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Abstract 

The compositional and structural heterogeneity of a sample of Ce0.15Zr0.85O2 subjected to a 

two-step thermochemical water splitting reaction was investigated by means of X-ray powder 

diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and High-Resolution 

Transmission Electron Microscopy (HRTEM) analysis. High temperature treatment under N2 

resulted in segregation of a Zr-rich monoclinic phase on one side and a Ce-rich cubic phase 

on the other. The treatment also led to a higher reducibility of the material compared to 

similar studies on Ce-rich compositions. HRTEM revealed the presence of a zirconia based 

superstructure that it is identifiable with an oxynitride phase Zr2ON2, while ceria surface 

enrichment was detected via XPS. H2 yield, investigated at 800°C by pulsing water over 

several redox cycles, showed a six-fold increase after the first cycle remaining constant after 

at least three subsequent cycles. The presence of zirconia oxynitride was found to be 

beneficial for both the oxidation and reduction steps. 

 

 

 

 



Solar thermochemical water splitting cycles (WSC) are an attractive carbon-free approach to 

H2 production from water and sunlight.1 Two-step metal oxide based cycles generate H2 

through high temperature (~1500-2000°C) reduction in inert atmosphere and the subsequent 

water oxidation at a lower (~400-1300°C) temperature making water splitting (WS) possible 

at temperatures lower than the thermodynamic value (2300°C).2 Among many metal oxides 

investigated in literature, ceria is one of the most viable candidates,3 and it can deliver pure 

oxygen and hydrogen according to the following two-step redox cycle 4 

 

CeO2 (s)    CeO2-(s) + /2 O2          (endothermic step, T>1800°C)  (1) 

CeO2- (s) + H2O (g)  CeO2 (s) + H2 (g)   (exothermic step, 400-500°C) (2) 

 

The main drawback of this cycle is that a significant reduction of ceria occurs only at 

temperatures higher than 1800°C, where sublimation can occur with a decrease of the yield 

over cycles.5 It follows that studies on ceria-based systems have been focused on lowering the 

reduction temperature of the Ce4+/Ce3+ redox couple, while maintaining the high reactivity of 

reduced Ce3+ species towards water.3,6 The addition of high valence dopant cations, such as 

Zr4+, proved effective in increasing the thermodynamic driving force of CeO2 reduction at 

lower temperatures,7-9 and the effect of zirconium content in the two step water splitting 

reaction has been widely studied.10-14 Its presence favours CeO2 reduction under inert 

atmosphere at temperatures lower than 1500°C preventing sublimation and the consequent 

yield loss; moreover, the increased oxygen storage of ceria-zirconia positively affects O2 

yield. On the other hand, the H2 productivity depends on the number of exposed surface redox 

sites, and thus on the textural, morphological and structural properties of these materials. It 

was reported that in these materials the kinetics of water splitting is often hampered by gas-

solid diffusion limitations due to the simultaneous occurence of sintering processes. Several 

efforts have been made to overcome this issue, and the change of the morphological and 

structural properties of the mixed oxides by introducing other dopants15 or by using different 

synthesis approaches11,16,17 was found to be beneficial.  

Ceria-rich compositions have generally a good structural stability at the operating 

temperatures of the reduction step, while zirconia-rich compositions (Zr ≥50 mol%) are 

thermodynamically unstable in such conditions and undergo structural changes and phase 

segregation.18 For this reason the majority of studies on the water splitting reaction over ceria-



zirconia solid solutions focused on compositions with a zirconia content in the range up to 70 

mol% CeO2,
10-17 although it has been recently reported that the occurrence of compositional 

heterogeneities may have a benefical effect on the H2 production step.11 With the aim of 

gaining insights into this latter aspect and of exploring the potential application of ZrO2-rich 

compositions in the WS reaction, despite their thermodynamic instability, we investigate here 

the reactivity and structural transformations of Ce0.85Zr0.15O2 in the reduction and oxidation 

step of the cycle. It is shown that the solid solution undergoes structural evolution and 

compositional changes during high temperature treatments, with phase segregation and the 

formation of a N-containing ZrO2 rich phase. This specific structural and compositional 

heterogeneity is shown to be responsible for the promotion of the WS reaction in this system, 

and the result is an additional step torward the understanding of the structure/activity 

relationship in CeO2-ZrO2 based oxides.    

Ce0.15Zr0.85O2 solid solution was prepared through a surfactant assisted approach.19
  Figure 1a 

shows that the material crystallizes in a tetragonal phase (PDF # 88-2398), in agreement with 

its nominal stoichiometry. Textural and oxygen storage properties of the fresh sample are 

reported in the supplementary section. Redox behaviour, as shown by temperature programed 

reduction (Fig. S1) is characterized by a single broad peak of hydrogen consumption in the 

range of temperature 300-500 °C, with a total H2 uptake of 2,94 mmol/gCeO2, corresponding 

to a Ce4+/Ce3+ reduction degree of ca. 84%. This is in line with results reported for samples of 

similar composition.20 The fresh material was treated at 1300°C for 4 hours under N2 flow 

before of the catalytic tests, in order to simulate the aging process occurring over several 

endothermic steps. After ageing, the surface area of the sample dropped to a negligible value 

due to sintering, and significant structural transformations were detected following the XRD 

analysis. In addition to the tetragonal phase of composition Ce0.15Zr0.85O2, the XRD profile of 

aged sample (Figure 1b) identified the presence of a cubic ceria-rich and a monoclinic 

zirconia-rich phase, originated from segregation of the starting composition. The 

transformations are in agreement with those predictable from the ceria-zirconia phase stability 

diagram that shows the co-existence of monoclinic, tetragonal and cubic phases at 1300°C.18 

Rietveld analysis of the difractogram permitted a more precise identification of these phases 

and the results related to their quantification are reported in Table 1. 

The surface chemical composition of the catalyst was determined by XPS analysis (see Table 

1 and SI for details). The measured Zr/Ce atomic ratio is equal to ca. 1.8, a value significantly 

lower than expected for the Ce0.15Zr0.85O2 composition (i.e. 5.6), indicating that restructuring 

of the material with formation of different phases also leads to a substatial ceria enrichment of 



the surface. This can be explained by a preferential migration of the segregated Ce0.70Zr0.30O2 

cubic phase to the surface or subsurface region of the material.  

The activity of the aged sample in two-step water splitting cycle was investigated keeping 

separated the endothermic and exothermic step. The endothermal reduction in N2 flow was 

calculated from the weight loss recorded during 80min isothermal test at 1300°C in a 

thermogravimetric analyser. The total O2 release was of 165 µmol/g, equivalent to 825 

mol/g-CeO2. The value is comparable to that found for solid solutions richer in ceria16, and 

corresponds to a Ce(III)/Ce(IV)tot  reduction yield of 56% relative to the initial composition, 

which is the highest reduction degree ever obtained by ceria-zirconia oxides in this type of 

reaction. The high zirconia content of sample coupled with a greater number of reducible sites 

exposed on its surface as the result of the ceria-rich phase segregation, can explain the present 

finding.  

The exothermal oxidation of the catalyst with water vapor pulses was carried out at 800°C in 

a gas analyser by following an approach similar to that reported by Petkovich et al.11 (see 

supporting information for more details. Figure 2 shows the results related to six H2/H2O 

redox cycles. H2 production, as expected, was initially low (cycle 1), due to the 

thermodynamic and kinetic limitations3,17 that hinder the reoxidation process in compositions 

containing a great quantity of zirconia with water.  

An intriguing result, which triggered further investigations, was observed at the second redox 

cycle when a sharp increase in the reactivity was registered and remained nearly constant over 

the three subsequent cycles. At these stages the H2 yield (100 moles/g) compares well with 

that found for most of the currently investigated ceria-zirconia compositions.16  

In order to understand the role of the structural heterogeneity in the promotion effect of the 

redox behavior of the material, the sample was characterized at the atomic scale via HRTEM 

and XPS analysis, after aging and following the first two cycles. Figure 3A shows the 

HRTEM micrograph of the aged sample before the H2/H2O redox cycles. The inset shows that 

the sample was constituted by crystals from 5 up to 50 nm. Moreover, the analysis confirmed 

the presence of segregated phases at the nanoscale level. The area labeled “a” shows fringes at 

3.0 Å corresponding to cubic CZ(111) planes related to surface segregated Ce0.70Zr0.30O2. The 

figure shows also a representative lattice fringe image of the sample along with the Fourier 

Transform (FT) image corresponding to the area labeled “b”. The FT pattern of this area is 

complex. The spot at 2.84 Å corresponds well to the (111) spacing of monoclinic 

Ce0.12Zr0.88O2 phase. Spots at 2.61 Å could be ascribed to (020) planes of monoclinic ZrO2. 

However, the spots at 5.22 Å, which are perfectly aligned with the (020) spots and exactly 



double the spacing at 2.61 Å, indicate that a supercell exists. Another example of this patterns 

is shown in the supporting information, Figure S2. To the best of our knowledge no examples 

of superstructure can be found for monoclinic ZrO2, while the formation of zirconia 

oxynitride superstructures was observed when zirconia powders were treated in N2 at high 

temperature.21 There is a very good correspondence between the (200) and (400) lattice 

fringes measured in the FT images at 5.1-5.2 and 2.5-2.6 Å, respectively, with those reported 

at 5.066 and 2.533 Å for Zr2ON2.
22 The slight differences could be due either to experimental 

errors and/or to the presence of Ce in the structure. Therefore, the FT can be attributed to a 

bixbyte-like Zr2ON2 structure originated from the insertion of nitrogen into the lattice of 

zirconia rich phases, with likely inclusion of Ce atoms in the lattice.  

XPS analysis (Figure S5) supported the previous findings by revealing a weak, but 

significative N1s peak at BE energy of ca. 399 eV attributable to N in zyrconyl oxynitride 

phases23-25. Further confirmation of the existence of this phase was obtained by analysing the 

O1s peak (Figure S6). The deconvolution of the O1s band showed a main component at 529.8 

eV and a small shoulder at 531.5 eV which have been attributed to oxygen in the solid 

solution environment and in the zyrconil-oxynitride, respectively.23 

HRTEM analysis of the sample after the second cycle showed that the zyrconil-oxynitride 

phase was stable and not disrupted by the water vapor oxidizing atmosphere. The micrograph 

in Figure 3B clearly shows the presence of the oxynitride phase with the supercell spacings at 

3.7 Å and 1.8 Å corresponding to the (220) and (440) crystallographic planes of the structure, 

respectively. Most of the oxynitride particles measure about 30-50 nm and are very 

crystalline.  

In order to better disclose the role of the oxynitride phase in the production of H2, we studied 

for comparison the behavior of a sample calcined in air for 4h at 1300°C. Structural XRD data 

and surface XPS analysis reveal a situation nearly identical to that observed for the sample 

treated under nitrogen, Figure 1c and Table 1. Figure 4 shows a representative HRTEM image 

of this sample with lattice fringes at 3.0 and 1.5 Å corresponding to (111) and (222) 

crystallographic planes of the cubic Ce0.7Zr0.3O2 phase. At the nanoscale level the catalyst was 

constituted only by ceria-zirconia crystallites of different structures, and no traces of the 

presence of oxynitride phase were detected.  

In comparison to the catalyst aged under nitrogen, the air treated catalyst showed a lower 

initial H2 yield (9 vs. 18 µmol/g) and a limited promotional effect (28 vs. 109 µmol/g), Figure 

S7. It turned out that the existence at the nanoscale of the oxynitride phase might have a 

promotional positive effect on the water splitting reaction mechanism. This promotional effect 



can be originated from a good electronic-ionic mixed conductivity of Zr2ON2 phase under our 

operating conditions, which is known to positively affect the water splitting reaction.26 The 

insertion of nitrogen in zirconia-rich structures to form a ceria-doped Zr2ON2-like phase 

brings in fact to the formation of vacancies, which, depending on temperature and amount of 

nitrogen can be randomly oriented or ordered.27 In addition, N insertion into the ZrO2 lattice 

modifies the electronic structure of the oxide.28 The oxynitride phase can also constitute an 

intrinsic source of highly active sites for the adsorbtion and activation of water, thanks to the 

presence of cerium as dopant. Moreover, since nature of the segregated phases and surface 

characteristics of the material significantly influence the H2 yield,29 a synergy between the 

ceria-rich phase and the oxynitride structure in promoting the adsorption and splitting of 

water is conceivable. We can hypothesize that the formation of compositional/structural 

heterogeneities at the nanoscale, favor a reorganization of the surface and the nucleation of 

more active ceria-zirconia redox centers during the cycles,30,31 and that these processes are 

boosted in presence of the oxynitride phase.  

The stability of the material was also investigated over six cycles and only a slight decrease of 

activity was evidenced starting from the last cycle. XPS analysis of the sample after this cycle 

(Figure S6) evidenced that the zirconium oxynitride phase is still present, but an increase of 

the Zr/Ce ratio to a value of 2.1 was observed, Table 1. The corresponding X-ray powder 

difractogram showed a slight redistribution among monoclinic, tetragonal and cubic phases 

(Table 1 and Figure 1d) and conversely, HRTEM did not reveal the presence of any 

segregated phase (Figure S3). The results prove that in our specific conditions of testing 

agglomeration and phases reorganization processes occurred, causing a decrease in cerium 

content on the surface, that might explain the little deactivation observed. 

In summary, a ceria-zirconia oxide with a high amount of Zr (85mol%) was tested in order to 

evaluate its potential use in the two-step water splitting cycle for H2 production. The typical 

temperature adopted in the endothermic step of the cycle induced structural changes with an 

enrichment in ceria of the surface and an unprecedented formation of a Zr2ON2 like phase. 

These transformations resulted beneficial in both the reduction and oxidation steps. Moreover, 

redox cycles were found to promote H2 production. All these findings favourably correlate 

surface and structural heterogeneity of ceria-zirconia to the increase in hydrogen production 

after cycling. It is suggested that redox cycling and presence of compositional heterogeneity 

at a nanoscale level is a key driver in the selection of good candidates for a thermochemical 

water splitting reaction.  
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Captions of figures and Tables  

Figure 1: X-ray difractograms of catalyst: a) calcined at 500°C, b) treated at 1300°C in N2 

flow for 4 h, c) treated at 1300°C in air flow for 4h d) treated at 1300°C in N2 flow for 4 h and 

tested over six redox cycles;  monoclinic phase,  cubic phase,  tetragonal phase.  

Figure 2: H2 production over six redox cycles at 800°C of the sample treated in N2 at 1300°C 

for 4 hours. 

Figure 3:  A. HRTEM images of the sample treated in N2 flow at 1300°C for 4 hours, before 

testing; B. HRTEM image of sample treated in N2 flow at 1300°C for 4 hours and tested in 

water splitting conditions (reduction in 5%H2 in Ar at 800°C, Oxidation at 800°C with 30% 

water vapor in He) for two cycles. 

Figure 4: HRTEM image of sample treated in air flow at 1300°C for 4 hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 28 30 32 34 36

0,0

0,2

0,4

0,6

0,8

1,0

d

2° theta

 

 

0,0

0,2

0,4

0,6

0,8

1,0

c

 

 

0,0

0,2

0,4

0,6

0,8

1,0

b

In
te

n
s
it

y
 (

a
.u

.)

 

 

0,0

0,2

0,4

0,6

0,8

1,0

a

 

 

20 30 40 50 60 70 80 90 100

0,0

0,2

0,4

0,6

0,8

1,0

d

2° theta

 

 

0,0

0,2

0,4

0,6

0,8

1,0

c

 

 

0,0

0,2

0,4

0,6

0,8

1,0

b

In
te

n
s
it

y
 (

a
.u

.)

 

 

0,0

0,2

0,4

0,6

0,8

1,0

a

 

 

 

Figure 1:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2   
 

 

 

 

 

0,125

0,130

0,135

0,140

0,145

0,150

18 mol H
2
/g

Cycle I

 

T
C

D
 s

ig
n
a
l (

a
.u

.)

109 mol H
2
/g

Cycle II

 

 

76 mol H
2
/g

Cycle III

 
 

 

0 15 30 45 60 75
0,125

0,130

0,135

0,140

0,145

0,150

92 mol H
2
/g

Cycle IV

T
C

D
 s

ig
n
a
l (

a
.u

.)

time (min)
0 15 30 45 60 75

87 mol H
2
/g

Cycle V

time (min)
0 15 30 45 60 75

64 mol H
2
/g

Cycle VI

  

time (min)



Figure 3  

A)  

 

B)  

 

 



 

 

Figure 4 

 

 

 

 

 

 

Table 1. Structural and surface characterization obtained from XRD and XPS measurements. 

 

 XRD XPS 

samples phase composition Zr/Ce 

 Tetragonal 

Ce0.15Zr0.85O2 

Monoclinic 

Ce0.12Zr0.88O2 

Cubic 

Ce0.70Zr0.30O2 

atom%  

N2-aged 89.8 ± 0.10 8.6 ± 0.4 1.6 ± 0.1 ~ 1.8 

Air-aged 88.3 ± 0.10 8.9 ± 0.5 2.8 ± 0.2 ~ 1.8 

Cycled 93.1 ± 0.10 4.8 ± 0.6 2.1 ± 0.2 ~ 2.1 
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