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Abstract 
 

Acuros XB (AXB) is a deterministic algorithm that directly accounts for  the 
effects of heterogeneities and improves the accuracy of photon dose calculations 
in radiotherapy. Nevertheless, the accuracy of AXB inside lung has not been yet 
fully examined by means of experimental measurements. The aim of this study 
was to evaluate the accuracy of AXB in the presence of lung using 7Li-based 
thermoluminescent dosimeters (TLD-700). Percentage depth-dose distributions 
(PDD) obtained by AXB on a slab water-equivalent phantom with a lung- 
equivalent heterogeneity were compared with the TLD-700 measurements for 6 
MV and 18 MV photon beams and a set of field sizes ranging from 2 × 2 cm2 

to 20 × 20 cm2. Dose distributions obtained by the Anisotropic Analytical Al- 
gorithm (AAA) were also included in the comparison as a reference to a non- 
deterministic dose calculation algorithm. The agreement between AXB and the 
TLD results was kept within clinical tolerance levels (3%) for all beam configu- 
rations. On the contrary, AAA failed at correctly predicting the absorbed dose 
when the lateral electronic equilibrium was lost. AXB is capable of providing 
reliable dose estimations in the presence of lung and clearly outperforms AAA. 
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1. Introduction 
 

Li-based thermoluminescent detectors (TLDs) are suitable for the experi- 
mental verification of dose calculation algorithms in radiotherapy [1, 2]. The 
thermoluminescent material is tissue-equivalent, which makes it especially use- 

5      ful for validation inside lung where ionization chambers (IC) cannot generally 
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be used[3]. The presence of such low-density heterogeneities constitute a chal- 
lenge to most correction-based and convolution-superposition dose calculation 
algorithms, which are usually unable to accurately determine the absorbed dose 
in these conditions [4, 5]. 

10       In 2010, the Acuros XB (AXB, Varian Medical Systems, Palo Alto, CA), 
was presented as a novel deterministic dose calculation algorithm that directly 
accounts for the effects of heterogeneities in patient dose calculations by ex- 
plicitly solving the linear Boltzmann transport equation [6]. Therefore, AXB 
can converge to the same solution as Monte Carlo (MC) simulations even in 

15 lung [7], which undoubtedly represents a significant improvement over the non- 
deterministic dose calculation algorithms. 

Over the past years, few studies have been devoted to experimentally evalu- 
ate the accuracy of AXB in lung despite it is of utmost interest considering that 
both AXB and MC calculations are affected by the same sources of uncertainty. 

20 Among them, most investigations have performed measurements at or near the 
heterogeneity interface and just a couple have done it inside the lung-equivalent 
material [8, 9]. In these investigations, a small number of points per plan have 
been evaluated and the reported uncertainties sometimes exceeded the clinical 
tolerance level that is commonly accepted (3%) [10]. 

25      In this study, the accuracy of the AXB dose calculation algorithm in a 
slab water phantom with a lung-equivalent heterogeneity was thoroughly ex- 
amined by means of TLDs. The behavior of AXB was compared to that of the 
Anisotropical Analytical Algorithm (AAA) as a reference of a non-deterministic 
algorithm. 

 
 

30      2.  Methods and materials 
 

Two photon beam energies, 6 and 18 MV, from a Varian Clinac 2100 C/D 
(Varian, Palo Alto, CA) linear accelerator were considered. Percentage depth- 
dose (PDD) curves for field sizes ranging from 2 × 2 cm to 20 × 20 cm2 were 
evaluated on a water-equivalent slab phantom (PTW RW3, electron density 

35      relative to water ρw =1.012) with a lung-equivalent heterogeneity (Computerized 
Imaging Reference Systems (CIRS), Norfolk (VA), ρw =0.195). The studied 
configuration was 5 cm of RW3 followed by 13 cm of lung and then by 10 cm of 
RW3. It was built using 30 × 30 cm2 slabs with thicknesses ranging from 0.1 to 
5 cm. 

 
40       2.1. AXB calculations 

Dose distributions were obtained with the AXB algorithm (v. 13). and with 
the AAA (v. 10.28.0). A virtual phantom was generated from the CT image 
(Optima CT580RT CT scanner, General Electric Healthcare, Fairfield, CT) of 
the experimental configuration. The field-of-view was set to 65 cm and the voxel 

45     size was fixed to 1.27×1.27×5 mm3. The material assigned to each region of the 
phantom (water or lung) was selected among the biological materials available 
in the EclipseTM  treatment planning system. 
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The three source model used in AXB and AAA was automatically configured 

using the default focal spot size of 1 mm in x and y directions [11]. 
 

50        2.2.  Experimental measurements 

Dose measurements within the water-like regions of the phantom were carried 
out by ICs, as they are the detectors of reference in water.(author?) [3] A 
0.016 cm3 PinPoint 31016 (PTW, Freiburg, Germany) was used to determine 
the absorbed dose for the smallest field sizes (2 × 2 cm2 and 5 × 5 cm2) and a 

55 0.35cm3 Roos (PTW, Freiburg, Germany) was used for the largest field sizes 
(10×10 cm2  and 20×20 cm2).  Both were connected to the UNIDOS electrometer 
(PTW, Freiburg, Germany). 

No IC measurements were carried out within the lung heterogeneity because 
perturbation correction factors for these ICs are unknown in media other that 

60        water. Instead, TLDs were preferred to measure the dose in lung. 
The TLDs used in this study were 7LiF:Mg,Ti chips type TLD-700 (Thermo 

Fisher Scientific Inc., Erlangen, Germany). 7Li compounds were chosen to avoid 
the interference of neutron fields for 18 MV photons generated by linear acceler- 
ators. TLD-700 are squared pellets of 3.1 × 3.1 mm2 and 0.9 mm thickness. The 

65      thermoluminescent material of TLD700 has an effective atomic number similar 
to soft tissue, which makes it suitable for absorbed dose measurements in lung. 
The suitability of this detector to provide reliable dose estimations has been 
reported elsewhere in similar conditions [5]. 

Characterization of TLD-700 can be found in the literature [12]. TLD-700 
70 was found to fulfill the requirements of (i) flat energy response for the photon 

energies involved in this study, (ii) linear response with dose within the dose 
range handled herein, and (iii) reproducibility of results. 

Before each irradiation, standard annealing was carried out in a PTW-TLDO 
oven.  The annealing cycle consisted in 1h at 400◦C followed by 2h at 100◦C. 

75        Readout was carried out with a Thermo Scientific Harshaw 5500 hot gas reader. 
The readout procedure consisted of a pre-heating phase at 135◦C during 10 s 
followed by a reading phase in which detectors are heated up to 270◦C at a 
linear rate of 25◦C · s−1  during approximately 10 s. 

To improve the dosimeters accuracy, individual calibration factors were es- 
80 tablished for each detector, and stability checks were performed periodically 

with a caesium-137 beam, as detailed by Ginjaume et al. [12]. 
Aiming at reducing the statistical uncertainty of results, up to 9 detectors 

(limited by the field size) were used at each depth and measurements were 
repeated up to three times. 

 
 

85       3.  Results 
 

Calculated and measured PDDs are shown in figure 1 for 6 MV and 18 MV 
photon beams (left and right columns, respectively). Percentage differences be- 
tween the AXB relative dose predictions and the experimental results computed 

as DAXB (%)− DTLD,IC (%) are depicted in the insert of the figures. 
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TLD-700 relative dose estimations were obtained within ±1 − 2% statistical 
uncertainty in 98% of the cases. Error bars in figure 1 correspond to the asso- 
ciated standard deviations (1 SD). Statistical uncertainties associated to the IC 
measurements were kept around 1% in all cases. Error bars are not shown in 
figure 1 for clarity. 

AXB dose distributions agreed within 1.5% with the IC measurements for 
the two beam energies and all considered field sizes. The agreement with respect 
to the TLD-700 measurements was generally kept below 2% at all depths both in 
the water-like regions and within the heterogeneity. Nevertheless, more notice- 
able discrepancies were registered within the heterogeneity for the 2×2 cm2 field 
size, especially for the 18 MV photon beam (see figures 1a and 1b). For this field 
size, average deviations within the lung-equivalent material were -1.16% and - 
2.6% for the 6 MV and 18 MV photon beams, respectively. Maximum point 
differences of -3.1% and -4.2% were registered for the lowest and the highest 
considered beam energy, respectively. 

As shown in figure 2, AAA dose estimations agreed within 2-3% with AXB 
and the experimental measurements along the heterogeneous phantom after the 
build-up region with a couple of exceptions. First, significant discrepancies were 
observed within the lung-equivalent material for the smallest field size, for which 
AAA overestimated the absorbed dose with respect to AXB by up to 4.4% and 
19.6%, for 6 MV and 18 MV, respectively. Second, differences up to 5.1% were 
registered within the water-equivalent region after the heterogeneity for the 6 
MV photon beam, especially for the two largest field sizes upon study. 

 

 
4. Discussion 

 

The accuracy provided by AXB (v. 13) in predicting the absorbed dose 
within a water phantom with a lung-equivalent heterogeneity was examined by 
means of ionization chambers (IC) and 7Li-based thermoluminescent detectors 
(TLD-700). Excellent agreement was found between AXB and the experimental 
measurements within the water regions of the heterogeneous phantom. Discrep- 
ancies between the AXB and the TLD-700 relative dose estimations in lung were 
generally kept within the accepted clinical tolerance of 2% [10] in all considered 
cases. Nevertheless, it should be noticed that larger deviations were registered 
within the lung-equivalent heterogeneity for the 2 × 2 cm2 field size, especially 
for the 18 MV photon beam energy. This beam configuration is of particular 
interest because the lack of lateral electronic equilibrium in lung is very sig- 
nificant. Under these conditions, the measurement of dose to water becomes 
difficult [13]. The differing density of the detector and the medium exacerbates 
the effects of electronic disequilibrium by compensating for it (density of the 
TLD-700 is greater than density of the  lung-equivalent  material),  leading  to 
dose over-read [14]. This phenomenon might be minimized by considering thin- 
ner detection volumes in the radiation beam  direction.  Therefore,  ultra-thin 
TLDs should be preferred over standard-thickness TLDs for experimental ver- 
ification of small fields inside low-density heterogeneities to ensure maximum 
accuracy. 
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Figure 1: PDD curves for 6 MV (left column) and 18 MV (right column) photon beams and 
different field sizes (rows) determined by AXB, AAA, and the experimental measurements. 
Percentage differences are depicted in the inserts. 
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Figure 2: Percentage differences between AAA and AXB for 6 MV (left) and 18 MV (right) 
photon beams and different field sizes. Discrepancies of AAA with respect to TLD are also 
included (small triangles for all field sizes, consistently colored). 
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AAA provided reasonably accurate dose estimations within the lung-equivalent 
material in all cases except for the smallest field and highest beam energy con- 
sidered.   AAA was unable to properly handle the electronic disequilibrium in 
lung and could not correctly predict the absorbed dose within the heterogeneity, 
which is in good agreement with what has been already reported in the literature 
[4, 15].  Furthermore, AAA fails at providing accurate dose estimations within 
the water region after the heterogeneity, as other convolution-based algorithms 
have been reported to do [16]. 

 

 
5. Conclusions 

 
AXB (v. 13) provides accurate dose estimations in the presence of lung 

heterogeneities for high energy photon beams and represents a significant im- 
provement over standard convolution-superposition algorithms, such as AAA, 
for dose calculations in radiotherapy. 
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Highlights on the experimental verification of Acuros XB in the presence of lung- 
equivalent  heterogeneities 

 
 

• TLD-700 are used to validate the accuracy of Acuros XB inside lung-equivalent 

media. 

• Acuros XB (AXB) provides accurate dose distributions for a wide range of field sizes. 
 

• AXB represents a significant improvement over standard non-

deterministic algorithms. 


