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Synchronization within the dynamical nodes of a complex network is usually considered

homogeneous through all the nodes. Here we show, in contrast, that subsets of interacting oscillators

may synchronize in different ways within a single network. This diversity of synchronization patterns

is promoted by increasing the heterogeneous distribution of coupling weights and/or asymmetries in

small networks. We also analyze consistency, defined as the persistence of coexistent synchronization

patterns regardless of the initial conditions. Our results show that complex weighted networks display

richer consistency than regular networks, suggesting why certain functional network topologies

are often constructed when experimental data are analyzed. VC 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4977972]

Dynamical systems may synchronize in several ways, at

the same time, when they are coupled in a single complex

network. Examples of this diversity of synchronization

patterns may be found in research fields as diverse as

neuroscience, climate networks, or ecosystems. Here we

report the conditions required to obtain coexisting syn-

chronizations in arrangements of interacting chaotic

oscillators, and relate these conditions to the distribution

of coupling weights and asymmetries in complex net-

works. We also analyze the conditions required for a high

statistical occurrence of the same synchronization pat-

terns, regardless of the oscillators’ initial conditions. Our

results show that these persistent synchronization pat-

terns are statistically more frequent in complex weighted

networks than in regular ones, explaining why certain

functional network topologies are often retrieved from

experimental data. Besides, our results suggest that con-

sidering both the different coexisting synchronizations

and also their statistics may result in a richer under-

standing of the relations between functional and struc-

tural networks of oscillators.

I. INTRODUCTION

Certain dynamical systems, which display oscillatory

behavior in isolation, may display a wide repertoire of

dynamical evolutions due to the coupling with their neigh-

bors when embedded in networks of similar complex items.1

The relationship between network dynamics and structure in

this type of systems is therefore a fundamental question in

network science. For instance, the interaction of rhythmic

elements may entail an adjustment of their oscillatory

dynamics to finally end up in a state of (dynamical) agree-
ment or synchronization.2–4 When coupling is strong, the

oscillators in a network usually synchronize in a particular

collective oscillatory behavior. However, for more moderate

coupling intensity, this relationship may also be inhomoge-

neous, i.e., certain oscillators may synchronize whereas

others may not.5–10 The specific patterns of synchronization,

thus, provide information about the underlying couplings

between the dynamical elements forming the network.

Hence, a better characterization of the system can be

achieved by analyzing all the synchronization relationships

within a network instead of analyzing a single synchroniza-

tion relationship. This type of characterization might be of

crucial importance when the details of the contacts between

the oscillators are not available.

In the past, studies of the synchronization patterns in

networks of oscillators were mainly aimed at describing the

conditions associated with the emergence of specific syn-

chronization patterns in all the nodes.11 In the particular case

of complex networks of coupled nonlinear oscillators, recent

studies have provided evidence that it is possible to identify

an appropriate interaction regime that allows to collect mea-

sured data to infer the underlying network structure based on

time-series statistical similarity analysis12 or connectivity

stability analysis.13 In real-life systems, such as ecological

networks,14 brain oscillations,15–18 or climate interactions,19

various types of complex synchronized dynamics have been

observed to coexist in a single network. Therefore, such a

diversity in dynamical relationships between the nodes
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endows a network with stability, flexibility, and robustness

against perturbations.20

The present work reveals that several types of stable

synchronization patterns may coexist depending on the

topology and on the distribution of coupling strengths within

a network. Besides, the capacity of a network to display the

same heterogeneous synchronization pattern regardless of

the initial conditions, or consistency, is also investigated.

Such a property, observed in some type of networks, allows

to retrieve network structure from its dynamics in a more

reliable way than using single synchronization patterns.

II. COEXISTENCE OF SYNCHRONIZATIONS

Consider two n-dimensional dynamical systems, x and y,

whose temporal evolutions are generally defined by _xðtÞ ¼
FðxðtÞÞ; _yðtÞ ¼ GðyðtÞÞ in isolation. Assuming a bidirectional

coupling scheme, the coupled system reads:

_xðtÞ ¼ FðxðtÞÞ þ ĈðyðtÞ � xðtÞÞ;
_yðtÞ ¼ GðyðtÞÞ þ ĈðxðtÞ � yðtÞÞ: (1)

Here, x(t) and y(t) are the n-dimensional state vectors of the

systems, F and G are their corresponding vector fields, and Ĉ

is a n� n matrix that provides the coupling characteristics

between the sub-systems. When coupling is strong enough and

these dynamical systems are oscillators, the synchronization

relationships that can be established between them can be cate-

gorized in four types (see time traces in Fig. 1):22,23

• Phase synchronization (PS) appears if the functional rela-

tionship between the dynamics of two oscillators preserves

a bounded phase difference,24 with their amplitudes being

largely uncorrelated. This can be exemplified by the rela-

tionship jn/1 � m/2j < const, with n and m being integer

numbers which define the ratio between the phases /1;2 of

the two coupled oscillators.
• Generalized synchronization (GS) is observed if a com-

plex functional relationship is established between the

oscillators,25 e.g., y(t)¼H[x(t)], where H[x(t)] can take

any form other than identity. It can be thought to be a gen-

eralization of complete synchronization (CS) for non-

identical oscillators.
• Lag synchronization (LS) appears when the amplitude cor-

relation is high while at the same time there is a time shift

in the dynamics of the oscillators,26 y(t)¼ x(t – s), with s
being a lag time.

• Complete synchronization (CS) is observed when the cou-

pled oscillators are identical or almost identical,27 and

x(t)¼ y(t) for a sufficiently large coupling strength Ĉ.

There are several analysis techniques that can be used to

assess the emergence of each of the mentioned synchronization

motifs. Here, three of them are combined: cross-correlation

(CC), Phase-Locking Value (PLV), and the Nearest-Neighbor

Method (NNM). CC computes the lagged similarity or sliding

FIG. 1. Heterogeneous synchronization patterns in complex weighted networks. (a) Examples of synchronization patterns (no synchronization NS, phase syn-

chronization PS, generalized synchronization GS, lag synchronization LS, and complete synchronization CS) displayed by bidirectionally coupled R€ossler

oscillators. The upper panels show examples of xi(t) time traces for each synchronization pattern and the lower panels show examples of the corresponding

delay-embedding plot.21 s is the delay time for maximal cross-correlation in LS and PS. Examples of (b) a scale-free (SF) network (K¼ 0.4), (c) small-world

(SW) network with low rewiring probability (K¼ 0.1), and (D) random (RN) (K¼ 0.1) of coupled R€ossler oscillators displaying heterogeneous synchronization

patterns. All networks have N¼ 100 nodes. K is a global coupling parameter controlling the maximum coupling strength between two adjacent nodes (see

Eq. (3)). For each type of network the right panels show the distribution of the coupling strengths aij between pairs of nodes (upper panel) and the distribution

of the synchronization patterns (polar histogram, lower panel). Each link is color-coded so as to show which synchronization pattern is displayed by each pair

of oscillators within the network (NS, PS, GS, LS, CS see left bottom legend).
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dot product between two signals, which provides a notion of

the amplitude resemblance over time. Therefore, it allows to

identify whether CS or LS is established between two time

traces. On the other hand, PLV makes use of the Hilbert trans-

form of a signal to retrieve a phase / and compute the time

evolution of the difference in the phases of two oscillators, i.e.,

/1ðtÞ � /2ðtÞ,28 as

PLVt ¼
1

N

����
XN

n¼1

heiD/12 t;nð Þit
����; (2)

where D/12ðt; nÞ is the evolution of the difference between

the phases of oscillators 1 and 2, N is the number of trials,

and h…it denotes temporal average. This measure can

assess, when combined with low CC, the emergence of PS

between two oscillators. Finally, the NNM takes points in

the phase space of each oscillator and characterizes their rel-

ative evolution.27 This method allows to visualize and exem-

plify each synchronization motif as well as to identify the

emergence of generalized synchronization between two

oscillators21 (see examples in Fig. 1(a), lower panels). In

order to establish thresholds for each synchronized state we

computed an average distance d of the images uk;kn of the

nearest neighbors xk;kn of two coupled oscillators as per-

formed in Ref. 21. We took the reported values of d that indi-

cate the onset of each synchronization and compared these

values with our CC and PLV calculations in the same situa-

tion. Thanks to this, we established thresholds ni for comput-

ing each synchronization pattern in the particular case of

R€ossler oscillators: PS entails nPLV� 0.9 and nCC� 0.5 with

lag 0, GS can be identified if nPLV� 0.9 and nCC� 0.9

with lag� 1, LS is present if nPLV� 0.9 and nCC� 0.9

with 0� lag< 1, and finally CS emerges if nPLV� 0.9 and

nCC� 0.9 with lag¼ 0. With this set of analysis techniques,

here, the dynamics of networks of coupled R€ossler oscilla-

tors29 arranged in complex weighted topologies—random

(RN),30 small-world (SW),31 and scale-free (SF)32—are

studied.

The dynamics of each node i follow the 3-dimensional

R€ossler equations, which read

_xi ¼ �xiyi � zi þ K
XNneigh

j¼1; j6¼i

aijðxj � xiÞ;

_yi ¼ xixi þ ayi;

_zi ¼ pþ ziðxi � cÞ; (3)

where K is a global parameter controlling the maximum cou-

pling strength between two nodes and xi is the natural fre-

quency of the node i, which is normally distributed with

average hxi ¼ 1 and standard deviation rx¼ 0.02. An isolated

node with R€ossler dynamics can display periodic, quasi-

periodic, or chaotic dynamics, and we choose a¼ 0.15,

p¼ 0.2, and c¼ 10 to set the oscillators into a chaotic regime.27

The coupling weights are set to depend on the number of

neighbors of each node, if not specified otherwise, as

aij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

deg við Þdeg vjð Þ
p ; (4)

for i 6¼ j, where deg(vi), deg(vj) are the degrees (number of

coupled neighbors) of two coupled nodes vi, vj.

Figures 1(b)–1(d) show the distribution of synchroniza-

tions in three prototypical networks (composed of N¼ 100

nodes), namely, SF, SW, and RN, alongside with their weight

distributions (relative frequency of aij) and the distribution of

synchronizations within each network. All three networks are

located in a region of the coupling parameter space which

allows a complex distribution of synchronizations, in between

a non-synchronized and an all-synchronized network sce-

nario. We call this type of behavior coexistence of synchroni-

zation patterns. In this sense, the SF network shows clusters

of PS, LS, and CS, and SW and RN networks show clusters

of PS, GS, and LS, allowing for functional relationships

between the oscillators. However, such distribution is very

sensitive to the coupling characteristics and the underlying

topology. Here, we show results for small and medium size

networks. Naturally, the question of how our results scale

with the network size is raised. The results shown here and

other not shown indicate that what is relevant for the presence

or absence of coexistence of synchronizations in a network is

the distribution of couplings and not so much the size of the

network. Further studies will have to explore, in detail, the

dependence of coexistence (and consistence) of synchroniza-

tion patterns with the network size. A proper characterization

of the phenomenon requires the detailed analysis of the inter-

action of the oscillators’ dynamics and the networks they are

embedded in.

III. CONSISTENCY OF SYNCHRONIZATIONS

The heterogeneous synchronization motifs that emerge

in complex networks are an excellent probe to detect the

functional connectivity between the oscillators in a network.

Besides, if these motifs are dynamically stable, synchronized

states that show up recurrently when changing initial condi-

tions might be identified, thus becoming an invariant feature

of the dynamics of the network. We are going to show that

the attractor’s basin for specific coexistent synchronization

patterns will depend on the topology of the network. So, in

this section, we explore the conditions for the consistency of

synchronization patterns which we define as the persistence

of the coexistent synchronization patterns regardless of the

initial conditions.

A first example of coexistence of synchronizations is stud-

ied in a very simple weighted network formed by two pairs of

nodes connected bidirectionally with a fifth node (see Fig. 2(a),

Eq. (3)). The oscillators only differ on the frequencies, xi,

which are the following: x1¼ 0.930, x2¼ 0.967, x3¼ 0.990,

x4¼ 0.950, and x5¼ 0.970. After fixing a12 and a34, the syn-

chronization coexistence within the network can be changed by

increasing the bidirectional coupling ac with the central node.

Notice that the synchronization states evolve without changing

a1,2 and a3,4 (the peripheral nodes’ coupling strengths).

Since non-identical oscillators are taken into account,

there is no global synchronization manifold and, therefore,

an analytical stability analysis of the whole system cannot

be performed. However, the evolution of the coexistence of

synchronized states in terms of ac may be tracked numerically
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by considering in detail the values of the Conditional
Lyapunov Exponents (CLEs, k1xi

)21,27 when ac changes (see

Fig. 2(b)), indicating the onset of a different synchronization

motifs. Lyapunov exponents are a measure that characterizes

the stability or instability of the evolution of a dynamical sys-

tem with respect to varying initial conditions or perturbations.

For two unidirectionally coupled oscillators, x(t) and u(t)
of dimensions Nx and Nu, respectively, in which x(t) drives

u(t), one can consider the presence of a time-dependent func-

tional relationship

uðtÞ ¼ H xðtÞ½ �: (5)

The dynamics of this coupled drive-response system is

characterized by the Lyapunov exponent spectra kx
1 � kx

2 �
� � � � kx

Nx
and ku

1 � ku
2 � � � � � ku

Nu
, with the latter being

conditional Lyapunov exponents. In this sense, the rate of

convergence or divergence of the trajectory of oscillator u

towards the trajectory defined by oscillator x is given by ku
1:

if ku
1 > 0 the trajectories diverge, whereas if ku

1 < 0 they

converge.

Since throughout this manuscript a mutual coupling

scheme is considered, Eq. (5) no longer holds for all time t,
but rather its implicit form H[x(t), u(t)]¼ 0. However,

locally (i.e., for t*� d< t< t*þ d, with d being infinitely

small), the implicit function theorem33 allows to write

xðt�Þ ¼ Ĥ½uðt�Þ� or uðt��Þ ¼ ~H½xðt��Þ�, for other moments in

time t. Therefore, without loss of generality, the spectrum

of Lyapunov exponents can be computed in terms of the

trajectory defined by one of the mutually coupled oscillators,

either u or x, as in the unidirectional coupling case. In what

follows, the evolution of the flow of the trajectories of the

coupled R€ossler oscillators with respect to the trajectory

defined by one of the oscillators in the networks is consid-

ered for small networks. This calculation allows to estimate

whether such trajectory is attractive (i.e., neighboring oscil-

lators converge to it and therefore synchronize) or repulsive

(i.e., neighboring oscillators diverge from it and desynchron-

ize in amplitude).

Figure 2(b) shows that, in terms of ac, three different

regions may be defined for the 5 (realization-averaged) larg-

est CLEs, k1xi
:

• In the first region (0< ac� 0.06) all the largest CLEs, are

positive. The pairs 1–2 and 3–4 are mostly in PS. When

increasing ac in this region, peripheral nodes become PS

with the central node until the first 0 crossing of k1xi
(light

red line), which defines the onset for LS for pair 1–2 (ver-

tical dashed line, first arrow, ac¼ 0.07).
• The second region (0.07� ac< 0.23, in between dashed

lines) sets a cascade of coexistence of synchronization

regimes, i.e., successive zero-crossings of CLEs, deter-

mine the onset of GS and LS between the nodes. Notice

that the heterogenous pattern PS/LS is the most frequently

observed. Pattern PS/GS was rare and pattern GS/LS was

never observed.
• In the third region, after ac¼ 0.23, there is the onset of LS

for the whole network.

FIG. 2. Dependence of the coexistence

of synchronization patterns on the

Lyapunov Exponents. (a) Simple

weighted network formed by two pairs

of peripheral nodes connected to a cen-

tral node. The couplings between

peripheral node pairs are a12¼ 0.05 and

a34¼ 0.03. (b) For each node dynamics

the curves show the mean value (com-

puted over 100 runs with random initial

conditions) of the maximum Lyapunov

exponent (k1) as a function of the

strength of coupling ac of all nodes

with the central node. The lowest thin

curve corresponds to the lowest values

of k1 for node x1 computed indepen-

dently for each value of ac. This curve

crosses the zero line at ac¼ 0.06, as

indicated by an arrow and a vertical

dotted line. The uppermost thin curve

corresponds to the largest values of k1

for node x2. This curve crosses the zero

line at ac¼ 0.23, as indicated by an

arrow and a vertical dotted line. (c)

Histogram of the occurrences of the

synchronized patterns for each periph-

eral node pair in the network (1–2 and

3–4). Notice that in the interval ac 2
[0.06, 0.23] several synchronization

patterns may coexist for the same cou-

pling ac, depending only on the ran-

domly chosen initial conditions.
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Figure 2(c) shows the histogram of the occurrence of

each pair of synchronized states between nodes 1–2 or 3–4,

computed using CC, PLV, and NNM: in the coexisting

region, there exist extended ac values for which pairs 1–2

and 3–4 are, simultaneously, in several different synchro-

nized regimes, e.g., 1–2 are in LS meanwhile nodes 3–4 are

in PS. Therefore, for this range of coupling ac, several syn-

chronized states can coexist in the network.

The cascade of zero-crossings of the CLEs, in terms of

ac can be expanded or squeezed by increasing or decreasing

the symmetries of the system, and therefore the range of ac

values for which coexistence appears. For a completely sym-

metrical system, i.e., equal governing equations for all the

nodes in a symmetric network, there are abrupt transitions to

synchrony,34 without coexistence. Symmetry can be broken

in a controlled way by means of a parameter governing the

dynamics (e.g., oscillatory frequency), a parameter responsi-

ble for the topological characteristics of the network (e.g.,

clustering), or both features. In such scenarios different

motifs of synchronized dynamics may show up, but they are

restricted to a tiny region of the parameter space and, hence,

appear to be spurious. Here, symmetry is broken by adding

mismatches between the frequencies of the oscillators and by

increasing the heterogeneity of the nodes’ degrees as well as

the coupling values aij.

Figure 3(a) shows the motif studied previously, but with

different coupling strengths between peripheral nodes; a1,2 is

now one order of magnitude smaller than a3,4 (see caption of

Fig. 3), making this motif more asymmetrical in terms of

coupling strength. Again, the evolution of the CLEs, is

tracked for increasing ac values. First, for ac¼ 0, nodes 1–2

are in PS meanwhile nodes 3–4 are in GS—i.e., a coexis-

tence situation. As can be seen in Fig. 3(a), for different ini-

tial conditions zero-crossings of CLEs, appear along an

extended ac value region. In this case, the coexistence region

for peripheral nodes 1–2 and 3–4 spans from ac¼ 0 to

ac¼ 0.20. The right panel in Fig. 3(a) shows a plot of the rel-

ative frequency of synchronizations found for each pair of

nodes in the small motif for ac¼ 0.04 (three pointed star)

and ac¼ 0.18 (dotted circle). In the first case, ac¼ 0.04, each

pair in the network lays in the same synchronization state for

any of the imposed initial conditions, whereas in the second

case, ac¼ 0.18, many pairs display different synchroniza-

tions depending on the initial conditions. Consequently, the

first case displays more consistency than the second case

because the network shows the same coexistence pattern

regardless of the initial conditions.

Figure 3(b) shows a more symmetric network, in terms

of coupling strength ac. Such relay configuration is less prone

to synchronize for small coupling strengths and, therefore,

larger ac values are required to set synchronized states (see

inset ac¼ 0.18). Fig. 3(b) lower right panel shows the relative

frequency of synchronizations, with no large predominance of

a single synchronization motif for a given pair of nodes.

Therefore, the motif can be considered non-consistent.
Figure 3(c) shows an all-to-all small network in which

all edges are weighted by the control parameter ac. In

this case the network topology and the coupling strength dis-

tribution make this network more symmetrical. Accordingly,

the ac range for which coexistence exists is narrower with

respect to the previous studied motifs. This reduction of the

area of coexistence has implications in the consistency of

synchronizations: zero-crossings of CLEs, are randomly dis-

tributed in a tiny range of ac and, so, coupled pairs in the net-

work do not consistently lay in the same synchronized state

for different initial conditions (see Fig. 3(c) right panel).

Overall, by gathering the results of the coexistence and

the consistency phenomena, we show that network symme-

tries govern the synchronization dynamics emerging from a

system of coupled dynamical units.35 In this regard, clusters

of synchronizations dynamically emerge thanks to symmetry

breaking (with respect to the topology, the system parameter

values, or both) and the statistics of the synchronization

dynamics strongly depend on the type of symmetry breaking.

IV. CONSTRUCTION OF CONSISTENT NETWORKS

Functional networks can be constructed by establishing

relationships between their (coupled) elements. One of the

most prominent dynamical features that functionally relate

two oscillators is synchronization, which may take the afore-

mentioned forms (PS, GS, LS, and CS) among others not

studied here. Therefore, synchronization is a probe for

assessing a (non) trivial relationship between two dynamical

systems. In this sense, in contrast to traditional approaches

where only one type of synchronization is considered, the

statistics of coexistence may reveal a complex functional

organization of synchronization within a network and, there-

fore, may help to construct robust functional networks.

First, the motifs studied in Fig. 3 are coupled through

their hubs (or most connected nodes) to construct a larger

network of dynamical units. The resulting graph is shown in

Fig. 4(a), where each of the motifs is labeled as A, B, or C.

The intra-motif weights are the same as the selected in Figs.

3(a)–3(c), respectively, whereas the inter-hub links weights

are shown in the caption of Fig. 4. Figure 4(b) shows the sta-

tistics of synchronization occurrence in this network: cluster

A shows a very robust consistency of its synchronizations

whereas clusters B and C are much less consistent, i.e., they

display a wide repertoire of different synchronization motifs

depending on the initial conditions. However, as can be

noticed when comparing the relative-frequency plots shown

in Figs. 3(a)–3(c) and 4(b), the dynamics of synchronization

is altered when the three motifs are embedded in a larger net-

work. This fact is a signature for assessing that the dynamics

of coexistence in the large network is not just the simple jux-

taposition of the dynamics of its composite sub-network

motifs.

The construction of the functional networks arising from

the synchronization patterns in this network is performed as

follows: the statistical occurrence of each synchronization

among pairs of nodes of the system is taken into account to

better characterize the most salient synchronization motifs

between the nodes. Then, thresholds in the statistical occur-

rence of each pairwise synchronization are applied, leading

to the extraction of the links which, statistically, appear the

most and so are more consistent.
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Figure 4(c) shows the construction of the functional net-

work emerging from the structural motif-based network by

applying different levels of consistency for each synchroniza-

tion pattern. For each threshold, this construction takes into

account links that show the same synchronization a number of

times greater than the consistency threshold. Accordingly, the

constructed functional network coincides with the most con-

sistent motif (A) rather than with subsystems B and C, which

do not show consistent synchronization patterns. However,

these non-consistent patterns allow us to infer a homogeneous

coupling distribution in these modules, which is also informa-

tive about the underlying network structure.

The study of larger networks allows to generalize the

relationship between the dynamical features of heteroge-

neous synchronization patterns with their structural and

functional topological characteristics. By taking the SF pro-

totypical network shown in Fig. 1 and performing topologi-

cal changes—taking clustering as a control parameter—a

FIG. 3. Consistency of the coexistence

of synchronizations. (a) Same network

of Fig. 2(a) with coupling a3,4¼ 0.20 for

node pair 3–4. For each node dynamics,

the curves show the mean value of the

maximum Lyapunov exponent (k1) as a

function of coupling strength ac (see

Fig. 2(b)). The histogram shows the rela-

tive frequency of the synchronization

patterns for selected values of ac

(ac¼ 0.04, ac¼ 0.18 indicated by the

arrows). (b) Homogeneous hub network

with all couplings weighted by ac. The

maximum Lyapunov exponent curves

for each node dynamics are similar and

the interval of ac for coexistence of syn-

chronization patterns is small. The histo-

gram shows the distribution of the

synchronization patterns for ac¼ 0.18.

(c) All-to-all network in which all cou-

plings are weighted by ac. The interval

for coexistence of synchronization pat-

terns is also small and occurs for smaller

values of ac. The histogram shows the

distribution of the synchronization pat-

terns for ac¼ 0.04.
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potential relationship between network symmetries and the

consistency of the synchronization patterns can be unveiled.

Figure 5(a) shows the fraction of connected synchronized

pairs in the SF networks whose consistency is above a certain

threshold for increasing clustering. Noticeably, only low clus-

tering networks have edges whose synchronization is consis-

tent above a 50% of the realizations, arguably because only

low clustering SF networks are heterogeneous enough to hold

consistent synchronized dynamics. Figure 5(b) shows an

example of a very consistent realization-averaged SF network

with clustering C¼ 0.15 and a consistency map displaying the

statistics of synchronization for each pair of nodes in the net-

work. According to the statistics, the realization-averaged col-

ors in the network mostly coincide with pure synchronization

colors. Figure 5(c) shows a low consistency realization-

averaged SF with clustering C¼ 0.40. The consistency map,

performed for every pair of nodes in this network, shows no

pattern compared with the case in panel (b). Such patterns

denote that the functional organization of these networks is

robust in the first case, whereas for the network with larger

clustering randomized functional relationships are established

among pairs of (connected) nodes.

The structure-function relationship can be quantified by

calculating the number of coincident structural and func-

tional links (called ntrue here onwards) and the number of

non-coincident structural and functional links (called nfalse

here onwards)

ntrue ¼
nc

nT
; (6)

nf alse ¼
nin

na�t�a � nT
; (7)

where nT is the number of edges in the structural network,

na�t�a is the number of edges in an equivalent all-to-all net-

work, nc is the number of constructed edges that belong to the

structural network, nin is the number of constructed edges that

do not belong to the structural network, ntrue is the ratio of

constructed edges that belong to the structural network, and

nfalse is the ratio of constructed edges that do not belong to the

structural network. In other words, ntrue computes how many

of the structural edges have been reconstructed, whereas nfalse

computes how many of the non-structural edges have been

reconstructed. Note that the sum ntrueþ nfalse is not equal to 1

necessarily. In this sense, a construction with high ntrue and

high nfalse indicates that the constructed network is close to an

all-to-all network, i.e., all structural edges can be retrieved but

the number of non structural edges is also high, implying a

bad matching between structure and function. Figure 5(b)

indicates that for clusterings below C¼ 0.15 the matching

between structural and functional network is high for a consis-

tency threshold of about 50%, whereas the construction for

higher clusterings provides either a high ratio of false posi-

tives (close to all-to-all functional network) or non-consistent

networks. Interestingly, the system faces a transition point at

a relatively low clustering value, C’ 0.21, which prevents the

construction of functional networks at higher clusterings.

Indeed, as the heterogeneity in the structural network is pro-

gressively lost due to higher clustering, the system loses con-

sistency in the synchronization motifs and so no robust

functional relationships can be extracted.

V. CONCLUSIONS

The coexistence of synchronizations is a phenomenon

in which a variety of complex functional relationships are

established between the dynamical evolutions of some cou-

pled oscillatory elements. Such scenario emerges in the

route towards an all-synchronized network, where trivial

FIG. 4. Construction of functional networks. (a) A structural network of

modules is constructed by linking a module A, corresponding to the motif in

Fig. 3(a), with a module C, corresponding to the motif in Fig. 3(c), by means

of node pair 4–5 with coupling a4,5¼ 0.03 and by linking the module C with

a module B, corresponding to the motif in Fig. 3(b), by means of node pair

(9, 10) with coupling a9,10¼ 0.04. The internal coupling strengths of the

modules are the same as for the isolated motifs in Figs. 3(a)–3(c). (b)

Histogram of the relative frequency of the synchronization patterns for all

intra-module and for the two intermodule node pairs. Notice that the consis-

tency of synchronization patterns in modules B and C is different from the

consistency observed in isolated networks with the same topology corre-

sponding to modules B and C (see Figs. 3(b) and 3(c)). NS is not shown in

the histograms. (c) Functional networks can be determined on the basis of

various threshold levels of consistency (between 20% and 60%) for each

type of synchronization pattern. Here, we propose to consider the coexis-

tence of synchronizations too. In this example, some coupling between ele-

ments in B and C can be inferred. The fact that these subsystems are not

consistent suggests that the couplings between their elements are highly

homogeneous.
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correlations are established among oscillators. Although

many patterns of synchronization have been described so

far, like chimera states or single synchronization clusters,

no description of the emergence of diverse amplitude and

phase correlations within the same network has been

addressed before. Therefore, the conditions for which this

phenomenon occurs are given here in terms of the CLEs,

providing a notion of the attractiveness of the trajectory

defined by one oscillator. The coexistence of synchroniza-

tions is prominent when there is a broad separation of CLEs

between positive and negative values, taking coupling

strength as a control parameter. Besides, breaking the sym-

metry of a network—the number of nodes’ contacts or the

coupling strengths—increases the even distribution of CLEs

and allows for a broad distribution of synchronization

motifs. Therefore, weighted complex networks show much

more coexistence than their unweighted counterparts.

What is more, some networks can robustly display the

same coexistence patterns regardless of the initial conditions

imposed, showing high consistency. Such feature allows

to better characterize the stable functional relationships

established in the network, which is at the basis of functional

network construction. In this sense, we show that the match-

ing between structural and functional networks is high in net-

works displaying consistent heterogeneous synchronization

states.

The consistency of the three prototypical networks

shown in Fig. 1 is diverse: while SF networks with low clus-

tering show high consistency, SW and RN networks do not

display this feature because in SW or RN networks the num-

ber of node contacts fluctuates less. The consistency of the

coexistence is a consequence of the heterogeneity of the net-

work: the dynamical heterogeneous synchronization clusters

consistently lay in the same heterogeneous synchronization

manifolds for any of the initial conditions imposed because

the synchronized trajectories are always dominated by the

most connected neighbors. Previous research shows that, in

unweighted and undirected networks, for certain coupling

regimes, there is an optimal matching between structural and

functional networks.13 Here, these results are extended to the

case of weighted undirected networks and provide a novel

method to extract robust functional relationships. Arguably,

the method presented in this work is more restrictive because

it relies on the preservation of the same heterogeneous

FIG. 5. Relationship between structural

and functional networks for increasing

clustering. (a) Ratio of consistent pairs

for increasing clustering and increasing

consistency thresholds (Thresh). The

ratio of consistent edges displays a maxi-

mum for low clustering values, showing

the dependence of this feature on the

symmetries of the networks. (b) Low

clustering networks (C¼ 0.15) show

consistent synchronization motifs, as

shown in the synchronization-averaged

network—which shows almost pure

synchronization colors—and in the reali-

zation vs. pair synchronization map—

which displays patterns of synchroniza-

tion. (c) For larger clustering networks

(C¼ 0.40), the synchronization-averaged

networks show a single color and no pat-

terns can be discerned in the realization

vs. pair synchronization map. (d) The

combination of coexistence and its con-

sistency allows to reconstruct functional

networks that embed information of the

underlying structural network. The ratio

of true and false positive edges for the

same networks as in panel A shows that

low clustering structural networks can be

reconstructed more reliably than higher

clustering structural networks. In this

regard, heterogeneous networks are more

consistent in the synchronization dynam-

ics and so may be easily found, as hap-

pens often in the works presented in

the literature, when extracting functional

networks.
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synchronization patterns, but it provides higher robustness to

the constructed functional networks.

The present results, though limited in their scope, also

point towards a general feature in the structure-function rela-

tionship in network science: the construction of functional

networks, for the oscillators used here, bring about heteroge-

neous (non-symmetrical) networks because they are more

consistent. More symmetric or homogeneous networks will

appear as inconsistent if coupling is small: only when cou-

pling is large enough to force global synchronization robust

symmetrical networks will show up in the constructed func-

tional networks. We believe that this structure-function rela-

tionship may also be true for other oscillators. Our result

explains some previous experimental results. For instance, in

brain dynamics, previous experimental studies have shown

that consistent dynamics result in selected network topolo-

gies that have been retrieved much more often than

others.36,37 However, further theoretical and experimental

studies, for other systems, should address this point to limit

or extend the validity of the conclusions raised here.
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