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Abstract 8 

Most methods for hydraulic test interpretation rely on a number of simplified 9 

assumptions regarding the homogeneity and isotropy of the underlying porous media. 10 

This way, the actual heterogeneity of any natural parameter, such as transmissivity (T ), 11 

is transferred to the corresponding estimates in a way heavily dependent on the 12 

interpretation method used. An example is a long-term pumping test interpreted by 13 

means of the Cooper-Jacob method, which implicitly assumes a homogeneous isotropic 14 

confined aquifer. The estimates obtained from this method are not local values, but still 15 

have a clear physical meaning; the estimated T  represents a regional-scale effective 16 

value, while the log-ratio of the normalized estimated storage coefficient, indicated by 17 

'w , is an indicator of flow connectivity, representative of the scale given by the distance 18 

between the pumping and the observation wells. In this work we propose a 19 

methodology to use 'w , together with sampled local measurements of transmissivity at 20 

selected points, to map the expected value of local T  values using a technique based on 21 

cokriging. Since the interpolation involves two variables measured at different support 22 

scales, a critical point is the estimation of the covariance and crosscovariance matrices. 23 

The method is applied to a synthetic field displaying statistical anisotropy, showing that 24 

the inclusion of connectivity indicators in the estimation method provide maps that 25 

effectively display preferential flow pathways, with direct consequences in solute 26 

transport.  27 

 28 
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Highlights:  32 

‐ Cooper-Jacob estimates of storage coefficient, as indicators of flow connectivity, 33 

are spatial integrals of local transmissivities 34 

‐ Estimates of S  can be used to map expected local transmissivities through 35 

cokriging 36 

‐ Statistical anisotropy and the presence of conducting features can be 37 

reconstructed from this method 38 

  39 
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1. Introduction 40 

Hydraulic connectivity between two points is quite a well defined concept in fractured 41 

media [e.g., Neuman, 2008], but a loosely defined concept in porous media [e.g., 42 

Knudby and Carrera, 2005]. While in the latter case a formal definition is not available, 43 

point-to-point connectivity is considered directly linked to the inherent heterogeneity of 44 

natural porous media [Trinchero et al., 2008]. The issue of flow connectivity has been a 45 

concern to the scientific community from the past years, with the first studies in the 46 

field of oil engineering. Fogg [1986] was the first to launch the concept of flow 47 

connectivity in a study of a detailed 3D model of the Wilcox aquifer in Texas. He 48 

showed that the flow occurring in a sedimentary aquifer is determined to a greater 49 

extent by the connectivity of the medium as compared to the local values of hydraulic 50 

conductivity. Thereafter the term connectivity was extended to transport of conservative 51 

species [Poeter and Townsend, 1994] by looking at the spatial distribution of travel 52 

times in an alluvial aquifer. 53 

Hydraulic connectivity concepts are widely present implicitly in the literature. Schad 54 

and Teutsch [1994] analysed the time drawdown curves in tests performed at different 55 

scales and found that natural heterogeneity reflected on the hydraulic parameters 56 

estimated from field tests, indicating that pumping tests could be a good tool to map 57 

heterogeneity. Sanchez-Vila et al. [1996] discussed the presence of scale effects in 58 

transmissivity through numerical simulations, and provided a justification for the non-59 

log-normality of the multivariate statistics in real fields; they found that an asymmetry 60 

in the multivariate distribution of local T values, i.e., connectivity between zones of 61 

high transmissivity being larger than those of low transmissivity, resulted in effective 62 

transmissivity ( effT ) values higher than the geometric mean of point T values. Schulze-63 

Makuch and Cherkauer [1998] demonstrated through aquifer tests and numerical 64 

simulations in a porous carbonate aquifer that the estimated hydraulic conductivity 65 

increased with the duration of the tests, linked to the increase in the volume of aquifer 66 

impacted. Attinger [2003] used a coarse graining method to upscale the flow equation in 67 

heterogeneous media and found that connectivity had a clear impact in the resulting 68 

piezometric head distribution. Zinn and Harvey [2003] described the upscaled flow (and 69 

also transport) characteristics of three synthetic hydraulic conductivity fields selected to 70 

have the same pdfs of local conductivity values and very similar variograms, but with 71 
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different degrees of connectivity, finding its impact on effective transmissivity and 72 

travel times. Finally, Zhou et al. [2011] applied the Ensemble Kalman Filter method to 73 

generate realizations that directly embedded the connectivity of conductivity fields. 74 

While in this work we deal with connectivity in porous structures, in the literature a 75 

number of works define it in fractured media, where it is mostly associated to the 76 

presence of connected fracture networks. The most widely used approach involves the 77 

description of such networks from power law length distributions in discrete fracture 78 

models and the implication upon flow patterns [e.g., Bour and Davy, 1997; Odling, 79 

1997; Guimerà and Carrera, 2000; Ji et al., 2011; Xu et al., 2006]. Further, De Marsily 80 

et al. [2005] presented a review of continuous Geostatistical, Boolean, Indicator or 81 

Gaussian-Threshold models in order to address rock strata connectivity, incorporating 82 

geologic information. Additional work has been performed in the framework of discrete 83 

fracture models; an example is the study of Neuman [2008], developing a methodology 84 

relating fracture type and corresponding fractal attributes. In terms of connectivity, one 85 

of the most significant points of that study is establishing a relationship between 86 

permeability, scale length of fractures, and average fracture apertures.  87 

Regarding the definition of hydraulic connectivity as a quantifiable parameter, Renard 88 

and Allard [2013] provided a classification distinguishing static and dynamic metrics. 89 

According to these authors, the static connectivity metrics are only a function of the 90 

spatial distribution of lithology and permeability, while the dynamic metrics represent 91 

better the physics but they depend on geometrical and physical parameters, such as the 92 

type of boundary conditions or the state of the system. Along this classification, static 93 

metrics, include the works of Deutsch [1998] who analyse 3D connectivity numerical 94 

models, Vogel and Roth [2001] who determined a connectivity function based on pore-95 

network models, Pardo-Igúzquiza and Dowd [2003] who created a code that performed 96 

an analysis based on a number of connectivity statistics. Moreover, Knudby et al. [2006] 97 

presented a binary upscaling formula incorporating connectivity information, Western et 98 

al. [2001] assigned connectivity functions (from Boolean models) to synthetic aquifer 99 

conductivity patterns, Schlüter and Vogel [2011] analysed the potential of various 100 

morphological descriptors sensitive to structural connectivity patterns based on 101 

percolation theory to predict flow and transport in heterogeneous porous media, and 102 

Neuweiler et al. [2011] estimated the effective parameters for an upscaled model for a 103 
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buoyant counter flow of DNAPL and water in a closed box filled with heterogeneous 104 

porous material. 105 

On the other hand, dynamic connectivity metrics are more related to our work, and 106 

imply another type of indicators. The reference works that form the basis of our analysis 107 

are those of Meier et al. [1998] and Sanchez-Vila et al. [1999]. These authors studied 108 

the information that is embedded in the traditional estimates of transmissivity ( estT ) and 109 

storage coefficient ( estS ) when data from a long-term pumping test performed under 110 

constant flow rate was interpreted using the traditional Cooper-Jacob [Cooper and 111 

Jacob, 1946] approach based on the development of a linear response of drawdown vs 112 

log time curve. The combination of the numerical analysis of Meier et al. [1998] with 113 

the analytical work of Sanchez-Vila et al. [1999] indicated that estS  incorporated 114 

information about the hydraulic connectivity between the pumping and the observation 115 

wells, provided the test was long enough to develop the linear behaviour, and not long 116 

enough to be affected by boundaries.  117 

Still in the line of dynamic connectivity metrics, Bruderer-Weng et al. [2004] quantified 118 

flow channeling in heterogeneous, exploring the effect of pore size correlation length in 119 

individual realizations. Knudby and Carrera [2005] proposed and evaluated the 120 

performance of nine dynamic connectivity indicators, amongst them three representative 121 

of flow connectivity. The authors concluded that all flow connectivity indicators 122 

succeeded in identifying the presence of high K  features. Trinchero et al. [2008] 123 

presented an explicit mathematical framework that assessed the meaning of point-to-124 

point transport connectivity in heterogeneous aquifers through the study of estS  125 

combined with an indicator obtained from the analysis of tracer curves, est . The authors 126 

found an analytical relationship between estS  and est , and concluded that the processes 127 

governing transport connectivity were distinct from those involved in flow connectivity. 128 

Frippiat et al. [2009] investigated head and velocity variances as parameters that could 129 

provide valuable information about the occurrence of flow barriers and preferential 130 

pathways. Semi-analytical expressions for effective permeability, head variance and 131 

velocity variance were derived for saturated 2D anisotropic media and compared with 132 

results from numerical simulations of steady-state flow in random K fields, finding that 133 
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the solution fitted poorly in terms of head variances, but quite well for velocity 134 

variances. 135 

The most recent works regarding dynamic connectivity metrics include Le Goc et al. 136 

[2010] who introduced two channelling indicators based on the Lagrangian distribution 137 

of flow rates characterizing the extremes of the flow tube width distribution and the 138 

flow rate variation along the flow paths. These indicators provide information on the 139 

flow channel geometry and are applicable to both porous and fractured media. Finally, 140 

Bianchi et al. [2011] investigated flow connectivity in a small portion of an extremely 141 

heterogeneous aquifer after extracting 19 soil cores, yielding 1740 hydraulic 142 

conductivity granulometric estimates and finally generating conditional realizations of 143 

3-D K fields. The flow metrics obtained in the simulations were consistent with one of 144 

the dynamic connectivity metrics proposed by Knudby and Carrera [2005]. 145 

In some studies static and dynamic connectivity metrics have been related. An example 146 

is Samouëlian et al. [2007] who investigated the impact of topological aspects of 147 

heterogeneous material properties on the effective unsaturated hydraulic conductivity 148 

function, finding that the connectivity can best be represented by two topological 149 

parameters (Euler-number and percolation theory). Also Willmann et al. [2008] studied 150 

the relationship between breakthrough curves and dynamic indicators finding a 151 

relationship between the slope of the late time breakthrough curves and two of the 152 

dynamic metrics proposed by Knudby and Carrera [2005]. Most recently, Henri et al. 153 

[2015] demonstrated that enhanced transport connectivity might have consequences on 154 

human health risk assessment, largely controlling the location of high risk areas or hot 155 

points in heterogeneous aquifers. 156 

Connectivity patterns can also be included in the framework of multiple point 157 

geostatistics (MPG). For example, Renard et al. [2011] and Mariethoz and Kelly [2011] 158 

proposed algorithms to condition stochastic simulations of lithofacies to connectivity 159 

information, by using a training image to build a set of replicates of conductivity fields 160 

displaying connected paths that were consistent with the prior model.  161 

The idea of connectivity related to the spatial patterns of conductivity is the basis of our 162 

work. This same idea led Fernàndez-Garcia et al. [2010] to propose a methodology to 163 

use the values obtained from tracer tests regarding travel times [following the 164 
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formulation of Trinchero et al., 2008] to be used in transmissivity map delineation in a 165 

geostatistical framework. Here we follow a similar approach extended now to flow 166 

connectivity indicators. We thus propose a method to use the values of estS  that would 167 

be obtained from the interpretation of pumping tests using the Cooper-Jacob method 168 

combined with any existing value of local transmissivity, to map the best estimate of 169 

local T  and the corresponding estimation uncertainty. The approach can be classified in 170 

the cokriging methods family and has as a significant point that the secondary variable 171 

is provided as a weighted integral of the (unknown) values of the primary variable. The 172 

method is then tested with a synthetic aquifer displaying statistical anisotropy of the 173 

local T values, where it is found that the inclusion of estS  values in the derivation allow 174 

getting a better representation of the presence of connected structures, as well as in the 175 

delineation of anisotropy.  176 

 177 

2. Stochastic estimation of log-T fields using connectivity flow indicators 178 

2.1 Background: Interpretation of pumping tests by the Cooper-Jacob method 179 

Long-term pumping tests are common field hydraulic experiments to obtain estimates of 180 

hydraulic parameters. The traditional interpretation used by practitioners is the Cooper-181 

Jacob (C-J) approach. It is relevant here to make a note of caution; the C-J approach has 182 

a range of validity that can be explored by using diagnostic plots [Renard et al., 2008] 183 

before any interpretation is considered. The C-J method allows obtaining estimated 184 

values of transmisivity ( estT ) and storage coefficient ( estS ), but only in an apparent sense 185 

(that is, conditioned to the hypotheses underlain in the interpretation method used). In 186 

particular, the method is based on assuming homogeneous isotropic medium, so that all 187 

the effects of heterogeneity and anisotropy are directly transferred and embedded into 188 

the estimated apparent parameters. Different approaches mention this deficiency and 189 

have proposed alternatives to either obtain information about the parameters describing 190 

heterogeneity [Copty et al., 2008; Copty et al., 2011] or anisotropy [Neuman  et al., 191 

1984] from the drawdowns recorded in a suite of observation points. 192 

Meier et al. [1998] showed that even in heterogeneous porous and fractured media, the 193 

drawdown versus log time data recorded from long-term pumping tests were arranged 194 
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in a straight line for large times, therefore allowing the estimation of the slope ( m ) and 195 

the intercept (with the X-axis, 0t ) of this line. Knowing the pumping rate (Q) and the 196 

distance between the pumping and the observation wells ( r ) two values can be derived 197 

0.183est

Q
T

m
= ,                                                        (1) 198 

  0
2

2.25 est
est

T t
S

r
= .                                                     (2) 199 

It is well known that when this methodology is used in homogeneous aquifers, the 200 

resulting parameters are precisely the transmissivity and the storage coefficient of the 201 

aquifer (assuming no influence of boundary conditions).  202 

In most aquifers hydraulic conductivity or transmissivity are highly variable in space, 203 

while storage coefficient displays a lesser degree of variability as it is function of 204 

porosity, compressibility of water and the mineral skeleton, all of them variables that 205 

display low ranges of variability [see e.g. Bachu and Underschulz, 1992; Neuzil, 1994; 206 

Ptak and Teutsch, 1994].  207 

2.2 Pumping tests in heterogeneous media 208 

The estimates from (1) and (2) are just two numbers that can be obtained regardless the 209 

degree of variability of the real T and S fields. The obvious question is what is the 210 

physical meaning of these estimated parameters when the medium is heterogeneous? 211 

Sanchez-Vila et al. [1999] found analytically using a truncated perturbation expansion 212 

(in log-T) of the flow equation in heterogeneous porous media that estT  obtained from 213 

(1) is a good estimator of the effective transmissivity of the full field. The direct 214 

consequence is that the tests are long enough, the estimates from different tests 215 

performed in the same area would provide the same estT  value (so, performing more 216 

than one test is uninformative in terms of estimates of transmissivity).  217 

On the contrary, estS  from (2) is an observation point dependent parameter that weight 218 

averages the local T  values lying in an area that includes the pumping and the 219 

observation wells. The actual integral is given as [Sanchez-Vila et al., 1999] 220 
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where ( ) ( )' ln ( ) / effY T T=x x , and U  is a weighting function (kernel) given by  222 
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  

,                                     (4) 223 

where  ,   are the polar coordinates centered at the observation point,  ,r   are the 224 

polar coordinates centered at the pumping well. 225 

Thus, estS  values provide more information of the underlying heterogeneous structure of 226 

the local T  value than estT , indicating the potential of the former variable to be 227 

incorporated into a methodology for mapping local transmissivities (while estT  are 228 

mostly useless for that purpose). Moreover, estS  directly incorporates the response time 229 

of a given location to pumping (as it includes the intercept time, which is an indirect 230 

measure of response time), which can be directly transferred to a connectivity index as 231 

suggested by Fernàndez-Garcia et al. [2010], who defined explicitly the flow 232 

connectivity indicator ( 'w ) as 233 

' ln estS

S
    

 
,                            (5) 234 

where S  is the actual storage coefficient (assumed constant for simplicity, but an 235 

effective value could also be used if heterogeneity in local S  values was considered). 236 

From this definition negative values of 'w  represent good flow connectivity between 237 

pumping and observation well, and positive values otherwise.  238 

2.3 The flow connectivity estimator 239 

Combining (3) and (5), the flow connectivity indicator can be written as a weighted 240 

average of the deviations of the log-T values with respect to the effective T  value, 241 

where the weighting function is a Fréchet Kernel given already in (4), as 242 

     2
' , , , , ' ,r U r Y d d         


                                 (6) 243 



10 
 

where the local polar coordinates considers the pumping well as the origin of 244 

coordinates. The shape of function U  deserves some comments (see Figure 1); it 245 

displays two singularities (infinite value) at the location of the pumping well and 246 

observation point, is equal to zero along the circumference drawn by considering the 247 

diameter as that formed by these same two points, it is positive in all values located 248 

inside the circle, and negative outside, with values tending to zero as the distance to the 249 

circumference increases. Essentially this Kernel function expresses that the pumping 250 

location is well connected to an observation point when high transmissivity values are 251 

displayed in the area closer to the two points and (relatively) small transmissivity values 252 

concentrate outside of the influence area (the circumference specified).  253 

2.4 Estimation by means of a cokriging approach 254 

At any location where local T  has not been sampled, we need to estimate the 255 

corresponding value to draw a map of the best estimates for local T  values. We use 256 

here the geostatistical method known as cokriging. We start by defining the linear 257 

estimator of ( )0Y x  as  258 

( )0
1 1

'
w

wl l w
= =

= +å åx
Yn n

Y
CK i i j j

i j

Y Y     (7) 259 

where ( )0CKY x is the estimator of log Transmissivity in a certain point 0x , ( )0l Y
i x  and 260 

( )0
wl i x , both location and data dependent, are the weights applied to values of log-261 

Transmissivity ( iY ) and flow connectivity ( 'w ), which by convention is defined as 262 

( )' ' ,w w= x xi i p , where ix  and 
px  are the observation point and the pumping well 263 

locations, respectively. Here it is important to state that 'w  is symmetric with respect to 264 

the two points. Still in (7), , wYn n  represent the data of each type used in the estimation 265 

process. 266 

The relative weight of each of the variables is based on the spatial distribution of the 267 

observation points. We describe ( ) ln ( )Y T=x x  as a correlated random function, fully 268 

defined by its expected value xm  and a two-point covariance function YYC . From 86), 269 
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the attribute 'w  is linearly dependent on Y  and can be described as a correlated random 270 

function with zero mean.  271 

As in all cokriging methods, the weighting coefficients are obtained by applying the 272 

conditions of unbiasedness and minimum variance of the estimator error. The most 273 

relevant details of the mathematical derivation are presented in the Appendix. The main 274 

results are presented here. 275 

The unbisedness condition, implying that =CK YY m , leads to   276 

1

1l
=

=å
Yn

Y
i

i

.                                                          (8) 277 

The second condition, the minimization of the variance of the estimator error, 278 

( )22
CK CKE Y Ys é ù= -ê úë û

 implies developing the full expression for 2s CK  (see equation A.4) 279 

and then minimizing a Lagrangian function that includes the unbiasedness constraint 280 

(equation A.3). This results in a linear system of 1+ +k l  equations with 1+ +k l  281 

unknowns that we reproduce here  282 
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The method then implies that at each point 0x  in a predefined mesh we assign an 284 

estimated value of local T  obtained by performing the following steps:  285 

1) Solving equation (9) for ( 1,..., ), ( 1,..., ),w
wl l m= =Y

i Y ji n j n , 286 

2) obtain ( )0CKY x  from equation (7), 287 

3) compute 2s CK  from equation (A.6). 288 

A critical point in step (1) is the evaluation of the covariance and cross-covariance 289 

functions, that can all be written in terms of integrals of be obtained as YYC : 290 
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2.5 Mathematical code implementation  293 

The set of equations composed by (7), (9)-(11) and (A.6) were implemented in ad-hoc 294 

code programmed in Matlab [MathWorks, 2014]. The implementation of the variance-295 

crossvariance matrices in equations (9)-(10) are calculated numerically at each cell, 296 

based on the numerical integration of the covariance of the log-T  values times a Kernel 297 

function. If there is an observation point containing both Y and 'w  data, the order of 298 

assembly of the cross-covariance matrix is done sequentially. The integrals in (9)-(10) 299 

are solved using different types of programming loops; at those points where the U  300 

function presents singularities (pumping well and observation point), the sums are 301 

performed with the values corresponding to the centre of the cells, with the singular 302 

points located at the edges of the cells, avoiding such singularities.  303 

Once the covariance functions are estimated, the solution of (9) is straight forward, 304 

being a system of linear equations.  305 

 306 

3. Development of a synthetic model and hydraulic parameters obtaining 307 

3.1 Construction and modeling of the synthetic aquifer  308 

The flow model constructed in the finite differences code Modflow incorporated in 309 

model ModelMuse [USGS, 2015] considers a square domain of size 2600 units. This 310 

domain is discretized into 406 x 406 square cells of variable size, being most refined 311 

inside the inner region where the pumping tests are simulated. The outer region is used 312 

to prevent boundary effects. The cell size in the inner domain is of one unit, then 313 

increases outside this region following a geometric progression with a factor 1.2. The 314 

inner region consist of 300 x 300 cells. We further defined a simulation domain located 315 

within the inner region, that corresponds to the area where both the pumping and 316 

observation wells are located. The natural log of the transmissivity field in the inner and 317 

simulation regions is modeled as a Gaussian anisotropic structure with a sill of 1, a 318 
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mean of 0, and ranges of 15 and 30 units in the X and Y direction. We consider one 319 

realization of such field, performed with SGeMS [Remy and Boucher, 2009], presented 320 

in Figure 2. The storage coefficient is constant and equal to S =10-2 for the entire 321 

domain. The transmissivity field outside the inner region is assumed constant and equal 322 

to ln 0Y T= = . The head level at the boundaries is prescribed at h=0. Figure 3 shows a 323 

sketch of the numerical setup, where the heterogeneous conductivity inner domain and 324 

homogeneous outer domain are represented. Distances are given in terms of spatial 325 

range correlations.  326 

Three different pumping tests are performed in order to find flow connectivity indicator 327 

values ( 'w ) between pumping and observation wells. Each test involves a different 328 

pumping well, but the six observation points are common for all tests. This set up 329 

produces a total of 18 'w  values. A period of 11000 time units is simulated, where each 330 

of the abstraction wells separately pump for a period of 3100 units, sufficient to obtain a 331 

late straight line in the Cooper-Jacob interpretation, and so that boundary effects do not 332 

have any effect. As the model is two-dimensional, we implicitly assume fully 333 

penetrating wells. The flow rate in each test is 50 [L3 T-1], a value selected from 334 

preliminary runs. Two well distributions are considered, a first one consisting in a 335 

regular well distribution, and a second one with a deliberated well distribution placing 336 

wells in those zones where the values of Y  are either very high or very low. The entire 337 

mesh, the simulating domain K  field and the two well distribution configurations are 338 

shown in Figure 4. 339 

3.2 Pumping tests modelling results. Estimation of connectivities 340 

Once pumping tests were performed, estT  and estS  are computed from (1) and (2) 341 

respectively. In Table 1 all estimated values, as well as sampled T values, are compiled 342 

for the two well distribution arrangements. The 'w  values, obtained from (5), are also 343 

reported; these values were obtained using S = 1x10-2 (notice that the geometric mean 344 

of all reported estS  values is exactly equal to 1x10-2, confirming the theoretical results of 345 

Sanchez-Vila et al. [1999]).  346 

Table 1. Values of flow connectivity obtained for the case of regular and deliberated 347 

distributed wells. 348 



14 
 

Pumping 

Well 

Observation 

well 

Regular distributed wells Deliberated distributed wells 

estT  realT  estS  'w  estT  realT  estS  'w  

A 

Obs.1 0.98 0.29 1.14E-2 0.13 0.98 1.49 9.67E-3 -0.03 

Obs.2 1.01 0.15 1.40E-2 0.33 0.99 0.07 1.17E-2 0.16 

Obs.3 0.98 3.91 1.16E-2 0.15 0.99 2.32 1.31E-2 0.27 

Obs.4 1.01 1.47 1.11E-2 0.11 0.99 5.70 9.61E-3 -0.04 

Obs.5 0.99 1.53 7.77E-3 -0.25 1.02 0.11 1.23E-2 0.21 

Obs.6 1.01 3.71 8.73E-3 -0.14 1.03 0.42 1.11E-2 0.11 

B 

Obs.1 1.01 0.29 6.81E-3 -0.38 1.03 1.49 7.12E-3 -0.34 

Obs.2 1.03 0.15 1.78E-2 0.58 1.02 0.07 1.00E-2 0.002 

Obs.3 1.01 3.91 1.22E-2 0.20 1.02 2.32 9.82E-3 -0.02 

Obs.4 1.02 1.47 1.77E-2 0.57 2.03 5.70 4.89E-3 -0.72 

Obs.5 1.02 1.53 8.83E-3 -0.12 1.04 0.11 1.25E-2 0.22 

Obs.6 1.01 3.71 1.31E-2 0.27 1.03 0.42 1.81E-2 0.59 

C 

Obs.1 1.04 0.29 1.01E-2 0.01 1.06 1.49 9.76E-3 -0.02 

Obs.2 1.03 0.15 8.92E-3 -0.11 1.05 0.07 8.34E-3 -0.18 

Obs.3 1.04 3.91 1.08E-2 0.08 1.04 2.32 1.31E-2 0.27 

Obs.4 1.01 1.47 5.23E-3 -0.64 1.04 5.70 1.18E-2 0.17 

Obs.5 1.04 1.53 9.48E-3 -0.05 1.04 0.11 1.10E-2 0.10 

Obs.6 1.03 3.71 1.78E-2 0.58 1.02 0.42 1.07E-2 0.07 
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As Table 1 reflects, the values of estimate transmissivity estT  are quite homogeneous, 349 

confirming the results of Meier et al. [1998] and Sanchez-Vila et al. [1999]. Actually 350 

the reported estT  values are very close to 1 [L2/T] (i.e., 0Y = ) while the real T values 351 

( realT ) are quite heterogeneous. Again, the repetition of pumping tests to obtain estT  352 

values would be uninformative. On the other hand, the values of estS  vary up to half 353 

order of magnitude in selected points; i.e., all information in heterogeneity is then 354 

transferred to the estS  values. The reported 'w  values are displayed graphically in 355 

Figure 5, with emphasis in the sign (negative values in green indicating good 356 

connectivity, and positive ones in red are indicative of bad connectivity) and in the 357 

magnitude (represented by the thickness of the lines).  358 

As demonstrated in both Figure 5 and Table 1, there are several tendencies in the 359 

reported 'w  values, as compared to the corresponding local Y  values at both pumping 360 

well and observation point. First, as expected, there are some negative 'w  values in 361 

those pair of wells located in high Y  zones. This tendency is observed in the regular 362 

distributed wells case, specifically in Well A-Observation 5, Well B-Observation 1 and 363 

Well C-Observation 4, this last showing a greatly exaggerated connectivity value caused 364 

by the existence of a continuous high Y  zone directly connecting these two points. In 365 

the case of deliberated distributed wells, these negative 'w relationships are observed in 366 

Well A-Observation 1 and Observation 4, and Well B-Observation 1 and Observation 4. 367 

On the contrary, there is some bad connected well pairs located in zones of low Y368 

values (whether the two points or only one of them). These can be seen in the 'w  values 369 

between Well A-Observation 2 and Well B-Observation 2 and Observation 4 (regular 370 

distributed wells) and in Well A-Observation 2 and Observation 5, Well B-Observation 371 

5 and Observation 6 and Well C-Observation 3 and Observation 5 (deliberated 372 

distributed wells). An important factor that needs to be considered is that the distance 373 

between the pumping and the observation wells ( r ) can sensibly influence the results of 374 

estS  and therefore 'w  in the calculation of estS  (3) by the C-J interpretation. For 375 

example, it would result in more negative 'w  values than expected (and therefore read 376 

as having a high connectivity) at very large distances, and more positive 'w  values than 377 

expected at short distances. An example of anomalous positive 'w  can be observed in 378 

the pair Well A-Observation 3, Well B-Observation 6 and Well C-Observation 6 for 379 
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regular distributed wells and in Well A-Observation 3 for deliberated distributed wells. 380 

Anomalous negative 'w  values can be seen in Well C-Observation 2 for regular wells 381 

distribution and Well C-Observation 2 for deliberated wells distribution. 382 

3.3 Map reconstruction of the local T values 383 

From the values of 'w  presented in Table 1, and taking into account the point Y values 384 

assumed known without errors in all pumping and observation wells (taken from the 385 

reference Y  map), we present here the result of the cokriging method to reconstruct the 386 

original log transmissivity field. One of the immediate effects of using a cokriging 387 

method is that the maps obtained display smoothed shapes, contrary to the maps 388 

obtained by means of methods based on conditional simulations.  389 

Case 1: Regular distributed wells scenario 390 

Figure 6 displays several reconstructed point T values depending on the amount and 391 

type of data used in the estimation process. First, for case (b), where a simple kriging 392 

using point Y  data and not considering flow connectivity data is performed, the 393 

resulting map shows the anisotropy, reflecting the continuity in the Y  structures in the 394 

Y-direction originated by the structure of the theoretical variogram (with an anisotropy 395 

ratio of 2). Map (c) is obtained after incorporation of the 'w  values; it is perceived the 396 

difficulty to analyse each of the relationships of the connectivity between all points 397 

individually because there is much redundant information; nevertheless there are some 398 

connectivity relationships that are clearly observed, modifying the Y  estimates as a 399 

function of the sign of the 'w  values. This is observed, for example, in the relationship 400 

between Well A and Observation 1, where the high connectivity ( 'w = -0.38) affects the 401 

estimates as compared to map (b). The opposite happens in the relationships between 402 

Well B and Observations 3, 4 and 6 and Well C and Observation 6, where the values of 403 

interpolated Y  decrease respect to the field of map (b) due to low connectivity values 404 

between these wells ( 'w =0.20, 0.57, 0.27 and 0.58 respectively). Some of the 405 

continuous low T structures reflected in the initial Y field (a) are visible in map (c), 406 

while not represented in map (b).  407 

In map (d), the point Y  values are omitted in the interpolation ( Y
il =0), thus only the 'w  408 

values are used. It can be observed that results show negative connectivity 'w values, 409 
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and hence higher values of interpolated Y field especially, for the relationships between 410 

Well A-Observation 5 and 6, the latter not very clearly visible due to the large amount 411 

of crossed information existing in this particular zone and for Well B-Observation 1 and 412 

Well C-Observation 4. On the other hand, positive connectivity values are reflected in 413 

Well A-Observation 3, although these values are influenced by the values of high 414 

connectivity between Well A and observation 5, Well B and observations 2 and 4, and 415 

finally Well C and observation 6 (see Table 1). Another significant result is the presence 416 

of reverse shadow areas that are caused by the shape of the function U  used to 417 

calculate covariance matrices, displaying negative values of U  behind the pumping and 418 

observation wells. These reverse shadow zones can be observed on the right side of 419 

Observation well 2, originated by the low 'w  values between this point and pumping 420 

wells A and B. Another reverse shadow zone is observed south of the Observation 6, 421 

where this high interpolated Y  zone is caused by the positive connectivity 'w  values 422 

between this point and pumping wells B and C. Finally, another high Y  interpolated 423 

shadow zone is located in the left slot of Well A and Observations 3 and 5 caused by the 424 

positive connectivity 'w  values of all pumping wells with observation 3. Otherwise, a 425 

low Y  reverse shadow area appears on top of Observation 1, caused by the negative 426 

connectivity 'w  value between this observation and Well B. 427 

Case 2: Deliberated distributed wells scenario 428 

In this case, both pumping and observation wells are distributed strategically to better 429 

reflect the extreme values of the actual Y  field, and be able to observe how this 430 

distribution, together with the integrated values of 'w  affects the results of the final 431 

interpolated maps. In Figure 7 all interpolated maps considering this deliberated well 432 

distribution are reflected. 433 

This setup implies that in the maps from Figure (7) there is a better reproduction of the 434 

extremes of the pdf of local T as compared to those in Figure 6, but also the continuity 435 

of structures (whether of high or low conductivity). This is quite evident in map (b) 436 

when the two figures are directly compared. In map (c) the introduction of 'w  values in 437 

the interpolation are also quite efficient in showing the continuity of structures as 438 

compared to map (b). First, the introduction of 'w  data is visible in the vicinity of Well 439 

B and Observation 3 and Well C with observations 5 and 6, lowering Y  interpolated 440 
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values in the former, and rising them in the latter, as compared to map (b). Moreover, 441 

new stripes of low Y  values are displayed (again as compared to map (b)) due to the 442 

overall presence of positive 'w  values. Nevertheless high Y  interpolated values stripes 443 

also appear in the area between Well C and Observation 5 and also on the right side of 444 

well C. High Y  interpolated stripes would appear as a consequence of reverse shadow 445 

zones caused by the positive 'w  values between Wells A and B and Observation 5 in 446 

the former case, and for the positive connectivity values between Well B and 447 

Observation 6 in the latter one. 448 

As the relative weights of sampled Y ( Y
il ) are removed, it is observed how the values of 449 

negative 'w  are represented with zones of highY . This happens, for example, in the 450 

area located between Well B and Observation 4, where the Y interpolated values are 451 

high, although a shadow zone of low Y  is originated behind Observation 4 (caused by 452 

this negative 'w  value). On the other hand, positive connectivity values are observed, 453 

for example, in the zone located between Well B and Observation 6, and the consequent 454 

presence of a shadow zone of high Y  east of Observation 6.  455 

4. Validation and relevance of the work 456 

4.1 Validation of results through new simulations 457 

In order to analyse the reliability regarding the reproduction of the different flow 458 

connectivity patterns of the initial synthetic aquifer, all the reconstructed T  fields are 459 

tested to see their capability of reproducing the results of additional pumping tests. 460 

Figure 8 shows the position of pumping and observation wells in a new configuration of 461 

tests, comprising four pumping wells and eight observation wells. 462 

The validation method proceeds as follows. Pumping tests are simulated in the original 463 

T  field. Cooper-Jacob’s method is used to obtain estS  and subsequently calculate 'w464 

values corresponding to the 32 combinations of pumping and observation wells. The 465 

same procedure is repeated for all the estimated T fields presented in figures 6 and 7 (a 466 

total of 6 fields). Finally, the resulting 'w  values are compared in a regression plot 467 

(Figure 9). Table 2 shows the information used in each estimated Y field. 468 

Table 2. Information used in each Y interpolated field. 469 
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Scenario 
Information used as observed 

values 
Description 

a 9 realT values Simple kriging using Y  values 

b 9 realT values + 18 'w values Cokriging using Y and 'w values 

c 18 'w values 
Cokriging using 'w values. Transmissivity 

weights ( Y
il ) are set to 0. 

 470 

As referring to the 'w results obtained taking into account regular distributed wells and 471 

comparing with 'w  results obtained with the initial Y  field, it is observed that the 472 

values of regression line of (a) 2r =0.20 indicate virtually no correlation, in general 473 

overestimating the degree of connectivity between almost all of the points considered 474 

with respect to the values obtained from the original T  field. Case b shows a significant 475 

improvement with respect the case a, improving the values of 2r and m  (slope of the 476 

regression line between connectivity indicator calculated on reconstructed Y fields and 477 

the reference Y  field). On the other hand, if only 'w  values were used in the mapping 478 

process, the reconstruction of the new pumping tests is quite bad ( 2r =0.18 and m479 

=0.27). Therefore, considering these three interpolated maps (regular well 480 

configurations), the option that best represent the initial field in terms of connectivity, is 481 

that in which in the interpolation considers both Y and 'w  values (b).  482 

In the deliberated distributed wells case, the general behaviour is the same as that 483 

discussed in the regular distributed wells, being the interpolated map considering the 484 

values of Y  and 'w  (b) that best represent the results obtained in the initial field ( 2r485 

=0.75; m =0.71), regarding the flow connectivity patterns obtained. However, there is a 486 

substantial difference in results of 2r  and m  obtained in this second distribution, being 487 

these much better for all cases respect to the regular distribution.  488 

4.2 Relevance of the work 489 
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The method proposed provides interpolated T values based on either local Y  or 'w  490 

values (or both). Actually, any map obtained from a method of the kriging family 491 

(cokriging here) has no chance of properly reproducing the T field and provides always 492 

a smoothed version of the real map.  493 

Here we explore the main difference in the maps obtained by using only local Y  values 494 

or incorporating also some 'w  values. The difference is quite mild in terms of 495 

comparing the maps in Figures 6 and 7; the improvement can only be assessed in terms 496 

of performance of the reconstructed fields. For this purpose we performed transport 497 

simulations. We considered the introduction of a solute mass through the southern 498 

boundary of the original plus the two interpolated fields. The method consisted on 499 

applying a head difference between the southern and northern boundaries, solving the 500 

flow field under these flow conditions (eastern and western boundary are specified as 501 

no-flow, and no pumping was included). Then 300 particles were injected at the inlet 502 

(uniformly distributed) and collected at the northern one. Figure 10 shows the 503 

cumulative mass as a function of time for all cases. 504 

From Figure 10 we see first that interpolated maps cannot reproduce the cumulative 505 

mass shape of the real T field. All interpolated maps are smoothed versions and 506 

therefore do not properly reproduce early and late time mass arrivals. The introduction 507 

of the 'w  data results in a few more channels of high T developing in the system (notice 508 

the enhancement in early arrivals), so that it results in a more conservative approach to 509 

solute transport to a comply surface (as compared to ignoring those values). Comparing 510 

the transport simulations obtained using the interpolated fields with those associated 511 

with the real one, we can see that these fast channels actually exist and are crucial for 512 

risk assessment.  513 

Finally, we also want to insist in the fact that 'w  values are quite robust, as they come 514 

from a graphical fitting method. On the contrary, there is much more error in the 515 

estimation of the local T values at some predefined scale. We contend that the inclusion 516 

of 'w  should then be considered a must if they are available in a real case.  517 

 518 

5. Conclusions 519 
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We analyse the applicability of the flow connectivity indicator parameter 'w , calculated 520 

from the value of estS  obtained in a pumping test using Cooper-Jacob’s interpretation 521 

method. The rationale behind is the idea that it provides integrated information about 522 

the spatial distribution of local T values displayed in the area surrounding the pumping 523 

well and the observation point. Based on this idea it is possible to devise a method that 524 

uses the values of 'w  obtained in a number of hydraulic test performed in a given area, 525 

together with any existing point T  values to map the best estimate of the T map in a 526 

cokriging approach. The method is tested numerically by reconstructing maps 527 

depending on different density of data points of 'w  and T and then testing the capability 528 

of reproducing new pumping tests. Our work leads to the following conclusions:  529 

1. 'w  is a reliable indicator of flow connectivity between a pumping and an 530 

observation well. Contrarily, local T  values cannot be properly assessed as they heavily 531 

rely on the interpretation method and, more, it is difficult to assign the estimated values 532 

to a precise support volume. 533 

2. Flow connectivity values ( 'w ) found in an anisotropic heterogeneous medium 534 

can display some unexpected values due to the presence of low or high transmissivity 535 

structures that act either as flow barriers, or as preferential pathways. However, in some 536 

cases it can be overestimated whenever the distance between the pumping and 537 

observation well is large (and underestimated if it is small) due to the effect of the 538 

kernel function involved in the definition 539 

3. The incorporation of the available 'w  values result in a best reproduction of the 540 

estimated map of local T values through a cokriging method, as compared to the one 541 

obtained by using only local T data in a kriging approach. In particular, the cokriging 542 

approach provides maps that display more extreme values and that are better capable of 543 

reproducing the shape of the drawdown curves if new pumping tests were considered.  544 

4. The method provides the best results when pumping and observation wells are 545 

located in extreme (high or low) areas of local T , implying the need for a proper 546 

assessment of the potential location of such values if possible.  547 

5. The number of local T values used in the interpolation is also very relevant, 548 

indicating the need to combine long-term pumping tests to obtain mainly 'w  values, 549 

with any hydraulic test conducive to the evaluation of T values at the local scale (e.g. 550 

Slug test) with the purpose of obtaining the lowest degree of homogeneity in the T  551 
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values, contrary that what occurs in the Cooper-Jacob interpretation. It must be clarified 552 

that this type of point hydraulic tests might involve a large degree of error in the 553 

evaluation of local T and S values. 554 

6. As a consequence of the introduction of the function U  when calculating the 555 

covariance matrices, the final Y  interpolated maps show shadow zones behind the 556 

observation and pumping wells, creating a zone of low transmissivity if the connectivity 557 

between the points is negative (high transmissivity values) and vice versa. The best way 558 

to minimize the occurrence of these shadow zones is to incorporate as much as crossed 559 

information as possible into the interpolation. Another measure to consider, is to omit 560 

those interpolated information that falls outside the perimeter created when connecting 561 

the points located at the extremes.  562 

 563 

Appendix: Derivation of the cokriging equations 564 

The starting point is equation (7), which is reproduced here   565 
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The unbiasedness condition is obtained by taking expected value (operator ) at both 567 

sides of (A.1). Since ' 0w =  and = YY m , then we obtain 568 
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Unbiasedness implies that =CK YY m , which is equivalent to 
1

1l
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i

, corresponding 570 

to equation (8).  571 

The second condition of the cokriging method is the minimization of the variance of the 572 

estimator error, ( )22
CK CKE Y Ys é ù= -ê úë û

 under the unbiasedness constraint. This requires 573 

the minimization of the (Lagrangian) objective function L , involving one Lagrangian 574 

parameter m  575 
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We start by developing an expression for 2s CK  577 
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The optimization process consists of substituting (A.4) in (A.3) and then solving the 579 

following linear system of equations 0, 0, 0
wl l m
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= = =

¶ ¶ ¶Y
i i

L L L
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system of 1+ +k l  equations with 1+ +k l  unknowns 581 
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The cokriging system is complemented by a closed-form evaluation of the variance of 583 

the estimation error, becoming  584 
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FIGURES 710 

Figure 1. Function U representation considering one pumping well and one observation 711 

point shown by the singularities. 712 

Figure 2. Y (=ln T)  field created through a Sequential Gaussian Simulation. The inner 713 

domain (left) and the simulation domain where wells are located (right) are represented. 714 

Figure 3. Sketch of the numerical setup representing the homogeneous outer domain 715 

(H.O.D.), the heterogeneous inner domain (H.I.D., size 20x10) and heterogeneous 716 

simulating domain (H.S.D., size 8x4). All distances are normalized by the 717 

corresponding directional variogram range ( xR  and YR ). 718 

Figure 4. Model domain with a detailed centered random K  field corresponding to the 719 

simulation domain and two well distribution configurations. Regular (left) and 720 

deliberated (right) distributions. 721 

Figure 5. Flow connectivity between pumping and observation wells representation for 722 

regular (left) and deliberated (right) distributed wells. Green lines indicate good 723 

connectivity, and red lines are indicative of bad connectivity; line thickness are 724 

proportional to magnitude. 725 

Figure 6. Stochastic estimation of Y  fields for regular distributed wells case. (a) 726 

Reference Y map, (b) estimated by simple kriging using sampled point Y  values and (d) 727 

estimated only from 'w values ( Y
il = 0). 728 

Figure 7. Stochastic estimation of Y maps for deliberated distributed wells case. (b) 729 

estimated by a simple kriging using sampled point Y  values , (c) estimated from 730 

sampled point Y and 'w values and (d) estimated from 'w  values (
Y
il = 0). 731 

Figure 8. New configuration of pumping tests represented in the initial heterogeneous 732 

Y field. 733 

Figure 9. Comparison of 'w  values obtained in the pumping tests realised taking into 734 

account the interpolated Y maps and the initial Y  field. These corresponding quadratic 735 
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regression coefficient ( 2r  ) and slope of the regression line ( m ) are displayed for each 736 

plot. 737 

Figure 10. Cumulative mass as a function of time for the initial T field, and two 738 

interpolated fields obtained from kriging using 9 local Y values, and cokring using 9 739 

local Y values and 18 available 'w  values (from Figure 6). 740 

 741 
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