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Abstract

In multifrequency atomic force microscopy higher eigenmodes are externally excited to
enhance resolution and contrast while simultaneously increasing the number of experimental
observables with the use of gentle forces. Here, the implications of externally exciting
multiple frequencies are discussed in terms of cantilever anharmonicity, fundamental period
and the onset of subharmonic and superharmonic components. Cantilever anharmonicity is
shown to affect and control both the observables, that is, the monitored amplitudes and
phases, and the main expressions quantified via these observables, that is, the virial and

energy transfer expressions which form the basis of the theory.
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L INTRODUCTION

Over the past decades the field of atomic force microscopy AFM has evolved from quasi-
static[5] to dynamic methods[3, 18, 39] and more recently to dynamic methods where
multiple frequencies are externally excited. In standard monomodal AFM the cantilever is
externally excited at a single frequency[28]. Then, when the tip interacts with the nonlinear
tip-sample forces, exact multiples of the drive frequency, i.e. its higher harmonics, are
excited[28, 33]. The amplitude, phase and mean deflection of the response at the frequency of
the drive are the experimental observables. Other than in heavily damped environments[4],
and provided the tip-sample forces are gentle[24], higher harmonics typically lie too close to
the noise level and are neglected[8, 26, 35].  In the multifrequency approach two[19] or
more[15, 32] external drives are employed to excite the cantilever at or near the natural
frequencies or eigenmodes of the free cantilever. This gives rise to the simultaneous detection
of multiple experimental observables and secondary contrast channels[10] that might lead to
enhanced resolution[14] while providing the means to robustly quantify sample
properties[13]. Still, and while attractive for the development of the field, the simultaneous
excitation of multiples frequencies at or near the eigenmodes comes at the cost of additional
instrumentation [22], added complexity to cantilever dynamics[2, 34] and the requirement of
interpreting secondary contrast channels[6, 15, 29]. Commercial cantilevers are generally
anharmonic in the sense that the higher natural frequencies are not multiples of the
fundamental[22, 27]. Such anharmonicity can be derived analytically from standard beam
theory[36]. While the presence of the tip might lead to slight deviations[9] in real
applications, in general, the commonly employed commercial cantilevers remain
anharmonic[22, 31]. Here, the consequences of cantilever anharmonicity/harmonicity are
discussed in terms of external drive frequencies, fundamental period of oscillation,

eigenmodes and the emerging general analytical theory in the field of multifrequency AFM.



II. THEORY AND SIMULATIONS

The general response of a driven cantilever that follows periodic motion with period T can be

written as[7]

2=2,+.2,=2,+ > A sin(Nog,t+4,)
n>0 n>0 (1)

where z stands for tip position in the direction normal to the surface of the unperturbed
cantilever, z, is the mean deflection and z, is the ng harmonic component of motion. The
fundamental period T can be associated with a fundamental frequency wsy=2nfsy where wsy
is the fundamental angular frequency, fsy is the corresponding frequency in Hz and SH stands
for subharmonics in this work throughout; ®sy and fsy are used interchangeably to refer to
fundamental frequency. In multifrequency AFM several external drives are employed to
excite the cantilever at frequencies near the modal resonant frequencies ®m); m stands for
mode number and mode numbers are bracketed in this work to distinguish them from
harmonic number n as done elsewhere[29, 30]. For simplicity and without loss of generality
we reduce the cantilever to two modes and employ two external drives as in standard
bimodal AFM[14, 23, 32]. The drive (op; and wp) and cantilever (o) and o)) frequencies
are used interchangeably from now on without causing ambiguity since wpi=®) and
Op2~m(2); D1 and D2 stand for drive 1 and 2 respectively. Furthermore, higher harmonics of
wsy are here termed superharmonics or simply subharmonics from now on. These refer to
frequencies that are a fraction of () or, in general, multiples of wsy but not necessarily

multiples of the external drive frequencies. Then



P q where r=q/p (2)
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where p and q are integer numbers that, according to the Fourier theorem[38], have no
common multiples, i.e. r=qg/p cannot be further reduced. An implication of the above
discussion is that the user’s choice of wp; and wp; (or choice of cantilever with a given
relationship between w(;) and w()) dictates the numerical value of the fundamental frequency
osy and hence the fundamental period T. Similar phenomena was already noticed by Basak
and Raman when discussing experimental and numerical results in monomodal AFM
operated in liquid environments[4], but higher harmonics of the fundamental drive only were
discussed. Here we point out that such phenomena is general in multifrequency AFM. That
is, physically, analytical derivations relying on steady-state oscillation and the principle of
conservation of energy are valid provided the frequency wsp, and not ®wp; or ®pp, is
considered as fundamental. Note that the theory of multifrequency AFM[16, 17] is based on
the concepts of virial[21] and energy dissipation[8] that rely on the above principles. We
now define cantilever anharmonicity/harmonicity according to whether there exists an integer
r=q/p such that ®o)=ro. In terms of p and q in (2) harmonicity implies that p=1 and q=r
(osg=0p; and op,=qop;). Anharmonicity implies that p>1 and q#r (powsp=wp; and

opr=qosu). In terms of the fundamental period a modal virial V() can be defined [29] as

t=t'+T
1

Vo= sz dt
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where T is given by (3), Fy is the unrestricted tip-sample force and z, is the modal tip
position. Next we reduce the cantilever to the two first fundamental modes (M=2 where m=1

and 2). The equations of motion are

k(m) . k(m) . : .
> L) H+ Z(m)(t) + k(m)z(m) = Fypy sin(a@p,t) + Fp, sin(ap,t) + F
(m) (m@(m) 5)

where Km), Qm), ®m) and zm) are the spring constant, quality factor and natural frequency of
the m eigenmode. Fopi=F¢) and Fop,=Fy(2) are the magnitudes of the two external drive
forces acting at or near ®(;y and o) respectively. The modal position z,) can be expanded in

terms of higher harmonics

N
Zimy ® Limy T Z A(m)n sin(Nag, t + ¢(m)n)
n>0 (6)

where zm)o 1s the mean deflection of z,) and the harmonic amplitudes and phases of mode m
and harmonic n are written as Ay, and ¢y, respectively. Combining (4) to (6) leads to

1
Vim = 3 Foim Amn €08 @y + HDV ;)

(7
where the harmonic number n for the first term on the right is to be replaced by p or q when
m=1 and m=2 respectively. HD(V ) is defined as the harmonic distortion of the modal virial
V(m). Furthermore, a modal term Er(,)[20] that has been recently associated[29] with a
combination of energy transfer between modes and irreversible loss of energy in the tip

sample interaction can be defined as

t=t'+T

Er=— | Fqzemdt
T(m) t._[t' ts £(m) (8)

Et(m) s here termed modal Energy Transfer. Combining (5) and (6) with (8) leads to
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where the harmonic number n is again to be replaced by p or q for m=1 and m=2 as in (7).
HD(Etm)) is also associated with harmonic distortion but in this case of modal energy
transfer Etum). The irreversible loss of energy Egis in the tip-sample interaction per

fundamental period T is

Eis: Em
’ ,;)T“ (10)

Finally, the Virial V), and energy transfer Ermy, associated with the monitored frequencies

n=p and q (and modes m=1 and m=2 respectively) are

1
V(m)n zVn :_E 0nA1 COS¢n
(11)

k
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(12)

where Ay, is the free amplitude for the unperturbed cantilever at the given harmonic n=p or q.

The monitored phase shifts ¢, (n=p) and ¢4 (n=q) for m=1 and m=2 follow from (11) and (12)

ETn Q( m)

1 2
+—Km A,
(m)
@, ~tan~'| — 27m 2

VnQ(m)

(13)

The expression in (13) can be computed in terms of experimental observables and is
equivalent to others proposed in the literature[16, 29]. Nevertheless an important remark is
made here in terms of anharmonicity/harmonicity and fundamental period T. Namely, the

expressions for Vi (11) and Etmpn (12) are to be computed over a fundamental
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(subharmonics) period T as given by (3). Furthermore, the amplitudes A, and phases ¢, are to
be averaged over the fundamental period T. The validity of these statements is next discussed

with the use of results obtained via numerical integration of (5).

In the simulations and in the long range Fi is defined by the Hamaker constant H, the
effective tip radius R and the tip sample distance d[21]

RH
6d°

F.(d)=— ap<d (14)

where aj (=0.165 nm) is an intermolecular distance. In the short range d <ay Fis is modeled

by[11, 21]

Fo(d) =1 2 JRs™ ag>d (13)
© 6a: 3

2
0

where d and the tip-sample deformation o are related by 6 =aop-d. E" (=1 GPa in this work) is
the effective Young modulus in the contact. Numerical results for anharmonic and harmonic
cantilevers are presented in Fig. 1. The generic parameters are: Agp= 20 nm, A,= 10 nm,
k=2 N/m, k=80 N/m, Q1=100, Q@2=600, H=2.1x10"" J and R=5 nm. These conditions
have led to the average force remaining positive throughout, i.e. the cantilever oscillated in

the repulsive regime[11].

First, an anharmonic cantilever has been selected for which f(;) = 70 kHz (o)=2nf1)) and
foy= 443.1 kHz (0@o=2nf). Such anharmonic cantilevers are standard from commercial
suppliers[22, 27, 31]. The fundamental (subharmonics) frequency follows from (2) and (3)
giving ®()/o1=q/p=633/100=r=6.33. The subharmonics frequency is fsy=0.7 kHz. The
physical implication is that the frequency spectrum of such a cantilever when interacting with
the surface should produce peaks separated by integer multiples of 0.7 kHz. This hypothesis

is confirmed by looking at the results in Fig. la (and zoom in Fig. 1b). The larger
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subharmonics/superharmonics in Figs. 1a and 1b lie in the order ~10 pm while the smaller
ones can be as small as fractions of a fm. It is also interesting to note that by lacking
resolution Figs. la and 1b might lead to believe that the fundamental (subharmonics)
frequency was 70/3 kHz. Importantly, the frequency corresponding to n=q, i.e. the drive
frequency near the second mode, is a higher harmonic of the fundamental subharmonics
frequency and not of the drive frequency of the first mode. Still, other than for n=q, the
numerical values show that multiples drive frequency near the second mode, i.e. the
standard higher harmonics, are larger in magnitude than the superharmonics or multiples of
the fundamental subharmonics. Second, an anharmonic cantilever has been selected for
which f;) = 70 kHz (oq=2nf1) and fo= 434 kHz (w@e)y=2nf). In this case
02)y/o1=q/p=31/5=r=6.2 . The corresponding subharmonics frequency is fsy=14 kHz. The
results are shown in Figs. 1c and 1d where 1d is a zoom of lc. Again subharmonics
amplitudes can reach values of ~10pm. Finally a harmonic cantilever is selected for which f()
=70 kHz (oqy=2nf1)) and fp)= 420 kHz (0)=2nf(2)). In this case wpywq)=q/p=6/1=1=6
produces a subharmonics frequency of fsg=70 kHz. That is, the fundamental of subharmonics
frequency coincides with o). In this case the results in Fig. le (and zoom in 1f) show that
only harmonics of ®(; are excited. This is the standard assumption. The conclusions in terms
of the fundamental period T are that for r=6.33 (Figs. 1a and 1b), r=6.2 (Figs. 1c and 1d) and
=6 (Figs. le and 1f), T=1,400 ps, T=71 ps and T=14 ps respectively. This imposes
limitations in terms of scanning rate depending on r or anharmonicity in multifrequency AFM

as discussed below.

We note that when the fundamental theory of multifrequency AFM was developed[16],
subharmonics peaks were already observed but were assumed to be too small to cause

significant perturbation. Nevertheless the tendency of employing small oscillation amplitudes



for secondary contrast channels implies that there are cases when these peaks should not be
underestimated. More thoroughly, the two basic expressions in dynamic AFM, i.e. the virial
(4) and the energy dissipation or energy transfer (8), and the main observables, i.e.
amplitudes and phases at n=p and n=q, can vary significantly during a fundamental
subharmonics period. Moreover the presence of subharmonics might lead to transitions in
operation regime according to the standard phase shift convention[11]. In order to quantify
variations in observables some of the numerical results from the simulations in Fig. 1 are
given in Table 1. From those it is particularly interesting to note the variations in the sign of
the virial V4 in (11) according to the anharmonicity/harmonicity of the cantilever as
parameterized by r. Since whether ¢4 lies above or below 90 degrees depends on V,, the
choice of r affects where ¢4 lies. Furthermore, the sign of the energy transfer from and to
other frequencies to and from the monitored frequency q, i.e. Erq, also depends on r. All
values in Table I, except the phase shift ¢, which is given in degrees, are given in eV. Finally

note that E4=0.00 throughout since the interaction is conservative.
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FIG. 1 Examples of the frequency spectrum (amplitude/frequency) for an interacting tip

according to cantilever anharmonicity/harmonicity as parameterized by r=q/p. The panels on

the right correspond to zooms of the panels on the left.

Eq. (4) Eq. (4) Eq. (8) Eq. (8) Eq. (10) Eq. (11) Eq. (12) Eq. (13) (Sim)
VoyleV] Vg leV]  ErgleV]  Erg[eV]  Egs[eV] Vg [eV] Erq [eV] @, [°] @, [°]
r=633/100 -10.82 -0.07 3.55 -3.55 0.00 -0.11 -0.29 15.88 15.88
r=31/5 -10.83 -0.05 0.23 -0.23 0.00 -0.10 0.03 14.80 14.81
=6/1 -9.53 -0.31 11.29 -11.29 0.00 0.32 -7.61 171.32 171.32

Table I. Numerical values of some of the expressions derived in this work as obtained in the
simulations discussed in Fig. 1. The equation numbers are specified and the numerical values
were obtained from an FFT. The last column corresponds to the value of phase shift for n=q

(monitored phase shift near the second mode) resulting from simulations (Sim).
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At this point we note that the frequency spectrum plots in Fig. 1 have been obtained by
employing the standard FFT algorithm with sufficient resolution to detect the fundamental
subharmonics frequency and its higher harmonics or superharmonics. The values in Table I
were computed from the numerical values obtained directly from the FFT. Nevertheless, in
standard AFM equipment lock-in-amplifiers are typically employed. In particular, standard
expressions in AFM are commonly derived by manipulating the equation of motion (5) and
integrating over a period T(;); T(;) stands for a period relative to the external drive close to

mode one, that is a cycle of the first external drive. In this way

Toy = o
(1) (16)

One could similarly define a period T for mode 2. The tip position is then
approximated[22, 23, 34] to

z~ A sin(wpt+4,)+ A, sin(wp,t +¢,)
(17)

where harmonics n=p and q are accounted for as the main contributions from modes 1 and 2
respectively. Note that A, Ay, ¢, and ¢4 are typically termed A;, A,, ¢ and ¢, respectively.
Lock-in-amplifiers however tend to average amplitudes and phases over ¢ cycles of the
monitored frequency. This implies an averaging of the expressions that can be computed with
these observables such as viral V() and energy transfer Erqy). If averaging over c cycles the

effective modal virial and energy transfer can be computed as

t=t'+T,

1581
<V, >= Ez [ Pz mydt(0)

x=1 1(1) t=t

(18)

11



and

1 X=C t=t'+T,

<Erm >EE F Zam dt(X) (19)

el - —
where x is simply an index that runs over c¢ cycles. Regarding modal and single frequency
expressions, it is already clear from the numerical values in Table I that there are significant
differences in value and even sign. Compare for example to modal virial (4) for m=2 with the
single frequency virial in (11) for q in Table I. This is in agreement with very recent
findings[29] and implies that modal and single frequency virial at the monitored frequencies
should not be equated.  Note that while the next discussion focuses on modal values it is
also relevant to the single frequency (monitored) virial and energy transfer (not shown).
Several interesting outcomes follow. First note that the main difference between the
definitions of the averages in (18) and (19) and the actual modal viral V() and energy
transfer Erum) in (4) and (8) is that the integrals are carried out over different periods of
oscillation, i.e. T from (3) and T, from (16) respectively. This might lead to errors
depending on the anharmonicity of the cantilever, as parameterized by r in (2), and the
number of cycles ¢ over which the signals are averaged in (18) and (19). Errors in V() and
Et(m) are shown in Table II for the same values of r as in Fig. 1 and Table I and by employing
the same cantilever-operational parameters. In particular, the values r=6.33, r=6.2 and r=6
corresponding to p=100, 5 and 1 have been employed. The results of averaging over c=1, 5
and 100 are shown in the table for V() and Eto). The integration has been carried out by
employing the period T(;) in (16) throughout. Errors in the table are shown as percentages.
The main outcome is that the error is zero throughout only when the cantilever is harmonic,
i.e. r is an integer, as predicted. Errors for unharmonic cantilevers are obtained only when
averaging over c=p or multiples of p. This is in agreement with the discussion above since

averaging over c=p is equivalent to employing the fundamental (subharmonics) frequency in
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(3). The values for the harmonic distortion in virial and energy transfer are also given in the
table for the different values of anharmonicity r and averaging periods c. These errors are

given as percentages in Table II and are computed as

T Y. VEES V(m) _Vn
HD(V(m)) =,
Vim (20)

n

From the results in Table II it is important to emphasize that conservative interactions are
typically computed from the virial expression[12, 25]. Dissipative interactions on the other
hand are accounted for by the energy transfer expression[8, 37]. More complex expressions
and combinations result for the conservative and dissipative interactions when higher
harmonics are accounted for[l, 9]. Nevertheless, in general, errors in the numerical
computation of the virial and energy transfer will lead to errors in quantification. Thus,
anharmonicity as parameterized by r in (3) and possible averaging over periods other than the
fundamental, i.e. expressions such as (18) and (19), should be considered with care. Overall,
when simultaneously exciting multiple frequencies externally, amplitudes and phases
resulting from lock-in-amplifiers should be compared with those resulting from an FFT
obtained with sufficient resolution as to resolve possible subharmonics frequencies. Finally, it
should be noted that anharmonicity could be controlled by designing cantilevers with the
appropriate geometry as already discussed by Sahin et al.[27]. Otherwise, the relationship
between drive frequencies could be carefully selected by the user when employing standard
anharmonic cantilevers in order to reduce anharmonicity and the onset of subharmonics. This

simply implies selecting frequencies that reduce p and q in (2) while driving near the natural
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cantilever frequencies. We also note that the discussion in this work also affects the

cantilever operated in the attractive regime (not shown).

Eq.(18) Eq.(18) Eq.(18) Eq.(19) Eq.(19) Eq.(19) Eq.(20)  Eq.(20)  Eq.(21)  Eq.(21)
c=1 c=5 c¢=100 c=1 c=5 c=100 HD(V(y) HD(V(2) HD(Erqy)  HD(Er@)
r=633/100  23.29 4.57 0.00 2336442 4666.09  0.00 0.12 -61.01 115.70 91.75
r=31/5 26.58 0.00 0.00 15943.16 0.00 0.00 0.18 -124.96 83.31 114.94
=6/1 0.00 0.00 0.00 0.00 0.00 0.00 -0.24 201.67 0.50 32.64

Table II. Errors in virial and energy transfer resulting from averaging over ¢ cycles for a

range of cantilever anharmonicity parameterized by r. The errors are given as percentages.

1. CONCLUSIONS

In summary, the implications of employing anharmonic cantilevers in multifrequency AFM
have been discussed regarding periodicity, fundamental period and the onset of subharmonic
and superharmonic components. Anharmonicity affects both the observables, that is, the
monitored amplitudes and phases, and the main expressions resulting from observables, that
is, the virial and energy transfer expressions which form the basis of the analytic theory. In
general, the theory and results in this work should lead to improvements in the reduction of
noise, interpretation of contrast and robustness in terms of quantification of properties in

multifrequency atomic force microscopy.
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