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Abstract—This work presents the first ever dual-frequency mul-
ticonstellation Reflectometry using Global Navigation Satellite
Systems signals (GNSS-R) observations over boreal forests and
lakes using GPS, GLONASS, and Galileo signals. The instrument
used is the PYCARO reflectometer, which flew on-board a strato-
spheric balloon during the SNSB and ESA sponsored BEXUS
19 experiment. The coherent-to-incoherent scattering ratio over
boreal forests is found to be as large as ~1.5, while over lakes,
it is as high as 16.5. The scatterers’ height fluctuations measured
using the phase of the peak of the reflected complex waveforms
ranges from +10 m, to the submetric level. Finally, reflectivity
maps using the different GNSS codes are presented using the
conventional GNSS-R for the open-access codes, and the recon-
structed GNSS-R for the encrypted ones. The coherence of the
reflected signal is found to be high enough to allow the PYCARO
instrument to reconstruct the P(Y) code.

Index Terms—Biomass  monitoring, boreal forests,
Reflectometry using Global Navigation Satellite Systems signals
(GNSS-R), rGNSS-R, scatterometry, stratospheric balloon.

I. INTRODUCTION

EFLECTOMETRY using Global Navigation Satellite

Systems signals (GNSS-R) is a promising new remote
sensing technique. It was originally proposed to improve
the temporal resolution of classical space-borne ocean nadir-
looking altimeters so as to detect mesoscale signatures [1].
Wind speed measurements [2], ice altimetry [3], soil mois-
ture, and vegetation determination [4] can also be inferred
using GNSS-R. Several experiments have been carried out in
the last years to analyze the performance of different GNSS-R
techniques: conventional GNSS-R or cGNSS-R (GPS L1 CA)
(e.g., [5]), interferometric GNSS-R or iGNSS-R (GPS L1 CA,
P(Y), and M) [6], and reconstructed-code GNSS-R or rGNSS-
R (GPS L1&L2 P(Y)) [7]. More recently, two ground-based
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low-altitude experiments using the Galileo E1/ESa/ESb signals
[8], and the GLONASS L1 composite signal [9] have been
performed over a lake and from a pier over the North Sea,
respectively.

Boreal forests cover ~15% of Earth’s land surface. Mapping
boreal biomass is a key factor to study the carbon cycle.
European Space Agency ESA’s BIOMASS mission for example
will focus in this variable using a P-band SAR (e.g., [10]). Some
studies have shown the potential of GNSS-R to measure forest
biomass [11]. At present, United Kingdom UK TechDemoSat-1
[12], National Aeronautics and Space Administration NASA’s
CyGNSS mission [13], European Space Agency ESA’s GNSS
rEflectometry, Radio Occultation and Scatterometry experi-
ment on-board the International Space Station (GEROS-ISS)
[14], ESA’s Passive Reflectometry and Interferometry System
In-Orbit Demonstrator (PARIS-ToD) [15], and 3Cat-2 6U
CubeSat [16] include GNSS-R payloads.

A scattering model considering both the coherent and inco-
herent scattered fields was proposed in [11]. This model pre-
dicts the coherent field as the result of the electromagnetic
interactions of the GNSS signals with the soil only, attenuated
by the vegetation canopy above it. In [17], experimental data
over forest biomass from 100 to 350 t/ha using GPS signals
was reported. As predicted in [11], a lower value of the coher-
ent soil-reflectivity is found for larger vegetation density. The
coherent scattering over a rough soil including antenna pattern
effects was studied in [18], and applied later to the GNSS-R
case for vegetation-covered soils [ 19]. More recently, a different
approach has been proposed that states that the forward scatter-
ing coefficient is governed by the scattering properties of the
vegetation elements and the soil surface, as well as by the inter-
action between the canopy and the soil, and the soil with the
trunks [20].

In 1999, the first GNSS-R stratospheric balloon experiment
was performed over sea surface [21]. This work presents the
first GNSS-R dual-frequency (L1 and L2), multiconstellation
(GPS and GLONASS, and for El1 Galileo) observations
over boreal forests, from a stratospheric balloon using the
P(Y) and C/A ReflectOmeter (PYCARO) in closed-loop
mode. The study is performed using data from the float
phase of the flight (h ~ 27,000 m) and with GNSS satel-
lites at a high elevation angle in the range 6, = [45°,70°].
Section II describes the setup used in this experiment car-
ried out North of Sweden on October 8, 2014 on-board the
Swedish National Space Board (SNSB) and ESA sponsored
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Fig. 1. BEXUS 19 stratospheric balloon during take-off at Esrange Space
Center. Typical BEXUS configuration: 12,000 m?3 balloon, valve, cutter,
parachute, Esrange Balloon Service System (EBASS), flight train, Argos GPS,
and Air Traffic Control (ATC) transponder (AGT), strobe light, radar reflec-
tor, and gondola. Total length of the system is up to 75 m [24]. Photo Credits:
SNSB-K. Dannenberg.

Balloon EXperiments for University Students (BEXUS) 19
stratospheric balloon. Section III describes the theoretical
framework. Section IV describes the experimental results.
Finally, Section V summarizes the main results of this study.

II. EXPERIMENTAL SETUP

The BEXUS programme is implemented under a bilat-
eral agency agreement between the German Aerospace Center
(DLR) and the SNSB. The BEXUS 19 stratospheric bal-
loon (Fig. 1) launch campaign took place in Esrange Space
Center from October 3 to 13, 2014. The launch took place
on October 8, 2014 at 18 h (GPS Time), and the flight
duration was 4 h with an apogee of ~27,000 m. The
trajectory was a single track from Esrange Space Center
(latitude 67° 53'N, longitude 21° 04'E) to the Finland Lapland
(latitude 68° 04'N, longitude 25° 81'E) over boreal forests with
a density ~100 t/ha, and a tree height of ~20 m [22], [23].

The experimental setup was composed of the PYCARO
rGNSS-R instrument [7], both a dual-band (L1, L2) and dual-
polarization' (right- and left-hand circular polarization: RHCP,
LHCP) zenith-looking patch antenna to collect the direct GNSS
signals, and a nadir-looking antenna array to collect the Earth-
reflected signals (Fig. 2), an On-Board Computer (OBC) for
the experiment management, and an active thermal control,
since the outside temperature went down to —70°C. The
nadir-looking antenna was composed of six elementary antenna
patches (Fig. 2). The total gain of the antenna was 12.9 dB
at L1-LHCP, 13.3 dB at L1-RHCP, 11.6 dB at L2-LHCP, and
11.6 dB al L2-RHCP. The On-Board Data Handling (OBDH)
subsystem was composed of a Commercial Off-The-Shelf
(COTS) microcontroller for housekeeping and scientific data
management, communications with the ground station, and data
storage in a micro-SD. The collected data were registered in
two internal SD memories (PYCARO and microcontroller), and
they were simultaneously sent to the ground segment via the
E-Link system [24].

'In this study, only left-hand circular polarization (LHCP) reflected signals
are evaluated.
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Fig. 2. Up-looking and down-looking antenna array inside the thermally
insulating radomes on-board the BEXUS 19 gondola.

III. THEORETICAL FRAMEWORK

The GNSS-reflectometer used is the PYCARO instrument
operated in closed-loop mode with delay and phase track-
ing loops activated that uses the cGNSS-R technique for the
open-access codes, and the rGNSS-R one for the encrypted
codes. The complex cross-correlation waveform of the direct
signal is proportional to the electromagnetic field reaching the
instrument as [25]
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where 7 is the delay of the signal from the transmitter to
the receiver, f. is the carrier frequency of the direct electro-
magnetic signal, 7, is the coherent integration time, W AF
is the well-known Woodward ambiguity function, ACF(7) is
the autocorrelation function of the code, and j = v/—1 is the
imaginary unit.

The complex waveform associated to the field scattered by
an ensemble of scatterers such as soil, and trunks, branches,
and leaves of a forest will consist of the sum of a finite
number of W AF's each one affected by a complex weight
(am = |am| el ¢) that accounts for the scattering amplitude of
the electromagnetic field, delayed by a delay 7,,, and affected
by a Doppler shift § f,,
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where f. s, is the Doppler shift of the electromagnetic signal
reflected at the nominal specular point. Actually, (2) can be
understood as the discrete version of the integrated form in [26].



TABLE 1
AMOUNT OF COHERENT AND INCOHERENT SCATTERING, REFLECTED PHASE OSCILLATIONS SD OVER BOREAL FORESTS AND LAKES AS A FUNCTION
OF THE ELEVATION ANGLE FOR: GPS, GLONASS, AND GALILEO SIGNALS AT A FLIGHT HEIGHT OF h ~ 27,000 m

L1C/A L2C L1C/A L2:€
FORESTS FORESTS LAKES LAKES
GPS, h =27,000 m, 6, =[45° 70°]
- 2
Coherent scattering: (Y, pu0)|” (AU) 33,782 6037 199,090 33,015
B, 3 53
Incoherent sCatering: Oy, pus) + Oy oy (AU 16,888+4178 31024622 32,569+15363  2910+1238
Ratio B’ 1.6 1.6 4.1 7.9
Reflected phase oscillations std. (degrees) 30 27 20.7 12.5
L1C/A L2 C/A L1C/A L2 C/A
FORESTS FORESTS LAKES LAKES
GLONASS, # ~27,000 m, 8, = [45°, 70°] NA. NA.
. 2
Coherent scattering: ‘(Y,_ rea | (AU - 9761 % 32,508
CO 2 2
Incoherent scattering: o, . +o, . (AU) X 4610+1686 X 5847+2439
Ratio B’ X 1.5 X 3.9
Reflected phase oscillations std. (degrees) X 35 X 19.8
E1BC E1 BC
FORESTS LAKES
Galileo,  =27,000m, 6, = [60°, 70°] NA. NA.
= 2
Cobherent scattering: ‘(Y,M N (AU 3434 % 68,069 %
s 2 2
Incoherent scattering: o, .., it peay (U2 12084423 % 34774658 %
Ratio B’ 2.1 X 16.5 X
Reflected phase oscillations std. (degrees) 28.2 X 5.7 X
TABLE I

A detailed analysis of the cross-correlation properties (AC'F')
of different navigation signals is provided in [27].

The phase difference before retracking (6%,,) between the
peak amplitude of the direct and the reflected complex wave-
forms at time ¢, is used to infer the geometric delay pyeo,r, as

OV,
2

pgeo,n == (3)
where ) is the signal wavelength. Height> changes &h,, of the
center of phase of the scatterers (soil, trunks, branches, and
leaves) that contribute to the peak of the amplitude of the com-
plex reflected waveform Y, peai (TPeak, fe, Peak) are related to
the difference of the geometric delays 6pgco,, between two
consecutive samples as [28]

o 5pgeo,n o Pgeo,n — Pgeo,n—1
Oh, = — = :
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where 0, is the elevation angle. Finally, since we are using dif-
ferential measurements with a period defined by the coherent
integration time of the waveforms (77), the phase delays intro-
duced by the atmosphere are implicitly cancelled out because
they can be assumed to be constant during these short periods
of time.

GPS satellites’ motion and receiver’s motion as well induce a
change in the delay, and the phase difference of the waveforms.

ZPrecise flight trajectory provided by Swedish Space Corporation (SSC)
computed using a GPS receiver on-board the balloon, and small platform height
variations were compensated for. Vertical speed of the balloon during the float
phase was smaller than 1 m/s, which prevented phase jumps.

OPTIMUM DELAY AND PHASE LOCKED LOOP PARAMETERS USED
DURING THE FLOAT PHASE OF THE EXPERIMENT FOR GPS [29],
GLONASS [30], [31], AND GALILEO SIGNALS [32]

TCPLL B PLL Z'DLL Nil"Jf,L B DLL
(ms) Hz)  (ms)  (complex (Hz)
GNSS code waveforms )
GPS L1 C/A 10 15 20 1 0.01
GPSL2C[29] 10 15 20 1 0.01
GPS L2 P(Y) 10 15 20 1 0.01
GPS L1 P(Y) 10 15 20 1 0.01
GLONASS L1 10 15 10 2 0.01
C/A [31]
GLONASS L2 10 15 10 2 0.01
C/A [31]
GLONASSL2P 4 15 4 5 0.01
[30]
Galileo E1 BC 4 15 4 5 0.01
[32]

The PYCARO reflectometer compensates these changes to per-
form the coherent and incoherent averaging. In addition to the
phase of the peak of the reflected waveforms before retrack-
ing Y, (Tpeak, fe,Peak ), One important scientific observable is
the phase €,, of the peak of the complex reflected waveforms
after being retracked, to center the tracking delay and Doppler
windows.
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Fig. 3. Scattered complex field (peak of the complex waveform, 7. from
Table II, no incoherent averaging) for an elevation angle of 6. = [45°,70°]
and a flight height A ~ 27,000 m. GPS L1 C/A (a) boreal forests and (b) lakes,
GPS L2 C (c) boreal forests and (d) lakes, GLONASS L2 C/A (e) boreal forests
and (f) lakes, and Galileo E1 BC boreal forests (g) and lakes (h).

IV. EXPERIMENTAL RESULTS
A. Analysis of the Coherent-to-Incoherent Scattering Ratio

The total scattered field of the GNSS signals during the float
phase of the flight can be described as the vector sum of the
different contributions (complex waveforms’ peaks) in the com-
plex plane. The ratio of the coherent and incoherent scattering
components is analyzed using a data set of ~2 h, which cor-
responds to a flight height of h ~ 27,000 m (Table I). The
reflected complex waveforms were tracked using a delay locked
loop (DLL), and a phase locked loop (PLL). The optimum
parameters are provided in Table II, and were found empiri-
cally by changing PYCARO’s configuration in real time during
the experiment thanks to the E-Link.

Forests are characterized by random variations of the
dielectric properties. The scattered field during the coherent

integration time 7, can be described as the sum of random
vectors with phases ¢;,, and amplitudes a,, (2). The total
scattered fields during the float phase corresponding to GPS
[Fig. 3(a), and (c)-forests and 3(b), and (d)-lakes], GLONASS
[Fig. 3(e)-forests and 3(f)-lakes], and Galileo [Fig. 3(g)-forests
and 3(h)-lakes] are represented in the complex plane for eleva-
tion angles in the range 0. = [45°,70°]. In Fig. 3(a), (b), (e),
and (f), there are two regions displaced by =+ [(Y}. peqr)| (mean
of the amplitude distribution) from the center of the complex
plane for both the GPS L1 C/A and GLONASS L2 C/A sig-
nals, because of the phase changes associated to the navigation
bit. GPS L2 C [Fig. 3(c) and (d)] and Galileo E1 BC [Fig. 3(g)
and (h)] are the so-called data-less channels or pilot channels.
The tracking of the code is done coherently because no data bit
is present. The complex plane representation is then centered
in a region displaced + |(Y}. peqr)| from the center. These I/Q
scatter plots show how the behavior changes depending on the
scattering surface: from poorly coherent over boreal forests, to
highly coherent over lakes. The relative weight of the coherent-
to-incoherent components is quantified by the following ratio
[33, pp. 126]:

|<5/;“,Peak>|2

2 2
T Real(Yy,pear) T O Tm(Ye, pear)

B* = &)

where [(Y; peak) |2 is the mean of the power distribution, and
U?{eal(yhpmk) and O'%m(YT,Pmk) are the variances of the real and
imaginary components of the complex cross-correlation wave-
forms peak after retracking. Note that B tends to oo for a totally
coherent field, and it is equal to O for a totally incoherent field. If
the scatter plot was centered around (0, 0), the scattering would
be completely incoherent. However, the scattered field is clearly
displaced from the origin by a value equal to the mean of the
amplitude distribution.

Over boreal forests, the ratio B2 (Table I) shows the pres-
ence of a coherent component which is B? ~ 1.5 for GPS
and GLONASS signals for elevation angles in the range® 0, =
[45°,70°], and it is ~2.1 for Galileo signals for elevation angles
in the range 6. = [60°,70°]. This value is slightly different for
the different codes because of the different scattering properties
of the forested areas at the time of signal acquisition (different
tracks and time periods), and slightly different elevation angles.
On the other side, over lakes the ratio B? is much higher,
up to 16.5 for Galileo signals, and in the range [3.9, 7.9] for
GPS and GLONASS. Additionally, the standard deviation of
the phase at the peak of the complex waveforms after retracking
is in the range [27°, 35°] over boreal forests, and [5.7°, 20.7°]
over lakes. This value (Table 1) is lower at L2 as compared to
the L1 measurements (up ~3° for GPS L1 C/A over forests
and up ~8° for GPS L2 C over lakes). One reason is that the
effective roughness is lower, as the signal wavelength is larger
(A1 =19 cmand Az o = 24 cm). The amount of Galileo sig-
nals collected along the flight were significant lower than the
GPS and GLONASS ones, due to the lesser number of satel-
lites, and to the fact that the CBOC modulation and the steeper

31t was selected because this is the range with higher antenna gain. Also
note that there was no signal acquisition for elevation angles higher than ~70°
because the high latitude of the experiment site.
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Fig. 4. Height fluctuations of the scatterers and post coherent-correlation SNR
over boreal forests for an elevation angle 0. = [45°,70°] and a flight height
h ~ 27,000 m. GPS L1 C/A boreal forests (a,b), GPS L2 C boreal forests
(c,d), GLONASS L2 C/A boreal forests (e,f), and Galileo E1 BC boreal forests
(g.h).

AC'F translate into a higher filtering of the coherent scattered
signals and a lower signal-to-noise ratio (SNR).

B. Scattering Properties Over Boreal Forests

The coherent scattering over boreal forests (soil, trunks,
branches, and leaves) is now studied using the signatures in the
phase U, of the peak of the complex waveforms before retrack-
ing (Yn Peak)- The information contained in the unwrapped
phase is translated into height fluctuations of the scatterers
using (4). The distributions of these height and post-coherent-
correlation SNR fluctuations over boreal forests are represented
for the different signals: GPS L1 C/A [Fig. 4(a) and (b)],
GPS L2 C [Fig. 4(c) and (d)], GLONASS L2 C/A [Fig. 4(e)
and (f)], and Galileo [Fig. 4(g) and (h)]. The SNR decreases
with increasing values of the receiver bandwidth (4 MHz GPS

L1 C/A, 6 MHz GPS L2 C, 19 MHz GLONASS L2 C/A,
and 24 MHz Galileo E1 BC). For GPS and GLONASS, the
maximum value of the estimated SNR is ~39dB for GPS
L1 C/A, ~32dB for GPS L2 C, and ~26 dB for GLONASS
L2 C/A, and the variation is in a range of ~[24,27] dB which
can be attributed to the different ground-tracks of the specular
reflection points. The height fluctuations exhibit a multimodal
behavior and are as high as 10 m for GPS and GLONASS.
However, for the Galileo signals, due to the larger band-
width and the lower SNR (SNR < 14 dB) only the strongest
reflections are tracked, those coming from the soil, so height
fluctuations are usually much smaller (~0.5m) except for a
peak of ~—7m. These empirical results suggest that coherent
scattering is taking place not only over the soil (higher SNR
because the higher reflectivity, and lower height dispersion), but
also over the trees which produces a multimodal behavior with
clearly differentiated levels of SNR which may include multi-
ple reflections involving canopy and soil as suggested in [34].

C. Reflectivity Maps
The cross-polar reflectivity I',; is estimated as the ratio of the
reflected (KL};I@%J ) and direct (Yflﬁig,f ) power waveforms

peaks, after proper compensation of the noise power floor and
the antenna gains (nadir and zenith-looking) as a function of the
elevation angle

2
LHCP
Yr,Peak ’ >

\vraop!®\
<Yd,Peak

In (6), superscripts RHCP and LHCP denote the inci-
dent polarization (RHCP), and the scattered polarization
(LHCP), respectively. The correlation parameters in the com-
putation of the waveforms are important for the evaluation

Iy = (6)
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Fig. 5. Cross-polar reflectivity maps (LHCP-reflected) geolocated over the nominal specular points over boreals forests and lakes for GPS signals. (a) L1 C/A.

(b) L2 C. (c) L1 P(Y). (d) L2 P(Y).

of the results. The DLL and the PLL coherent integration
times (TP%% and T/*%), the number of incoherent averag-
ing samples (NZQCLL), and the DLL and PLL bandwidths

(BD LL and BPLL ) are included in Table II. The PLL coherent
integration time was set to be 10 ms for all the codes,* and

4GLONASS L2 P [30] and Galileo E1 BC [32] codes where limited by their
navigation data bit period (4 ms).

the BPLL = 15 Hz to tolerate abrupt phase changes due to the
scattering process over boreal forests. The DLL coherent inte-
gration time (TCD LL) was set to be equal to the navigation data
bit period for each code [29]-[32] because during the exper-
iment preparation activities, it was determined that the SNR
increased as a function of the coherent integration time up to
13 dB for TPLL = 20 ms. The DLL optimum bandwidth was
set empirically during the experiment to be BPEE = (.01 Hz
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Fig. 6. Cross-polar reflectivity maps (LHCP-reflected) geolocated over the nominal specular points over boreals forests and lakes for GLONASS signals. (a) L1

C/A. (b) L2 C/A. (c) L2 P. (d) Galileo E1 BC signals.

to stabilize the frequency after getting locked. After the esti-
mation of the reflectivity values, the specular points were
geolocalizated over Google Maps for the sake of a simpler
data interpretation. The orbit parameters of the GNSS satel-
lites were obtained from the ephemerides as provided by an
on-board positioning receiver, while the PYCARO trajectory
was determined using the on-board receiver. Before the eval-
uation of the results, some theoretical considerations about the

reflectivity estimation algorithms are commented. The reflectiv-
ity values as estimated using (6) introduce a dependency with
the platform height through the W AF in Y, pcqr, (2), due to the
different sizes of the scattering area, which is translated into dif-
ferent power levels of the reflected signals [35]. For the flight
conditions (h ~ 27,000 m and scattering over land surfaces),
the Earth region contributing to the incoherent component is
inside the first chip isodelay ellipse which is a function of the



ACF of the different GNSS codes. On the other side, the area
contributing to the coherent component is limited by the first
Fresnel zone, which actually depends on the signal wavelength.
These values are summarized in Table III.

Figs. 5 and 6 show the reflectivity values using GPS,
GLONASS, and Galileo signals. cGNSS-R was used for com-
putation of the waveforms using GPS L1 C/A [Fig. 5(a)], GPS
L2 C [Fig. 5(b)], GLONASS L1 C/A [Fig. 6(a)], GLONASS
L2 C/A [Fig. 6(b)], GLONASS L2 P [Fig. 6(c)], and Galileo
El1 BC [Fig. 6(d)], while rGNSS-R for GPS L1 P(Y) and L2
P(Y) [Fig. 5(c) and (d)]. The reflectivity values are as high as
—2 dB over lakes. On the other side, they show large fluc-
tuations from —3 to —25 dB, over boreal forests. Note that
over flat freshwater surfaces the reflectivity values (~—2 dB)
agree with the expected Fresnel reflectivity (~0.64), while,
over forests reflectivity values are much lower. When using
cGNSS-R, the reflectivity shows a similar behavior for the
different codes of each GNSS system. The coherent compo-
nent, the one actually tracked by PYCARO, is coming from
an area equal to the first Fresnel zone. Therefore, although the
W AF spreads the signal over areas of different size, I',,; fol-
lows the same trend independently of the code and the signal
wavelength. Finally, the rtGNSS-R is evaluated successfully for
first time over forested areas, despite the high dispersion of
the signal induced by the scattering media. Reflectivity values
are ~10 dB below those obtained by cGNSS-R because of the
squaring losses of the P(Y) code correlation technique imple-
mented in PYCARO, which exhibits a nonlinear dependence
with the SNR of the incoming signal [7]: the lower the SNR,
the larger the squaring losses [36].

V. SUMMARY AND CONCLUSION

This work has presented the first dual-frequency GNSS-
R observations using GPS, GLONASS, and Galileo E1 BC
signals, collected from a stratospheric balloon experiment per-
formed North of Sweden using the PYCARO reflectometer.
LHCP reflected signals were collected with an antenna array
of ~13 dB gain at L1 and ~12 dB gain at L2. Results show
the feasibility of tracking the coherent component of the scat-
tering over boreal forests and lakes even from high altitude
platforms. The coherent-to-incoherent ratio of the scattered sig-
nals for high elevation angles 6. = [45°,70°] is found to be
~1.5 over boreal forests, while over lakes, it is in the range
[3.9, 7.9] for GPS and GLONASS, and it is high up to 16.5
for Galileo signals. The height distribution of the scatterers
has been derived from the fluctuations of the phase of the
complex waveforms peak, which range from +10 m to the sub-
meter level. Reflectivity values are highly variable from —3 to
—25 dB, as derived using cGNSS-R. Reflectivity maps derived
from the different codes of each GNSS system are highly sim-
ilar despite the different power spreading over the scattering
media induced by the different AC'F's. Actually, the coher-
ent component provides the highest power contribution to the
peak of the complex waveforms. As a consequence, the fluctu-
ations of the signal power depend only on an area equal to the
first Fresnel zone for a rough scattering media. Additionally,
the tGNSS-R technique has been successfully tested. PYCARO

was able to reconstruct the GPS P(Y) code despite the large
dispersion of the signal after the scattering over the boreal
forests. As a main conclusion, the analysis of the GNSS-R
complex waveforms shows a coherent multimodal contribution
after the signal scattering over forested regions. The perfor-
mance of GNSS-R in terms of spatiotemporal sampling will
benefit when future GNSS constellations will be fully oper-
ational. Geophysical parameters retrieval over high latitude
targets (in particular, biomass monitoring) will take advantage
of the highest orbital inclination of the navigation system.
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