vortex-stretching vector ωS), and its viscous destruction (Pr/Ra)1/2ω∇2
ω

take place mostly in regions of enstrophy concentrations (i.e. the worms)2. These processes

are explained and justified in detail by Tsinober2. They are essentially interconnected in
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the frame of the enstrophy transport equation:

1

2

D|ω|2
Dt

= ω · ωS +

√

Pr

Ra
ω∇2

ω + ω · ∇ × fff, (12)

and the transport equation of the strain product S2/2 (Eq. 17). Following Tsinober2, these

events are normally associated with (i) large strain (as outlined above), (ii) high alignment

of vorticity with the most extensional eigenstrain λ1 (observed below), and (iii) strong

tilting of worms (visible in Figure 6b).

Similarly to many turbulent flows we notice the preferential alignment between ω and

λ2, the intermediate eigenvector of the rate-of-strain tensor S, in both turbulent cases. PDF

charts of cos(ω,λi) = (ω · λi)/(|ω||λi|) have been plotted within the bulk in Figure 8a to

manifest the general common feature of the geometrical structure in 3D turbulence. This

alignment becomes of notable importance in turbulent dynamics since it contributes to the

enstrophy generation term given by ω · ωS = ω
2σi cos

2(ω,λi). One of the noteworthy re-

marks is the high probability observed at cos(ω,λ1) = ±1 for Ra = 1010 in comparison with

Ra = 108. It indicates a slightly enhanced alignment between ω and λ1 to follow the self-

amplified −QS regions and, therefore, assists the linear contributions of vortex-stretching

term. In other words, these self and local strain growing regions at Ra = 1010, contribute to

local effects associated with (self) interactions of ω and S2. However, we cannot generalize

these events (with Ra increment), as many issues, i.e. the increased nonlinear enstrophy

production, predominant nonlocality and interactions between large and small scales, are

essential in vortex-stretching origins. For example, within a frame of forced, homogeneous,

isotropic turbulence, Hamlington et al.38 have reported a preferential alignment of vorticity

with the most extensional eigenvector of the nonlocal (background) strain. Namely, they

decompose the strain rate into its local part i.e. the self-induced strain field within the

vicinity of a typical vortical structure, and its nonlocal part, where the strain is essentially

induced by all the surrounding other vorticities outside the vortical structure. They found

that the vorticity is preferentially aligned with the most extensional background strain rate

eigenvector to support the linear contribution to the vortex-stretching dynamics. Hence, this

may lead us to the assumption that when the flow is extremely turbulent, the characteristic

flow scales get smaller, and the vorticities lay closer and become correlated. As a result,

the background-strain (ω,λ1) alignment arises and combines with the local-based one to
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eventually yield a general enhancement of local interaction ω/S.

Another important alignment defined by cos(ω,ωS) = σi cos
2(ω,λi)/{σ2

i cos
2(ω,λi)}1/2

is outlined in this study, as a universal feature. Again, it emphasizes on the predominant

vortex-stretching action through the bulk, and the net enstrophy production is always posi-

tive i.e. 〈ω ·ωS〉 > 0, in the two turbulent cases. As shown in Figure 8b, both distributions

are identically asymmetric and positively-skewed, which probably corresponds to the events

associated with strong alignment between vorticity and the intermediate eigenstrain vector

λ2.
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FIG. 8: PDF of vorticity alignments with the eigenvectors of the rate-of-strain tensor (a) and the

vortex-stretching vector ωS (b), through the bulk region (Vbulk).
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B. Dynamics of QG and RG invariants

The joint PDFs of (QG, RG) invariants have provided a statistical picture of the most

prevalent distribution for the flow topology and structures, averaged in time and volume.

Nonetheless, studying the evolution of QG and RG invariants in a Lagrangian frame allows

a dynamical observation of the 3D small-scale turbulence mechanisms, such as the vortex

stretching and turbulent kinetic dissipation. Namely, in the frame of a moving observer

following a fluid particle, the local surrounding flow structures are essentially described by

G and its Galilean invariants, i.e. QG and RG. They change in time throughout their lifetime

to be finally destroyed in average and leave the large scales of the coherent uniform flow.

This change can be interpreted by the Lagrangian dynamics of invariant quantities that were

first studied by Cantwell39. He deduced the evolution equations for QG and RG and found

an analytical solution, but for the inviscid Euler equations. A procedure to investigate the

average dynamical behaviour of the invariants was proposed by Mart́ın et al.4 and Ooi et

al.5 who used a conditional averaging technique of the invariant rates in DNS of isotropic

turbulence. Recalling the deduction by Cantwell39, firstly, the evolution equation of G can

be obtained by taking the gradient of NS equations, yielding:

DG

Dt
+ G2 = −H(p) +

√

Pr

Ra
∇2G+∇fff, (13)

where H(φ) = ∇∇φ is the Hessian of a scalar field φ. Then, using the definitions of the

invariants (Eqs.10 and 11), the evolution equations of QG and RG read as:

DQG

Dt
= −3RG − tr(GHG),

DRG

Dt
=

2

3
Q2

G − tr(G2HG), (14)

where HG is a second-order tensor which includes the resultant pressure Hessian, diffusive

and the buoyancy terms as:

HG = −
(

H(p)− 2QG

3
I

)

+

√

Pr

Ra
∇2G+∇fff, (15)

where I is the identity matrix.

The left-hand sides in Eqs.(14), i.e. DQG/Dt and DRG/Dt, are analysed using an averaging

approach identical to Ooi et al.5 and Elsinga and Marusic6. Namely, the mean temporal

rate of change in the invariants QG and RG is computed from a set of instantaneous flow
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fields conditionally upon the invariants themselves. The corresponding approach reads as:
〈

DQG

Dt
|(Q0

G, R
0
G)

〉

=

〈

DQG

Dt
| − 1

2
≤ (QG −Q0

G)

∆QG

<
1

2
;−1

2
≤ (RG −R0

G)

∆RG

<
1

2

〉

,

〈

DRG

Dt
|(Q0

G, R
0
G)

〉

=

〈

DRG

Dt
| − 1

2
≤ (QG −Q0

G)

∆QG

<
1

2
;−1

2
≤ (RG −R0

G)

∆RG

<
1

2

〉

,

(16)

where (Q0
G, R

0
G) are the center coordinates of the bin size (∆QG,∆RG) over which the mate-

rial derivative is averaged. An imposed bin size 0.05×0.1 in the range −1 ≤ RG/〈QΩ〉3/2 ≤ 1

and −2 ≤ QG/〈QΩ〉 ≤ 2, respectively in the area of interest, is used. It fulfills a good con-

verging of rates with a robust number of samples (> 500 per bin). The averaged rates are

expressed as vectors of two components (〈DQG/Dt〉, 〈DRG/Dt〉) and plotted together with

their integrated mean trajectories in Figure 9 for both Ra-number cases through the bulk.

Similarly to isotropic turbulence4,5, the trajectories are cyclically decaying towards the

origins, moving on average, from regions of higher velocity gradients (small scale mo-

tions/fluctuations) to regions of smaller ones (large coherent scales) near the origin. They

intrinsically indicate a clockwise spiraling change of the local flow topology around a fluid

particle from unstable node saddle/saddle (UN/S/S), stable node saddle/saddle (SN/S/S),

stable focus/stretching (SF/S) to unstable focus/compressing (UF/C). A scenario for the

mean evolution of fluid particles was given by Ooi et al.5 from that behaviour of the

conditional mean trajectories. Namely, within the neighbourhood of coherent focal struc-

ture (SF/S), a fluid particle that stands there, in location probably UN/S/S topology

(RG > 0, DG < 0), will be sucked rapidly into the core of that elongated (intensive enstro-

phy) structure where the pressure is essentially low. The local topology around the particle

changes from UN/S/S via SN/S/S to SF/S. Due to the vortex expansion, the particle

travels along the core to regions where those focal structures lose their compact nature (at

the ends and bends) by contraction, and the topology becomes UF/C. The compressing

actions change the sign of DQG/Dt, and reduce the magnitude of invariants to support the

decaying events. These events are rendered as an interplay of the non-local pressure Hessian

with the viscous diffusion and energy-injecting terms (recent insights about these effects

are available for the reader in Wilczek40, and mainly in the references therein). It atten-

uates the evolution speed (proportional to the vector length) across the null-discriminant

DG = (27/4)R2
G+Q3

G = 0 curve at RG > 0, and appears in opposite sign with damping effect

to DQG/Dt and DRG/Dt in Eqs.(14). The developed topology becomes nodal (UN/S/S)
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FIG. 9: Conditional mean vectors of 〈DQG/Dt〉 and 〈DRG/Dt〉 in (QG, RG) plane together with

their integral trajectories (black solid orbits) at (a) Ra = 108 and (b) Ra = 1010, through the

bulk (Vbulk), where the bold solid line indicates DG = 0.

and under the dissipative actions, the trajectories are twisted upwards converging to the

origin instead of continuing towards higher values of RG > 0 asymptotic to DG = 0 curve in
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the case of inviscid Eulerian model (HG = 0)39. Comparing the two scenarios in Figure 9,

one can note the influence of the local self-amplified velocity gradient (growing −QS), which

is probably induced by the nonlinear advection39,40. It contracts the structures further, and

bend the trajectories inwards in the area of DG > 0 and RG > 0, at Ra = 1010 (Figure 9b).

Analogously to the previous studies4–6, the averaged trajectories have revealed that pos-

sible periodic spiralling before converging to the origin. The period measurements identi-

fied here regarded to one periodic orbit T0, read 6.7[TU ] and 4.8[TU ], correspondingly for

Ra = 108 and 1010, which are suspected to be proportional to the characteristic lifetimes of

energy containing eddies released in the bulk. They are found to be close to the periods of

the estimated large eddy turnover time T0 ∼ τeddy indicating a shorter lifetime of the large

coherent eddies in the bulk at the higher Ra-number case. This is not surprising since the

large-scale eddies break up under the events associated with the self-amplification of G (−QS

and QΩ) at Ra = 1010. Broadly speaking, the turbulence type in the core region of RBC

is found to be comparable, in statistical aspects, with the isotropic nature. For example,

the joint PDF map of (QΩ,−QS) invariants displayed in Figure 7a presents a similar distri-

bution as the forced isotropic turbulence investigated in Ooi et al.5. However, the present

proportionality T0 in respect to τeddy , differs from that outlined by Ooi et al.5, who reported

a factor of three times T0 ∼ 3τeddy. This discrepancy could be returned to the confined

configuration of our RBC (adiabatic sidewalls) as well as the mechanism of the thermal

plumes in injecting the kinetic energy to the large-scale eddies. Indeed, the measured pe-

riods T0 can be compared to the average plume lifetime τpl with almost three times factor

T0 ∼ 3τpl. Here, τpl ∼ δ2T
√
RaPr is defined as the plume lifetime through which it detaches

with the thickness of the thermal BL δT , and loses its temperature contrast by the thermal

diffusivity 1/
√
RaPr13. Following this approach, the determined average plume lifetimes in

the current configurations read τpl ∼ 2.190[TU ] and 1.276[TU ] for Ra = 108 and 1010, re-

spectively. These findings accordingly suggest the participation of the thermal plumes in the

large-scale kinetic energy containing eddies and turbulent wind, especially when the plumes

(mushroom-like) elongate importantly in the bulk before scattering. However, in a hard tur-

bulent state at high Ra number such as 1010, the role of plumes is outstandingly reduced due

to the extreme fluctuations and the good mixing. Consequently, the role of the self-amplified

−QS in creating the large-scale eddies in the bulk is enlarged. This could be the reason why
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the measured period T0 exceeds somewhat the 3τpl, which confirms the prevalence of the

self-amplified velocity derivatives by turbulence over the buoyant mechanisms.

C. Dynamics of RS and tr(Ω2S) nonlinearities

In order to elucidate the impact of the local self-amplification of G (at least at high

Ra numbers) more, the dynamics of the physically meaningful third-moment nonlinearities

described by the enstrophy production RS − RG = tr(Ω2S), and the quantity RS (as a

contribution of the straining production) have been studied. They both constitute the

production term of the strain product S2/2 ∼ −QS inside the transport equation, which

reads as:
DQS

Dt
= −3RS + tr(Ω2S)− tr(SHS), (17)

with

HS = −
(

H(p)− 2QG

3
I

)

+

√

Pr

Ra
∇2S + 1/2(∇fff +∇fff t). (18)

In the frame of an isotropic turbulence, statistical analysis of these nonlinearities, as the

joint PDF (RS − RG, RS), was earlier performed by Kholmyansky et al.41. It revealed that

the two such nonlinearities, namely, enstrophy and strain productions, are locally different

and only weakly correlated. Others like Lüthi et al.42, again for isotropic turbulence, have

stressed on the importance of these nonlinearities by studying the evolution of the small

scale motions in a 3D phase space {QG, RS, RS −RG}.

In this work and in the bounds of Vbulk, the joint PDFs of (RS − RG, RS) are plotted

in Figure 10 for both turbulent cases. The two invariant-based terms are normalized by

〈QΩ〉3/2, differently than in41 where therein, the mean values 〈RS−RG〉 and 〈RS〉 are respec-
tively used for RS − RG and RS. In consistency with Kholmyansky et al.41, the two plots

have shown a similar weak correlation locally of the two nonlinearities, but with different

behaviour in the positive part of both. They reveal the presence of many points with large

positive values of both nonlinearities, slightly shifted toward RS > 0. Comparing the two

charts in Figures 10a and 10b, one can note the enhanced tendency of the distribution at

Ra = 1010 to be more linear with balanced nonlinearities in regions of vortex stretching and

positive strain production. This can imply an enhanced localization to the nonlinearities in

the regions dominated by the self-amplified strain, which corresponds to the observations
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FIG. 10: Joint PDF of normalized RS −RG and RS invariants on logarithmic scale at (a)

Ra = 108 and (b) Ra = 1010 through the bulk (Vbulk).

outlined in Section IIIA. Namely, at Ra = 1010, a local self-amplification of G (−QS and QΩ

in concomitant) takes place and produces simultaneously an increase in the nonlinearity of

vortex stretching (in slots of S2) with enhanced local interactions of vorticity/strain.

Following an identical procedure to (DQG/Dt,DRG/Dt) in the previous Section, the

conditional mean trajectories of (D(RS −RG)/Dt,DRS/Dt) have been plotted in Figure 11

for both turbulent cases in the bulk. As can be seen, the two mean dynamics show a

zero starting point since with no straining, no enstrophy will evolve and vice versa2. The

trajectories start moving towards negative values of enstrophy production to emphasize

always on the collaborated role between the vortex compression structures and the strain

generation. When RS > 0 the vectors suddenly change their signs to travel upwards with

a notably enhanced linear evolution at Ra = 1010 (see Figure 11b). The directional change

can be returned to the opposite sign of these quantities in the production term of the strain

rate −QS, inside Eq.(17). In agreement with the previous notes, the self-amplified viscous
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FIG. 11: Conditional mean vectors of 〈DRS/Dt〉 and 〈D(RS −RG)/Dt〉 in (RS, RS −RG) plane

together with their integral trajectories (black solid lines) at (a) Ra = 108 and (b) Ra = 1010, in

the bulk (Vbulk).

strain −QS at the higher Ra number is apparently recognized through further contraction

of vorticities (RS−RG < 0) and growing strain regions (RS > 0), which is revealed in higher
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linear and organized act of trajectories in that zones. This confirms again the direct and local

assistance of vortex compression to the dissipative actions and energy cascade2 (in a hard

turbulence case). Afterwards, once the evolution enters the stretching area (RS − RG > 0),

a sharp decay towards the small values of RS takes place at Ra = 108 (Figure 11a). This

displacement could be returned to the nonlocality effect since we are in the centered vorticity

tube-like filaments/worms. However, at the higher Ra number the trajectories tend to

move more softly indicating the improved localization of nonlinearities in those areas. It

is sustained by strong linear interactions in regions of (RS > 0 and RS − RG < 0), which

in turn make a positive contribution to the magnitude of the vortex-stretching vector ωS2.

Finally, the mean trajectories spiral inwards converging in part towards the origin. They

tend to either return to the starting point close to the origin, or change their direction to

higher values across RS < 0 and RS−RG > 0, again, with higher linearity at Ra = 1010. It is

important to note the positive end (origin) of (〈D(RS−RG)/Dt〉, 〈DRS/Dt〉), which asserts

the predominance of vortex stretching (〈ω · ωS〉 > 0), and the concomitant predominant

self-amplification of viscous strain/dissipation production (RS > 0), generally happening in

3D turbulence2.

IV. INVARIANTS OF THE VELOCITY-TIMES-TEMPERATURE

GRADIENT TENSOR

Hereafter we consider the gradient of velocity multiplied by temperature tensor Gθ =

∇(uT ), which couples the kinetic and thermal small scales of motions. Notice that u and T

are defined in such a way that
∫

Ω
udΩ = 0 and

∫

Ω
〈T 〉dΩ = 0. This tensor contributes to the

turbulent heat flux and buoyant production, given as 〈w′T ′〉, which is found to be directly

associated with the evolution of thermal plumes14. On the other hand, its invariants (such

as the magnitude |Gθ| = (Gθ : Gθ)
1/2) address in some sense, strong interactions of kinetic

and thermal dissipation rates. Namely, Gθ = TG + u ⊗ ∇T , when T is constant, yields

to Gθ ∼ G and hence, |Gθ|2 ∼ |G|2 = |Ω|2 + |S|2. The strain part therein, is proportional

to the local viscous dissipation ǫ, as |S|2 = S : S = tr(S2) = 1/2(Pr/Ra)−1/2ǫ. On the

other hand, when |u| = 1, the l2-norm of Gθ is proportional to the thermal dissipation rate

ǫT , i.e. |Gθ|2 = |∇T |2 = (RaPr)1/2ǫT . Moreover, the viscous and thermal dissipation rates

are found to be locally interacted in the regions of thermal plumes, in particular when they
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exceed their mean values, as outlined in Dabbagh et al.28. Consequently, it seems appropri-

ate to utilize the tensor Gθ in order to investigate that important mechanism of turbulent

heat transport (plumes) in a small scale point-of-view. To do so, we analyse the fine-scale

dynamics deeply coupled with the evolution of the thermal plumes by considering a similar

approach as for the classical tensor G, applied on the basic invariants of the traceless part of

the new tensor, meaning G̃θ = Gθ − 1/3tr(Gθ)I. This can permit the analysing of the tensor

characteristics identically to the G tensor.

As a starting point, we introduce the evolution equation for uT that follows from the

NS and the energy equations (Eqs.1 and 2) through the formula D(uT )/Dt = uDT/Dt +

TDu/Dt, as:

D(uT )

Dt
= T (fff −∇p) +

√

Pr

Ra
T∇2

u+
1√

RaPr
u∇2T. (19)

At this point, the essential ideas behind this equation can be conveyed more easily by

assuming that Pr = 1. In this case, the evolution equation reads:

D(uT )

Dt
= T (fff −∇p) +

1√
Ra

(

∇2(uT )− 2∇u · ∇T

)

. (20)

Similarly to the kinetic energy transport equation |u|2/2, the evolution equation of eT =

|uT |2/2 is introduced as:

DeT
Dt

= uT 2 · (fff −∇p) +
1√
Ra

(

∇2eT −∇(uT ) : ∇(uT )− 2uT · ∇u · ∇T

)

. (21)

Notice that the l2-norm of Gθ contributes to the diffusive term of eT evolution equation,

i.e. ∇(uT ) : ∇(uT ) = Gθ : Gθ = |Gθ|2. This characterizes the action of thermal plumes in

dissipating the heat flux and feeding the momentum. In other words, high values of |Gθ|
differentiate zones of high gradient heat flux from the rest of the flow, which are deeply

related with the presence of the thermal plumes. Following a determined threshold of |G̃θ|,
a separation criterion of the thermal plumes from the turbulent background regions (rest of

the flow), can be proposed. It corresponds to the most probable heat flux dissipation, i.e. the

value of |Gθ| at which the PDF is maximal, as a consequent value of the mixing activity

(the most widespread). Larger values beyond that threshold disclose deep thermal-kinetic

interactions, and hence the thermal plumes, while smaller values correspond to the turbulent

background, as visually clear in Figure 12.
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(a)

(b)

FIG. 12: Visualization of the thermal plumes (black color) in (x, z) plane, indicated by high

values of |G̃θ|, past specific thresholds read |G̃θ| > 0.214 for Ra = 108 in (a) and |G̃θ| > 0.154 for

Ra = 1010 in (b). (See movies of plumes separation MULTIMEDIA VIEW)

The invariant QG̃θ
= −1/2tr(G̃2

θ), has a similar meaning as |G̃θ| in describing the in-

tensity of gradient heat flux. It visualizes the (fine-scale) structures associated with high

kinetic-thermal interactions. Its highest positive and negative values indicate the relevant

thermal structures, while the near zero ones correspond to the turbulent background and

well-mixing zones. As shown in Figure 13a, one can observe how the Q
G̃θ

structurally

features the evolution of thermal plumes beyond positive and negative thresholds. Simi-

larly RG̃θ
= −1/3tr(G̃3

θ), is introduced as a third moment of concentrated kinetic-thermal

small scale interactions. It nearly obeys a similar distribution to the skewness profile of the

temperature fluctuation calculated by Emran and Schumacher43, as shown in Figure 13b.

Therein, the profiles of 〈Q
G̃θ
/〈Q

Ω̃θ
〉〉A and 〈R

G̃θ
/〈Q

Ω̃θ
〉3/2〉A have been plotted in the lower

turbulent case, since the better determination of thermals always belongs to Ra = 108 in
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FIG. 13: (a) structures of high positive and negative values of Q
G̃θ

(−0.7143 > Q
G̃θ

> 0.7143)

figured through a portion of the domain at Ra = 108 (See movies of their dynamics

MULTIMEDIA VIEW), where the blue contours indicate the hot and cold plumes. (b) represents

the averaged temporal and spatial (x-y) profiles of normalized invariants Q
G̃θ

and R
G̃θ

along the

z distance, where the solid red lines refer to δT

.

this study. Briefly speaking from Figure 13b, the two profiles of invariants start from zero

value at the isothermal walls towards negative averaged values of Q
G̃θ

within the thermal

BLs. However, RG̃θ
tends to have negative and positive values through the BLs in corre-

spondence with the moving up and down thermals (plumes). Afterwards, in the bulk both

mean invariants hold a zero value due to the mixing action and plumes diffusion.

A. Joint PDF of invariants Q
G̃θ

and R
G̃θ

Likewise in the classical tensor, the qualitative properties of the new invariants QG̃θ
and

R
G̃θ

are investigated by means of plotting their joint PDF, as represented in Figure 14.
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The statistical analysis therein is similar to the classical-based one reported in Figure 5,

except that the studied regime is extended broadly to cover all the domain in order to

include the vicinities of emanating thermals. Interestingly, the general aspect shown in

Figures 14a and 14b tends to be symmetric respect to R
G̃θ

= 0. Thereby, it seems to follow

the statistical characteristics of the thermal plumes since various studies have revealed the

log-normal statistics as a universal distribution for the thermal plumes geometries. For

example, Zhou and Xia45 showed that the sizes of the mushroom-like plumes obey log-

normal statistics. Likewise, the geometric measures of the sheet-like plumes such as its

normalized area, length and width, its aspect ratio and the shape complexity44, as well the

heat content46, are all log-normally distributed.

From observing the statistics in Figure 14, one can note how the distributions in both cases

obey an arrangement similar to the isolines of discriminant D
G̃θ

= (27/4)R2
G̃θ
+Q3

G̃θ
, drawn in

the (Q
G̃θ
, R

G̃θ
) space (Figure 14c). By definition, the discriminant holds a similar significance

as QG̃θ
and RG̃θ

invariants, since it formulates their combination to follow identically the

regions tightly associated with the thermal plumes. Particularly in the hard turbulent state

(Figure 14b), when the plumes are evolving in many scaled-down fragments, the statistics

shows a clear following to DG̃θ
-isolines due to the extensive amount of plumes generated.

In a general description, both cases share the aspect that most of the flow is occupied

by well-mixed areas (turbulent background) of very low (Q
G̃θ
, R

G̃θ
) values near the origin,

while the thermal plumes take high values (negative and positive) of invariants far from the

origin. The plumes at Ra = 108 are identified in relatively large geometries, emanate few

and elongate significantly into the bulk (mushroom-like) before scattering. Therefore, the

points in Figure 14a become more dispersed to take relatively high values of (QG̃θ
, RG̃θ

).

They compose a joint PDF feature which seems to be almost similar to the one based on a

Gaussian flow field (see Tsinober2 Figure 9.1(f) as an example of joint PDF of (QG, RG) for

a Gaussian velocity field). However, in the hard turbulent state, the plumes are abundantly

emitted in the BLs, and rapidly destroyed in the bulk to make the points closely located

next to the origin, holding moderate values of (QG, RG) (Figure 16b). Since the mean profile

of QG̃θ
, displayed in Figure 13b, appears to be negatively shifted inside the thermal BLs,

it suggests that most of the plumes (sheet-like) or the deep kinetic-thermal interactions

therein, are indicated by Q
G̃θ

< 0 values. Hence, many more points are placed down under

the line D
G̃θ

= 0 in Figure 14b (than in 14a), to correspond probably with the abundant
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FIG. 14: Joint PDF of normalized Q
G̃θ

and R
G̃θ

on logarithmic scale at (a) Ra = 108 and (b)

Ra = 1010, in the whole domain. (c) displays the representative isolines of the discriminant

D
G̃θ

= (27/4)R2
G̃θ

+Q3
G̃θ

in the invariants space, where the solid tent-black line in (a), (b) and the

red identical one in (c), is D
G̃θ

= 0.
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thermals/small-scale interactions emanating in the BLs at Ra = 1010.

B. Dynamics of Q
G̃θ

and R
G̃θ

invariants

An analysis of the dynamics of Q
G̃θ

and R
G̃θ

invariants, similar to the classical-based

one, is considered hereafter. Firstly, the evolution equation of Gθ can be obtained easily by

differentiating Eq.(20) (for such a simplified formulae considering Pr = 1) as follows:

DGθ

Dt
+GGθ = −∇T ⊗∇p−TH(p)+2fff ⊗∇T +

1√
Ra

(

∇2Gθ−2∇G ·∇T −2GH(T )

)

. (22)

Afterwards, the mean temporal rates of change in invariants QG̃θ
and RG̃θ

have been studied

in the same manner as in Section IIIB. They aid to elucidate the scenarios and lifetimes

of the kinetic-thermal small scale motions indicating mainly the presence of the thermal

plumes, their survival and their continuous mean changing under the dissipative actions. To

do so, the averaging approach described in Eqs.(16) is used pertaining the new invariants

〈DQ
G̃θ
/Dt〉, 〈DR

G̃θ
/Dt〉, and the resultant vectors are presented together with their integral

trajectories within the total domain in Figure 15. The bin size is imposed identically to

obtain a division of 40 × 40 for the corresponding ranges of R
G̃θ
/〈Q

Ω̃θ
〉3/2 and Q

G̃θ
/〈Q

Ω̃θ
〉,

which sufficiently fulfills the convergence of the rates.

According to Figure 15, our analysis starts from the fact that the trajectories are born

from zero valued (Q
G̃θ
, R

G̃θ
) at the isothermal walls, and move down towards the negative

values of QG̃θ
in correspondence with the generation of the sheet-like plumes or the roots of

the original mushroom-like plumes (see Figure 16b). These roots are generated within the

thermal BLs under the impact of the surrounding interaction areas, i.e. the impingement of

the mixed flow coming from the bulk and the opposite-side plumes which reach to the BL

and collide the wall therein. They excite the creation of horizontal waves (also provoked by

shear strain) that travel in the BL, and interact with each other to compose the sheet-like

plumes (roots). These sheet-like rods convolute and swirl away by buoyancy to arise into the

bulk as the mushroom-like plumes. The areas of interactions around the roots are mostly

addressed by positive values of Q
G̃θ
, as can be seen in Figure 16b. More evidence of this can

be taken from the behaviour of the mean trajectories within the thermal BLs, represented

in Figure 16a. Therein, the averaged evolution starts from zero to swirl downwards to
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FIG. 15: Conditional mean vectors of 〈DQ
G̃θ
/Dt〉, 〈DR

G̃θ
/Dt〉 in (Q

G̃θ
, R

G̃θ
) plane together with

their integral trajectories (black solid orbits) at (a) Ra = 108 and (b) Ra = 1010, through the

total domain, where the bold solid line indicates D
G̃θ

= 0.

QG̃θ
< 0 from RG̃θ

> 0 to RG̃θ
< 0 in the hot BL, and conversely in the cold one. This action

accordingly validates the behaviour of Q
G̃θ

and R
G̃θ

mean profiles showed in Figure 13b to
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emphasize correctly on their aforementioned meanings.

Going back to Figure 15 and along the downward path, the mean rates of invariants

are slowing down with directional change at crossing the null-discriminant curve to later

continue moving separately upwards away or downwards asymptotically parallel to the null-

discriminant curve. This slowdown could be returned to the fact that no plumes formulation

exists in that zone as D
G̃θ

analogously follows the evolution of plumes. However, from a

physical point of view, it can give us an impression that the curve of null-discriminant can

separate the sheet-like plumes evolution that moves downwards, from the evolution of the

arisen mushroom-like plumes which moves upwards. The phenomenon of the directional

change in the harder turbulent state is so remarkable because of the extreme emanating

plumes in general, and many provoked sheet-like plumes attend to favourable fluctuations

and intermittency within the BL.

All the trajectories tend to move rapidly towards high positive and negative values of

(QG̃θ
, RG̃θ

), to eventually address the fine-scale relevant dynamics of thermal plumes. Above

the curve D
G̃θ

= 0, the trajectories reveal an upward spiraling behaviour before converging

towards two skew-symmetric origins in respect to R
G̃θ

= 0 (mostly referring to the hot and

cold thermals) at Ra = 108 (see Figure 15a). The trajectories near origins probably indicate

the mean evolution and lifecycle of the mushroom-like thermal plumes that elongate far from

the thermal BLs and contribute predominately to the coherent large scales of heat flux. By

measuring the period of one periodic orbit around the origin (the bigger orbits), we see that

it follows the lifetime of plumes T̃0 = 6.56 ∼ 3τpl = 6.58[TU ], since the plumes travel mostly

in groups near the lateral sidewalls and organize to the large-scale circulation therebeside.

In the hard turbulent state addressed in Figure 15b, the spiraling trajectories seem to travel

upwards in shorter tracks (than in Ra = 108) to show the reduced lifetime of the mushroom-

like plumes under the dissipative and mixing effects. The flow regime, at Ra = 1010, is

essentially characterized by high perturbations and a noteworthy local self-amplification of

velocity derivatives −QS. The plumes are abundantly emitted in the BLs as scaled-down

fragments. They scatter effectively under the impact of the amplified mixing (−QS) to

eventually make the trajectories converging towards a zero-valued origin (Figure 15b). This

accordingly, suggests that the thermal plumes, at the high Ra number, do not contribute
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FIG. 16: (a) represents the same approach as displayed in Figure 15, but calculated within the

thermal hot (top) and cold (bottom) boundary layers at Ra = 1010. (b) shows horizontal (x, y)

planes of high positive (white) and negative (black) values of Q
G̃θ

extracted at the hot thermal

BL levels z = 0.016 for Ra = 108 (left), and z = 0.004 for Ra = 1010 (right).

to the mean large scales of heat flux, and just give them a life. This in turn, is not so

strange since experiments and DNS indicate that the large scale circulation decreases with

increasing the Ra which can be attributed to the decreasing fragmentation of the plumes14.

In order to give a broader picture, the mean rate trajectories of Q
G̃θ

and R
G̃θ

invariants are

plotted similarly, through the bulk region (Vbulk) in Figure 17a. Therein, all the trajectories

obey generally an upward moving action decaying towards a zero-valued origins for both
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FIG. 17: (a) the same representations as Figure 15, but through the bulk region (Vbulk), for

Ra = 108 (top) and Ra = 1010 (bottom). (b) displays vertical planes (y, z) of Q
G̃θ

coloured

similarly to Figure 16b, for Ra = 108 (top) and Ra = 1010 (bottom).

Ra numbers. Below the D
G̃θ

= 0 curve, the mean rate tracks are moving up indicating the

extended parts of the original plumes in the bulk. Likewise, above the null-discriminant

curve the tracks are upwarded in spiraling behaviour to address the elongating action of

the mushroom-like plumes, and the subsequent scattering by the dissipative mixing (see

Figure 17b). It can be an interesting point observing the upward direction behaviour of the

tracks in region of Q
G̃θ

< 0 through the bulk, whereas they were downwarded in the whole

domain (Figure 15). This manifests the fact that two evolutions of plumes exist: the sheet-
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like ones or the original roots that emanate in the BLs, and the the mushroom-like ones,

which travel and expand in the bulk. It is also worthwhile noting that the trajectories swirl

with longer and wider tracks above the DG̃θ
= 0 curve in Figure 17b (than in Figure 17a).

This can be classified as a natural result of increasing the rate of plumes production, injected

forwards in the bulk, at Ra = 1010. Finally, in both cases, all the trajectories seem to

converge towards zero-value origins due to the effective mixing activities in the bulk, keeping

in mind that Vbulk is quite far of including the solid wall influences. The plumes are destroyed

in mean, absolutely at a constant averaged heat flux across the bulk, and yielding naturally

to a zero-gradient heat flux and null means for Q
G̃θ

and R
G̃θ

(see Figure 13b).

V. CONCLUDING REMARKS AND FUTURE RESEARCH

Several universal small-scale features observed in various turbulent flows have been re-

captured in buoyancy-driven turbulent RBC. Two turbulent cases at Ra-numbers 108 and

1010, within an air-filled rectangular cell of aspect ratio unity and π span-wise open-ended

distance, are considered in a DNS study. The universal inclined “teardrop” shape of the

joint PDF statistics of the classical invariants (QG, RG) through the bulk region are ob-

served. Furthermore, the mean temporal rate of invariants change (〈DQG/Dt〉, 〈DRG/Dt〉)
is plotted in that region to reveal the common spiralling clockwise behaviour of trajecto-

ries converging towards the origin. In consistency with previous studies on the small-scale

motions (Ooi et al.5 and Elsinga and Marusic6), the topology surrounding a fluid particle

is varying in a cyclical aspect, in the (QG, RG) space, from unstable focus, unstable node,

stable node to stable focus structures in the both cases. A local self-amplification of ve-

locity derivatives (viscous straining −QS in the turbulent background) at Ra = 1010, aids

in contracting the vorticity worms further which assists the decaying events (interplay of

the non-local pressure Hessian with the viscous diffusion and energy-injecting terms), and

bends the trajectories inwards above the null-discriminant curve. The one period of the

periodic spiral orbits near the origin is found to approach T0 ∼ τeddy an estimated large

eddy turnover time defined in the bulk. On the other hand, the measured period has

been compared with the average plume lifetime T0 ∼ 3τpl to suggest the participation of

the thermal plumes in the large-scale kinetic energy containing eddies and turbulent wind

created in the bulk; particularly when the plumes elongate significantly before scattering, at

38



Ra = 108. Other universal features of (small scale) 3D turbulence are observed through the

bulk region. For example, the preferential alignment between ω and λ2 the intermediate

eigenstrain vector, and the asymmetric ω alignment with the vortex-stretching vector. The

local self-amplification of velocity derivatives (−QS/QΩ) at Ra = 1010 has revealed enhanced

local effects associated with (self) interactions of vorticity/strain in the strain dominated re-

gions and thus, improve slightly the linear contributions of the vortex stretching mechanism.

On the other hand, the evolution of relevant thermals has been addressed in small

scale point-of-views. Namely, considering the invariants of the traceless part of velocity-

times-temperature gradient tensor (Q
G̃θ
, R

G̃θ
), an identical approach of studying their mean

temporal rate and joint PDF, has been applied. The new invariants have demonstrated

a direct picture on the small-scale kinetic and thermal interaction dynamics. They have

expressed a correct following to the evolution of thermal plumes in RBC. It is found that

the conditional averaged trajectories travel downwards to expose the sheet-like plumes dy-

namics (roots) within the BLs, and upwards to exhibit the mushroom-like plumes evolution

that expand in the bulk. The trajectories –through the total domain– spiral upwards before

converging towards two skew-symmetric origins with periodic orbits correspond in their

period to approximately 3 times the lifetime of plumes at Ra = 108. By that end, it was

emphasized on the predominant role of hot and cold plumes in contributing to the coherent

large scales of heat flux, in average, which roll near the lateral sidewalls. Shorter tracks of

the trajectories have been recorded at the higher Ra number (in the whole domain) to show

the reduced lifetime of mushroom-like plumes under the dissipative and mixing effects. At

that Ra, the flow regime is essentially characterized by high perturbations and a noteworthy

local self-amplification of velocity derivatives −QS. It exceeds the evolution of thermal

plumes, which emanate abundantly in small-scale geometries, in the BL. The plumes scatter

strongly under the amplified turbulent background mixing events to make the trajectories

converging towards a zero-valued origin. This accordingly has suggested that the thermal

plumes at this high Ra number do not contribute to the mean large scales of heat flux and

just give them a life. Finally, and due to the effective mixing activities, all the averaged

trajectories through the bulk have revealed an upwards movement (mushroom-like plumes)

decaying towards a zero-valued origins for both Ra numbers, since the heat flux is constant

spatially and temporally in mean and the plumes are completely destroyed with zero-valued
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means of Q
G̃θ

and R
G̃θ
.

In summary, these findings have extended the scope of small-scale turbulence universality

to include the turbulent buoyancy-driven flows. On the other hand, the observations of

Q
G̃θ

and R
G̃θ

invariants behaviour have demonstrated a successful prediction to the mean

evolution of the small scale motions associated intrinsically with the thermal plumes, which

can open many options in turbulence modeling approaches of thermals. This will be an

essential topic in our future research plans.
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14F. Chillà and J. Schumacher. New perspectives in turbulent Rayleigh-Bénard convection.

The European Physics Journal E, 35:58, 2012.

15D. Lohse and K. Xia. Small-scale properties of turbulent Rayleigh-Bénard convection.

Annual Reviews of Fluid Mechanics, 42:335–364, 2010.

16J. Schumacher. Lagrangian dispersion and heat transport in convective turbulence. Phys-

ical Review Letters, 100:134502, 2008.

17Y. Gasteuil, WL. Shew, M. Gilber, F. Chillà, B. Castaing, and JF. Pinton. Lagrangian
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