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Abstract 

This paper presents the application of dual Focused Ion Beam-Scanning Electron Microscopy 

(FIB-SEM) imaging for pre-clinical testing of calcium-phosphates with osteoclast precursor cells 

and how this high resolution imaging technique is able to reveal microstructural changes at a 

level of detail previously not possible. Calcium phosphate substrates, having similar 

compositions but different microstructures, were produced using low and high temperature 

processes (biomimetic calcium deficient hydroxyapatite and stoichiometric sintered 

hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days prior 

to evaluate their resorptive potential on varying microstructural features. Alternative to classical 

morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent 

microstructure by transversally sectioning cells and observing both the cells and the substrates. 

Resorption pits, indicating OC activity, were visible on the smoother surface of high temperature 

sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain 

surface under the cells, as well as intergranular dissolution. No resorption pits were evident on 

the surface of the rough calcium deficient hydroxyapatite substrates. However, whereas no 

degradation was detected by FIB sections in the material underlying some of the cells, early 

stages of OC-mediated acidic degradation were observed under cells with more spread 

morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive 

activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise 

difficult to visualize. 
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Introduction 

In recent years, Focused Ion Beam (FIB) systems have gained interest as a technique for the 

evaluation of biological samples. Although microscopic evaluation of biological matter is 

challenging, FIB equipped with scanning electron microscopy (SEM) or energy dispersive X-ray 

spectroscopy (EDX/EDS) provides an enhanced working environment for studying 

biomaterials.1 

 

The regenerative potential of bone substitute materials is usually evaluated in vitro by assessing 

how cultures of relevant cells interact with them. Briefly, at the early stages of implantation, 

inflammation occurs and a cascade of chemical signals which drive the monocyte/macrophage 

phenotype are triggered.2 In an ideal scenario, these cells will fuse to form osteoclasts (OC), 

that is, bone resorbing cells.3,4 Recent research indicates that osteoclasts can establish a cross-

talk with osteoblasts leading to subsequent bone remodeling.5 

 

Several pre-clinical studies of bone substitutes have focused on these early interactive stages 

and, particularly, on the biomaterial-osteoclasts interactions in terms of OC adhesion, gene 

expression and evaluation of resorption pits.6-8 Usually, these investigations require, on the one 

hand, the study of OC differentiation and activity, such as gene expression or marker 

identification, and on the other hand, the evaluation of morphological changes in the substrates, 

which implies staining or removal of cells in order to visualize the underlying structure. In this 

context, FIB-SEM technique offers the possibility of evaluating both cells and subjacent 

microstructural changes simultaneously. Various studies have used FIB for biological sample 

evaluation,9-15 and the interest in the field has been increasing over recent years. Nevertheless, 

studies on osteoclast resorption on substrates of challenging topography are lacking. Thus, this 

work aims to assess the potential of FIB-SEM technique as a tool to evaluate cell morphology 

together with the microstructural changes caused by OC-mediated degradation beneath the 

cells. Three substrates with similar composition and different nano-microstructures are 

investigated to disclose to what extent FIB-SEM analysis may allow assessing the resorption 

activity of the cells on substrates with different topographies. 
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Materials and Methods 

Three types of calcium phosphate substrates were prepared. Low temperature biomimetic 

calcium deficient hydroxyapatite (CDHA) was obtained through the hydrolysis of alpha-

tricalcium phosphate (α-Ca3(PO4)2, α-TCP) powders at 37oC. Powders with two different particle 

sizes, coarse (C: 5.2 µm median size) and fine (F: 2.8 µm median size), were mixed with a 2.5 

wt% solution of sodium hydrogen phosphate (Na2HPO4, Merck) at a liquid to powder ratio of 

0.35 mL/g, to produce materials with microstructure consisting of an entangled network of plate-

like (CDHA-C) and needle-like (CDHA-F) CDHA crystals (both with a Ca/P ratio of 1.5) 

respectively.16 High temperature stoichiometric sintered HA (sin-HA) was obtained by solid state 

reaction of a mixture of calcium hydrogen phosphate (CaHPO4, Sigma–Aldrich C7263) and 

calcium carbonate (CaCO3, Sigma–Aldrich C4830) with a calcium to phosphorous ratio of 1.67 

at 1100 °C for 11 h. All materials were molded into discs of 14 mm diameter and 0.25 mm 

thickness in Teflon moulds. 

 

Cell cultures were performed using human peripheral blood mononuclear cells (PBMC), from 

healthy 30-35 year old male voluntary blood donors. Donations were anonymous, so 

institutional review board (IRB) approval was not required. Mononuclear cells were isolated by 

centrifugation with Ficoll-Histopaque (Sigma-Aldrich) and seeded at a density of 6x106 cells per 

cm2 on calcium phosphate discs. PBMC were differentiated into osteoclast precursors with 

RANKL-containing cell culture medium (DMEM) from human osteoblast supernatants. Cells 

were seeded on two discs for each substrate. The experiment was repeated twice using cells 

from two independent donors. OC precursors were cultured for 21 days. Afterwards, the cells 

were rinsed with phosphate buffered saline (PBS, Gibco, UK), fixed with 

paraformaldehyde/glutaraldehyde in 0.1M sodium cacodylate buffer, and post-fixed in 2% 

osmium tetroxide (OsO4) at room temperature for 2 hours in order to achieve higher contrast. 

Then, samples were dehydrated in an ethanol series followed by hexamethyldisilazane (HMDS) 

drying to preserve osteoclasts morphology.17, 18 A thin gold-palladium film was sputtered before 

FIB/SEM examination to impart conductivity to samples. 

 

SEM in combination with FIB (Zeiss Neon 40) was used to examine both the surface of 

cells/materials and the microstructural features underneath the cells. As a first step conventional 

SEM was used to evaluate both the microstructure of the substrates and the morphology of the 
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cells. Two representative cells were then selected for FIB cross-sectioning using gallium ions 

(Ga+). Prior to cutting, a thin layer of protective platinum (Pt) was deposited on the surface by 

ion-beam assisted deposition in order to reduce the curtaining effect. This effect can result in 

image artefacts due to changes in the sputtering yield, as the beam passes over different 

composition regions, resulting in the appearance of parallel patterns in the ablated zones. The 

deposition of Pt helps obtaining smoother cross-sections, thus minimising the curtaining effect.13 

Afterwards, a rough (coarse) milling was performed with a maximum current of 10 nA to quickly 

remove most of the material up to a depth of approximately 20 µm nearby the region of interest. 

Finally, a polished cross-section was attained by subsequently reducing the Ga+ beam current 

from 2 nA down to 500 pA when approaching the Pt layer. This procedure reduces the ion beam 

damage on the sample and any re-deposition effect, and allows the observation of smoother 

cross-sections of the cell and the underlying microstructure with minimal modifications. 

 

Results and Discussion 

 

Sintered and biomimetic calcium phosphates have long been used in bone regeneration 

applications.19,20 Despite biomimetic CaP substrates can better mimic the microstructure and 

composition of the mineral phase of bone than sintered CaP, in vitro assays on biomimetic 

materials are often more challenging.21,22 The rough microstructure that results from the 

precipitation of nano/submicron crystals compared to the smoother textures of the high-

temperature processed materials can have great impact on cell behavior. When challenged with 

osteoclasts the role of surface topography is particularly relevant, as osteoclastic resorption is 

dependent on the formation of an actin-rich sealing zone that precedes degradation.23,24 In vitro 

studies had shown that too rough textures can hinder the formation of a proper sealing zone, 

impairing material degradation.6,25 

 

The possibility offered by FIB, to closely look at the cell-substrate interface can help shedding 

new light on the evaluation of resorption events on challenging biomimetic substrates compared 

to traditional sintered substrates. But FIB is a complex technique that requires accurate setting 

of the processing parameters to minimize the generation of artifacts during sectioning. Only 

artifact-free sections will allow drawing accurate conclusions. FIB tomographic studies have 

successfully been performed to analyze at different depths the delicate nature of biomimetic 
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CaP consisting of an interlocked network of thin plate-like crystals, proving that artifact-free 

sections can be obtained.26 The situation is more complex, however, when FIB is used to 

section cells cultured on these substrates. Drobne et al., as well as other authors, extensively 

described the potential of FIB milling to process biological samples and shed light on the 

optimal processing parameters in order to avoid shrinkage, melting effect, Ga+ implantation or 

side-wall artefacts.18, 27-30 These effects can be effectively reduced by a first Pt layer deposition 

which protects the sample surface against re-deposition of ablated atoms, provides mechanical 

stability and reduces curtain effects. In addition, damage can be minimized by working with low 

ion beam currents and low acceleration voltages, especially during the final steps of the cross-

section polishing.29 All these strategies have been applied in the present study to investigate a 

series of three apatitic substrates consisting of two biomimetic formulations and a sintered 

material. 

 

Figure 1 shows the SEM images of the three different substrates in the absence (Figure 1a, c 

and e) and in the presence (Figure 1b, d, f, and g) of cells after 21 days of culture. Biomimetic 

substrates obtained at 37 oC, i.e. CDHA-C and CDHA-F, consisted of an entangled network of 

plate-like crystals (Figure 1a) and needle-like crystals (Figure 1c), respectively, whereas sin-HA 

presented a smoother polyhedral grain surfaces (Figure 1e) typical of high temperature 

ceramics. 

 

SEM evaluation of the seeded substrates showed similar cell morphologies consisting of flat 

and well spread cells ranging 20-30 µm with various connecting filopodia (Figure 1b, d, and f). 

As illustrated in Figure 1g, resorption pits were easily visualized on some substrates (white 

arrows), namely sintered HA, where typical 30-50µm sized resorption lacunae were observed. 

In contrast, no clear resorption pits were evident on the rough and tortuous surfaces of 

biomimetic CDHA samples. In this case, FIB cuts could provide useful information to assess if 

any potential osteoclastic degradation is taking place locally, at the surface underneath the cell. 

 

The sequence to obtain the vertical section of a cell and the underlying substrate by FIB is 

shown in Figure 2, for biomimetic CDHA-F. No signs of resorption were observed in this case in 

the material under the cell (Figs. 2 c and d), as the needle-like crystals appeared intact, when 

compared with the microstructure of the pristine material (Fig. 1c, insert). One possible 

10µm 
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explanation is that the high roughness of the substrate prevented the OC from sealing the 

substrate, thus hampering the degradation process, as described in previous works.6,25 One 

aspect worth noticing is the fact that the microstructure of the pristine material was revealed 

intact beneath the cell, thus confirming that there was no damage associated to FIB-sectioning.  

 

Interestingly, when on the same substrate a different cell of bigger size and with a more spread 

morphology, compatible with an osteoclastic or macrophage phenotype was analyzed, FIB/SEM 

images revealed that resorption was taking place in the underlying material (Figure 3). Thus, 

acid etching was evident in the subjacent microstructure where the needle-like crystals were no 

longer visible (Figure 3b* and c). Few needle-like crystals were only visible in the outer part of 

the cell (Figure 3d). The presence of both, resorptive and non-resorptive cells could evidence 

the multiple and reversible macrophage phenotype.31 

 

FIB-SEM images for the CDHA-C substrate are shown in Figure 4. As for CDHA-F, no 

resorption pits were found on the surface, and no signs of degradation even underneath the 

cells were detected by FIB cuts (Figure 4c and d), as revealed by the presence of the original 

plate-like crystals in the areas subjacent to the cell (*). 

 

As observed by traditional SEM imaging, numerous resorption pits and several flat and spread 

cells were observed on the sin-HA substrate (Figure 1f and g). Previous works have shown the 

resorptive capacity of osteoclast-like cells derived from mice bone marrow on similar 

substrates.32,33 However, the study of osteoclast activity using primary human cells is less 

common, despite providing a closer understanding of the physiology of human bone resorption. 

FIB-SEM images of a cell on sin-HA are shown in Figure 5. Figure 5a shows a few cavities on 

the substrate at low magnification, corresponding to osteoclastic resorption pits (white arrows) 

clearly different from the intrinsic porosity of the material (+). Intergranular dissolution of the 

ceramic was displayed just under the cell (Figure 5b), with excavated cavities penetrating 

several micrometers into the substrate. This preferential dissolution in the grain boundaries is a 

frequently observed phenomenon, due to the higher reactivity of these regions that have a high 

free energy. Moreover, the surface of the polyhedral grains under the cells presented a rougher 

aspect compared to the smoother appearance of the pristine ceramic, consistent with an acidic 

etching process (Figure 5c and d).  
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Conclusions    

The FIB-SEM technique has been shown to be a useful technique to assess the in vitro cell 

resorption activity, even at early stages of the process. The present study on different calcium 

phosphate substrates proved the potential of this technique to evaluate both the cell 

morphology and the microstructure of the substrate underneath. Indeed, this technique may 

disclose the initial activity of resorbing cells when not evident yet using other analytical 

methods, or may confirm and support morphological and biochemical evidences of osteoclast 

degradation capability in vitro. Sintered HA surfaces showed visible resorption pits and FIB cuts 

across the cell demonstrated the initial degradation of the ceramic as a consequence of acid 

etching promoted by the cells, which resulted in intergranular dissolution and roughening of the 

grain surface. In contrast, in low temperature biomimetic HA substrates, where no clear signs of 

degradation on the surface were visible by common (seen using standard?) SEM imaging, 

possibly due to the higher roughness of these materials, different situations were found by 

(following) FIB cuts. For some cells, no signs of degradation of the underlying material were 

observed, probably due to the lack of a sealing actin ring and a resorbing lacuna formation. 

However, at different sites where large flattened cells and more spread cells were observed, 

signs of degradation were clearly seen in the material underneath the cells, with the etching of 

the needle-like crystals. These findings underline the potential of the FIB-SEM technique to 

evaluate cell-mediated resorption in rough, irregular or coarse substrates. Indeed, FIB milling of 

resorbing cells allows exploring their underlying structure to unravel early degradation 

processes at stages when resorption pits have not yet occurred or are virtually impossible to 

detect.  
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