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Abstract

Bidirectional Recurrent Neural Networks
(BiRNNs) haveshown outstanding results
on sequence-to-sequence learning tasks.
This architecture becomes specially inter-
esting for multimodal machine translation
task, since BiRNNs can deal with images
and text. On most translation systems
the same word embedding is fed to both
BiRNN units. In this paper, we present
several experiments to enhance a base-
line sequence-to-sequence system (Elliott
et al., 2015), for example, by using dou-
ble embeddings. These embeddings are
trained on the forward and backward di-
rection of the input sequence. Our sys-
tem is trained, validated and tested on the
Multi30K dataset (Elliott et al., 2016) in
thecontext of theWMT 2016Multimodal
Translation Task. The obtained results
show that thedouble-embedding approach
performs significantly better than the tra-
ditional single-embedding one.

1 Introduction
Sequence-to-sequence learning is a new common
approach to translation problems(Sutskever et al.,
2014). The basic idea consists in mapping the in-
put sentence into a vector of fixed dimensional-
ity with a Recurrent Neural Network (RNN) and,
then, do the reverse step to map the vector to the
target sequence. From thisnew perspective, multi-
modal translation (Elliott et al., 2015) hasbecome
a feasible task. In particular, we are referring to
the WMT 2016 multimodal task that consists in
translating English sentences into German, given
theEnglish sentenceitself and theimagethat it de-
scribes. This paper describes our participation in
this task using atranslation schemebased onBidi-

rectional RNNs (BiRNNs) which allows to com-
bineboth information from imageand text.
In this paper, we take as baseline system the

one from (Elliott et al., 2015) and focus on ex-
perimenting with theword embedding system and
encoding techniques.
The rest of the paper is organised as follows.

Section 2 briefly describes related work on im-
age captioning and machine translation. Section
3 gives details about the architecture of the mul-
timodal translation system. Section 4 reports de-
tails on theexperimental framework including the
parameters of our model and the results obtained.
Finally, Section5concludesandcommentson fur-
ther work.

2 Related work

Image captioning has gained interest in the com-
munity and deep learning has been applied in this
area. Thetwomost common caption-related prob-
lems are caption generation (Vinyals et al., 2014)
and caption translation (Elliott et al., 2015).
Similarly, machine translation approaches

based on neural networks (Sutskever et al., 2014;
Cho et al., 2014) are competing with standard
phrase-based systems(Koehnet al., 2003). Neural
machine translation uses an encoder-decoder
structure (Cho et al., 2014). The implementation
of an attention-based mechanism (Bahdanau et
al., 2015) has allowed to achieve state-of-the-art
results. Thecommunity isactively investigating in
this approach and there have been enhancements
related to addressing unknown words (Luong
et al., 2015), integrating language modeling
(Gülçehre et al., 2015), using character infor-
mation in addition to words (Costa-jussà and
Fonollosa, 2016) or even combining different
languages (Firat et al., 2016), among others.
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