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 
Abstract—An error bound of the multilevel adaptive cross 

approximation (MLACA), which is a multilevel version of the 
adaptive cross approximation-singular value decomposition 
(ACA-SVD), is rigorously derived. For compressing an off- 
diagonal submatrix of the method of moments (MoM) impedance 
matrix with a binary tree, the L-level MLACA includes L+1 steps, 
and each step includes 2L ACA-SVD decompositions. If the 
relative Frobenius norm error of the ACA-SVD used in the 
MLACA is smaller than  , the rigorous proof in this 
communication shows that the relative Frobenius norm error of 
the L-level MLACA is smaller than . In practical 
applications, the error bound of the MLACA can be 
approximated as 

1(1 ) 1L  

( 1)L  , because   is always . The error 
upper bound can be used to control the accuracy of the MLACA. 
To ensure an error of the L-level MLACA smaller than 

1

  for 
different L, the ACA-SVD threshold can be set to 

1
1(1 ) 1L   , 

which approximately equals (L 1)   for practical applications.  

Index Terms—error bound, method of moments (MoM), low- 
rank decomposition, multilevel adaptive cross approximation 
(MLACA). 

I. INTRODUCTION 

Adaptive cross approximation (ACA)-based algorithms 
[1]-[9] become more and more popular in solving the method of 
moments (MoM) [10] impedance matrix equations obtained 
from discretizing integral equations due to their efficient, 
adaptive and kernel-independent properties. These algorithms 
can adaptively and efficiently compress the rank-deficient 
impedance submatrix related to two well-separated blocks into 
a product of matrices requiring much less memory. As a result, 
the computational time and storage cost of the MoM can be 
significantly decreased. 

The conventional ACA algorithm [1], [2] can reduce the 
computational time and memory requirement of the MoM to 
O(N4/3logN) [2] for analyzing moderate electrical size targets 
with iterative solvers, where N is the number of unknowns. 
However, for very large targets, the complexities of the 

conventional ACA become as high as O(N3) and O(N2)  
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[2] for 
CPU time and storage, respectively. The adaptive cross 
approximation-singular value decomposition (ACA-SVD) [3], 
[4] can optimize the storage of the ACA by transforming the 
ACA decomposition into a truncated SVD. Nevertheless, the 
ACA-SVD does not improve the asymptotic complexity of the 
conventional ACA. To mitigate this problem, the multilevel 
adaptive cross approximation (MLACA) [5] has been proposed, 
which is a multilevel version of the ACA-SVD with the aid of 
the butterfly algorithm [11]. As a result, it can achieve O(N2) 
computational complexity and O(Nlog2N) storage complexity 
for very large targets [5].  

For compressing an off-diagonal submatrix of the MoM 
impedance matrix, in the single-level ACA-SVD algorithm, the 
ACA-SVD decomposition [3], [4] of the impedance submatrix 
is directly performed. The decomposition error can be easily 
estimated, as the threshold of the used ACA-SVD. Different 
from the single-level ACA-SVD algorithm, the L-level 
MLACA [5] algorithm includes L+1 steps, and each step 
involves 2L  ACA-SVD decompositions if a binary tree is used 
to partition the target under analysis. Since there are 2 ( 1)L L   
ACA-SVD decompositions in the L-level MLACA, a question 
is raised here: how large does the error of the MLACA become? 
In [5], the authors intuitively reason that the maximum error of 
the L-level MLACA in the worst case does not exceed ( 2L
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)  , 
where   is the error of the ACA-SVD used in the MLACA. 
However, a rigorous derivation of this conclusion is not 
provided in [5]. In this communication, an upper bound of the 
relative Frobenius norm [12] error of the MLACA is rigorously 
derived. The proof shows that the relative Frobenius norm error 
of the L-level MLACA is smaller than  when the 
relative Frobenius norm error of the ACA-SVD is smaller than 

1(1 ) 1L  

 . The error bound of the MLACA can be approximated as 
(L 1)  , because   is always  in practical applications. 

Consequently the threshold of the ACA-SVD can be set to 
1

1
1) L(1 1 ( 1)  L     to ensure an error of the L-level 

MLACA below   for various L.  

II. FORMULATIONS

First, the MLACA algorithm is briefly illustrated in Section 
II-A. Then, in Section II-B, two inequalities and one equality 
are proved, which are used in the derivation of the error bound 
of the MLACA. Finally, the bound of the relative Frobenius 
norm error of the MLACA is derived in detail in Section II-C. 

A. MLACA 

To apply the MLACA algorithm [5] on the MoM impedance 
matrix, the geometry of the target under analysis needs to be 
split hierarchically into blocks at different levels. As in [5], the 
binary tree is employed here. The impedance submatrices 
associated with well-separated blocks at the peer level can be 
efficiently compressed by the MLACA.  

We assume that the target is divided into l  levels by the 
binary tree, where level l  is the finest level, and consider the 
MoM impedance submatrix  representing the interactions 
of the basis functions in two well-separated blocks at level l . 
The L-level MLACA can be used to compress . It contains 

(0)B
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L+1 steps, where L l . At the pth step ( ), the 
rows of  are first joined according to the partitioning at 
Level l , and then the columns of  are split according 
to the partitioning at Level l . This operation identifies a 
total of  2

l  0 p L 
( )pB
p ( )pB

p
L  new submatrices ( )ˆ p

iB  ( 1,2,3, , 2Li ) which are 
compressed into  by the ACA-SVD 



( 1)p B


( +1) ( +1p p
i iA B

( )pB
( )

)

(p pB A

[3], [4], [9], as 
shown in Fig. 1. Then,  can be approximated with 

       ,         (1)                                  1)

where  is composed of the left singular vectors of the ( 1)pA
( )ˆ p
iB  and  includes the products of the singular values 

and the right singular vectors of the 

( pB 1)

( )ˆ p
i . When all L+1 steps of 

the MLACA are completed,  is compressed into a product 
of L+2 sparse matrices as follows 

B

1  B

) B

(0)B

( 1)L LA

1 1p L (

1
)

1

L

p





  (0)B A

( )pA

(1) (2) (3)A A 

 

( ( ) ( 1)p L 


 
A B

( 1)L

,    (2) 

where  for  and  have 2L  
submatrices. All the submatrices of  are orthogonal 
matrices.  

( )p

(1)

A

(2) (3)A

Fig. 1 shows the pictorial representation of the compression 
process of  by the three-level MLACA. Finally,  is 
decomposed into the product of A A  as shown 
in Fig. 2.  
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(d) Step 3 

Fig.1. The pictorial representation of the three-level MLACA. (a) Step 0; (b) 
Step 1; (c) Step 2; (d) Step 3.  
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Fig. 2. B  is compressed into the product of  by the 
three-level MLACA. 
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Assuming that the relative Frobenius norm error of the 
ACA-SVD used in the MLACA is not larger than  , the 
purpose of this communication is to give an upper bound of the 
relative error (3) of the MLACA for compressing , (0)B

1
(0) ( ) ( 1)

1

(0)

L
p L

p
F

F






 
  
 
B A B

B
,                        (3) 

where 
F
  stands for the Frobenius norm [12]. The Frobenius 

norm of D m n  is defined as 

2

1 1

m n

ijF
i j

d
 

 D ,                              (4) 

where  is the element in the ith row and jth column of D . ijd

B. Lemmas  

In this subsection we prove three lemmas that we need for 
the MLACA error upper bound derived in the next subsection. 

Lemma 1. ( ) ( 1) ( 1) ( )p p p p

F F
  B A B B  for 0 p L  . 

Proof. At the pth step of the MLACA [5] for 0 p L  , the ith 
submatrix of ( )ˆ pB , ( )ˆ p

iB , for 1,2,3, , 2Li    is compressed by 
the truncated ACA-SVD [3], [4], [9] into 

( ) ( ) ( ) ( )ˆ p p p p
i i i iB U S V ,                               (5) 

where  is the truncated left singular matrix of ( )p
iU ( )ˆ p

iB ,  
is the truncated right singular matrix of 

( )p
iV

( )ˆ p
iB , and  is a 

diagonal matrix and contains the retained singular values of 

( p
iS )

( )ˆ p
iB .  and  are orthogonal matrices.  ( )p

iU ( )p
iV

We recall that we assume the relative Frobenius norm error 
of (5) to be smaller than  , thus 

( ) ( ) ( ) ( )

( )

ˆ

ˆ

p p p p
i i i i

F

p
i

F





B U S V

B
.                       (6) 

Then, we have 
( ) ( 1) ( 1) ( )ˆ ˆp p p p
i i i i

F F
  B A B B ,                  (7) 

where ( 1)p
i

A  and ( 1)p
i

B  denote the ith submatrix of ( 1)pA  and 
( 1p )B , respectively. 

( 1) ( )p p
i

 A Ui ,                                   (8) 
( 1) ( ) ( )=p p p
i i i

B S V .                                (9) 

According to the definition of the Frobenius norm [12], the 
square of the Frobenius norm of a matrix equals the sum of the 
squares of the Frobenius norm of its submatrices. Thus, 

22 2
( ) ( 1) ( 1) ( ) ( 1) ( 1)

1

ˆ ˆ
L

p p p p p p
i i i

F F
i

   



  B A B B A B .      (10) 

Substituting (7) into (10) yields 
22 2

( ) ( 1) ( 1) 2 ( ) 2 ( )

1

ˆ ˆ ˆ
L

p p p p p
i

2

F F F
i

  



  B A B B B .  (11) 

Taking the square root of both sides of (11), we find 

   ( ) ( 1) ( 1) ( )p p p p

F F
  B A B B ,               (12) 

where it has been used that ( ) ( )ˆ p pB B . 
Lemma 1 states that if the relative Frobenius norm error of 

the truncated ACA-SVD is smaller than  , the relative 
Frobenius norm error of the pth step in the MLACA is also 
bounded by  . 

Lemma 2. ( ) ( ) ( )p p p

F F
A B B   for 1 ( . 1)p L  
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Proof. The square of ( ) ( )p p

F
A B  can be rewritten as 

22( ) ( ) ( ) ( )

1

L

p p p p
i i

2

F F
i

 A B A B .                   (13) 

Because ( )p
iA  is orthogonal for 1,2,3, , 2Li   , due to the 

orthogonal invariance of the Frobenius norm [12], we have 
( ) ( ) ( )p p p
i i iF F

A B B .                        (14) 

Substituting (14) into (13), we obtain 
22 2( ) ( ) ( ) ( )

1

L

p p p p
i

2

F F
i

 A B B B
F

.               (15) 

Taking the square root of both sides of (14), we have 
( ) ( ) ( )p p p

F F
A B B .                         (16) 

Lemma 2 asserts that  does not change the Frobenius 
norm of  when multiplying  by , even though 

 is not an orthogonal matrix in general. 

( )pA
( )pB ( )pB ( )pA

( )pA
Furthermore, lemma 2 implies: 

Corollary 1. 
( )p

FF
A M M ,                             (17) 

if the matrix  has the same sparsity pattern as .  M ( )pB

Lemma 3. ( 1) ( ) 1p p

F F
  B B  for . 0 p L 

Proof. ( 1) ( 1)p p

F

 A B can be rewritten as 

( 1) ( 1) ( ) ( 1) ( 1) ( )p p p p p p

F F

     A B B A B B .       (18) 

Due to the triangle inequality of a matrix norm [12], we have  
( 1) ( 1) ( ) ( 1) ( 1) ( )p p p p p p

F F F

     A B B A B B .     (19) 

With Lemma 1 and 2, this leads to 
( 1) ( ) ( )p p p

F F
  B B B

F
.                   (20) 

Or equivalently, 
( 1)

( )
1

p

F

p

F




 
B

B
.                              (21) 

C. Error Bound of MLACA 

In this subsection, the Frobenius norm error bound of the 
MLACA is derived in detail. First, the numerator of (3) is 
considered, which can be rewritten as 

 

1
(0) ( ) ( 1)

1

(0) ( ) ( ) ( ) ( )

1 1 1

1
( ) ( 1)

1

( ) ( ) ( 1) ( 1)

0 1

L
p L

p
F

p pL
q p q p

p q q

L
p L

p
F

pL
q p p p

p q
F






  






 

 

 
  
 

    
           

 
 
 

 
  

 



  



 

B A B

B A B A B

A B

A B A B

.  (22) 

Due to the triangle inequality of a matrix norm [12], we have 

 

1
(0) ( ) ( 1)

1

( ) ( ) ( 1) ( 1)

0 1

L
p L

p
F

pL
q p p p

p q
F






 

 

 
  
 

 
  

 



 

B A B

A B A B

.        (23) 

From Fig. 2, it can be clearly seen that the sparsity pattern of 
( 1) ( 1)p p A B

B

 is equal to that of . It is because they are 
essentially the same matrices. The only difference is that the 
blocks of  are vertically split and then compressed by the 
ACA-SVD to obtain 

( )pB

1)p

( )p

( 1) (p A B .  Furthermore, from Fig. 2, 
we also can conclude that the sparsity pattern of  is 
equal to that of , if  the matrix M  has the same sparsity 
pattern as 

( 1)pA M
( )pB

1)( pB . By recursively applying this conclusion, we 

can find that both   ( )q pB( )

1

p

q n  A  and  1 1)p

q n

 ( ) (

1

q p
 

n 

A B

p

 

have the same sparsity pattern as  for 1 . Thus,  ( )nB

 ( ) ( ) ( 1) ( 1)

1

1
( ) ( ) ( ) ( 1)

1 1

p
q p p p

q n

p p
q p q p

q n q n

 

 




   

 
 

 
   

    
   



 

A B A B

A B A B

              (24) 

also has the same sparsity pattern as  . Due to corollary 1, 
we find 

( )nB

 

 

 

 

( ) ( ) ( 1) ( 1)

1

( ) ( ) ( 1) ( 1)

2

( ) ( ) ( 1) ( 1)

3

( ) ( ) ( 1) ( 1)

( ) ( 1) ( 1)

p
q p p p

q
F

p
q p p p

q
F

p
q p p p

q
F

p p p p

F

p p p

F

 



 



 



 

 

 
 

 

 
  
 

 
  
 

 

 







A B A B

A B A B

A B A B

A B A B

B A B



.              (25) 

Substituting (25) into (23) and using Lemma 1, we obtain 
1

(0) ( ) ( 1) ( ) ( 1) ( 1)

01

( )

0

L L
p L p p p

F
pp

F

L
p

F
p




 





 
   
 







B A B B A B

B



.  (26) 

Then, substituting (26) into (3), the relative Frobenius norm 
error of the MLACA satisfies 

1
(0) ( ) ( 1)

( )
1

(0) (0)
0

L
p L

p
Lp

F F

p
F F










 
  
  



B A B

B

B B
.          (27) 

If 0p  , ( ) (0) 1p

F F
B B . If 1 , p L  ( ) (0)p

F F
B B  

can be rewritten as 
( ) (1) (2) ( ) ( 1)1

(0) (0) (1) ( 1) ( )
0

p p p q

F F F F

p q
q

F

F F F F






 
B B B B B

B B B B B


F

.  (28) 
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According to Lemma 3, this yields 

 
( )

(0)
1

p
pF

F

 
B

                        

fo
stituting (29) into (27), we 

B
   (29) 

r 0 p L  . 
Finally, sub obtain 

1

(0)
1

Lp 

 

1
) ( ) ( 1)

0

1
1 1

L
p L(0

pF

p
F

L

 










 
  

  

B A B

B
.      

Eq. (30) states that for the L-level MLACA, whic
steps and compresses into a product of 

       (30) 

h includes 
1L   (0)B  2L   sparse 

e relative Frob s norm error is n er than matrices, th eniu ot larg
1(1 ) 1L   , where   is the relative Frobenius norm error of 

CA-SVD used in the M CA. In consequen  we set 
the threshold of the ACA-SVD to 
the A LA ce, if

1
1(1 ) 1L   , it is guaranteed 

 of the L evel MLACA is smaller than that the error -l   for any 
L. In practical applications,   is always 1 . Thus, we can 
approximate 1(1 ) 1L    with ( 1L )   as the error bound of 
the MLACA. 

 CONC  

In this comm

III. LUSION

unication, an error upper bound of the MLACA 
for compressing a MoM impedance submatrix associated with 
two well-sepa ously derived. If the 
re

rated blocks has been rigor
lative Frobenius norm error of the ACA-SVD used in the 

MLACA is not larger than  , the proof shows that the relative 
Frobenius norm error of the L-level MLACA does not exceed 

1(1 ) 1L   . The error bound can be approximated as ( 1)L  , 
because 1   for practical applications. Thanks to this error 
upper bound, the error of the MLACA can be easily controlled. 

REFERENCES 
[1] M. Bebendorf, “Approximation of bound element matrices,” Numer. 

Math., vol. 86, no. 4, pp. 565-589, 2000. 
[2] K. Zhao, M. N. Vou Lee, “The adaptive cross 

approximation algorith ted method of moments 

ius, J. M. Tamayo, J. Parrón, and E. Ubeda, 

 2, pp. 526-536, Feb. 2011.  

on, E. Ubeda, and J. M. Rius, 

3. 

Sparsified Multilevel Adaptive Cross 

 pp. 3994-4002, Sep. 2015. 

ition 

 44, no. 8, pp. 1086-1093, Aug. 1996. 

[9] X. Chen, C. Gu, J. Ding, Z. Li, and Z. Niu, “Multilevel fast adaptive 
cross-approximation algorithm with characteristic basis functions,” IEEE 
Trans. Antennas Propag., vol. 63, no. 9,

[10] W. C. Gibson, The Method of Moments in Electromagnetics. Boca Raton, 
FL: CRC Press, 2007. 

[11] E. Michielssen and A. Boag, “A multilevel matrix decompos
algorithm for analyzing scattering from large structures,” IEEE Trans. 
Antennas Propag., vol.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. Baltimore, MD: 
The Johns Hopkins Univ. Press, 1996. 

vakis, and J.-F. 
m for accelera

computations of EMC,” IEEE Trans. Electromagn. Compat., vol. 47, no. 
4, pp. 763-773, 2005. 

[3] M.  Bebendorf  and  S.  Kunis,  “Recompression  techniques  for  adaptive 
cross approximation,” J. Integ. Equat. Appl. , vol. 21, no. 3, pp. 331-357, 
2009. 

[4] A. Heldring, J. M. R
“Multiscale compressed block decomposition for fast direct solution of 
method of moments linear system,” IEEE Trans. Antennas Propag., vol. 
59, no.

[5] J. M. Tamayo, A. Heldring, and J. M. Rius, “Multilevel adaptive cross 
approximation (MLACA),” IEEE Trans. Antennas Propag., vol. 59, no. 
12, pp. 4600-4608, Dec. 2011. 

[6] A. Heldring, J. M. Tamayo, C. Sim
“Sparsified adaptive cross  approximation  algorithm  for  accelerated 
method of moments computations,” IEEE Trans. Antennas Propag., vol. 
61, no. 1, pp. 240-246, Jan. 201

[7] X. Chen, C. Gu, Z. Niu, and Z. Li, “Fast adaptive cross-sampling scheme 
for the sparsified adaptive cross approximation,” IEEE Antennas Wirel. 
Propag. Lett., vol. 13, pp. 1061-1064, 2014. 

[8] X. Chen, C. Gu, Z. Li, and Z. Niu, “
Approximation,” in 2014 IEEE Asia-Pacific Conference on Antennas and 
Propagation, Jul. 2014, pp. 971-973. 


	I. INTRODUCTION
	II. Formulations
	A. MLACA
	B. Lemmas 
	C. Error Bound of MLACA

	III. Conclusion

