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Abstract

In a recent work [Proc. Natl. Acad. Sci. USA, 108 (2011) 3838], Schnei-
der et al. proposed a new measure R for network robustness, where the value
of R is calculated within the entire process of malicious node attacks. In this
paper, we present an approach to improve the calculation efficiency of R, in
which a computationally efficient robustness measure R′ is introduced when
the fraction of failed nodes reaches to a critical threshold qc. Simulation
results on three different types of network models and three real networks
show that these networks all exhibit a computationally efficient robustness
measure R′. The relationships between R′ and the network size N and the
network average degree ⟨k⟩ are also explored. It is found that the value of
R′ decreases with N while increases with ⟨k⟩. Our results would be useful
for improving the calculation efficiency of network robustness measure R for
complex networks.
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1. Introduction

A wide range of systems in nature and society can be described as complex
networks, such as the World Wide Web, neural networks and air transporta-
tion networks, etc. In the past decades, the study of complex networks has
given rise to great achievements in many fields [1, 2, 3, 4], such as network
modeling [5, 6, 7], cascading failures [8, 9, 10, 11, 12], evolutionary games
[13, 14, 15, 16], optimization [17, 18, 19] and traffic dynamics [20, 21, 22] and
so on.

Large infrastructure networks such as the Internet, power grids and trans-
portation systems [23, 24] play a significant role in the modern world. As the
robustness of infrastructure networks is becoming more and more important,
the robustness of complex networks has attracted many researchers in recent
years [25, 26, 27, 28, 29]. Albert et al [30] found that complex networks with
scale-free character are robust to random failures but vulnerable under ma-
licious attacks. Cohen et al [31] explored the robustness of the Internet and
proposed an analytical approach to find the critical percolation threshold on
random networks. Holme et al [32] investigated the effect of four attacking
strategies: removal by descending order of betweenness and degree, calculat-
ed for either the current network during the removal process or the initial
network. It is found that adaptive attack strategies are more effective than
attack strategies based on the initial network.

Recently, Schneider et al. [33] proposed a new measure R for network
robustness and investigated optimal network structure against high-degree
node removal with respect to this measure. They found that the final robust
networks exhibit an onion structure in which highly connected nodes form a
core surrounded by rings of nodes with decreasing degree. Following the pio-
neering work of Schneider et al, many researchers have used this new robust-
ness measure and onion-like structure to explore the robustness of networks
[34, 35, 36, 37]. Wu et al. [38] proposed a generative algorithm to efficiently
produce synthetic scale-free networks with onion structure and validated the
robustness of their generated networks against malicious attacks and random
failures. Complementary to the node-robustness measure, Zeng et al. [39]
proposed a link-robustness index and designed a hybrid greedy algorithm to
against both node and link attacks. The results show that network robust-
ness can be significantly improved. In previous works, the value of network
robustness measure R is calculated within the whole process of malicious
attacks, resulting in a time-consuming calculation process. In modern so-
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ciety, there are many large networks such as the World Wide Web and the
Internet, hence the computation cost of network robustness measure on large
networks needs to be considered. This calls for a quicker, smarter method
to calculate the value of network robustness measure R. In this paper, we
propose a computationally efficient robustness measure corresponding to the
critical fraction of attacked nodes and confirm its reasonability on three types
of network models and three real complex networks.

The paper is organized as follows. In the next section we demonstrate
the computationally efficient robustness measure and attacking strategies in
detail. In Section 3, simulation results and correspondent theoretical analysis
are provided. Finally, the work is summarized in Section 4.

2. The Model

The unique network robustness measure proposed by Schneider et al. is
defined as [33]

R =
1

N

1∑
q=1/N

s(q), (1)

where N is the number of nodes in the network, q is the fraction of removed
nodes and s(q) is the fraction of nodes in the largest connected component
after removing qN largest degree nodes. The normalization factor 1/N en-
sures the comparability of network robustness of different sizes. The range
of possible values of R is between 0 and 0.5, where R = 0 corresponds to a
star network, in which all nodes in the network are isolated after removing
the hub node. If R = 0.5, the original network is a fully connected network
and the largest connected component decreases only one node at each node
attack step [34]. Obviously, networks with higher value of R are of stronger
resistance to targeted node attacks.

Since the robustness measure R captures the effects on the network over
the entire attack sequence, it is especially time-consuming when the size of
the network is huge. From the definition of R, we can see that R is strongly
correlated with the size of the largest connected component. It is known that
network robustness can also be measured by the critical percolation threshold
qc, which is the minimum value of the remaining node fraction required for
a unique giant component to be of the order of the entire network under
attacks [30, 31, 32]. For huge networks, since the change of s(q) is relatively
small after the giant component completely collapses, it is reasonable that
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the calculation efficiency of R will be efficiently improved if the calculation
process is stopped at q = qc.

To estimate the calculation efficiency of R, we define a cost-based function

R(t) =
1

N

t∑
q=1/N

s(q) ≈ t− t(tN + 1)

2N
, (2)

where t (1/N ≤ t ≤ 1) is the cost indicator of the calculation process and
R = R(1). Obviously, the smaller the value of t, the lower the calculation
cost of R(t). If the network is fully connected and the largest connected
component decreases only one node at each node attack step, we can get
R(t) ≈ 1

N
(N−1

N
+ N−2

N
+ · · · + N−tN

N
) = t − t(tN+1)

2N
. Consequently, R(1) ≈

(N − 1)/2N ≈ 0.5, R(1/N) ≈ (N − 1)/N2 and R(1/N) ≈ 0 for large N
values, indicating that the range of R(t) values is the same as that for R.

Based on above analyses, we propose a computationally efficient robust-
ness measure which is defined as

R′ = R(qc) =
1

N

qc∑
q=1/N

s(q) ≈ qc(1−
1

2N
)− q2c

2
, (3)

where qc is the critical threshold at which the giant component is completely
collapsed. Since qc is usually smaller than one, the calculation efficiency of
R′ is higher than that of R. Obviously, the higher the value of R′ is, the
stronger the network robustness is.

To investigate the robustness of networks, different attacking strategies
have been intensively studied [40, 41], including node attacking strategies
[30, 31, 42] and edge attacking strategies [32]. Node attacking strategies are
usually based on node centrality measures [43], such as node degree [44],
betweenness [45] and closeness [46], etc. In our model, we adopt two com-
monly used node attacking strategies: the high-degree adaptive attack (H-
DA) [32, 36, 47] and the high-betweenness adaptive attack (HBA) [32]. For
HDA, the node with the highest degree is deleted at each attack step and
the highest degree of the network is recalculated before each attack. In the
case of HBA, the node with the highest betweenness will be removed at each
attack step and we recalculate the highest betweenness of the network before
each attack. It is noteworthy that the edges linking the removed node are
deleted simultaneously.

To validate the reasonability of the computationally efficient robustness
measure R′, we will apply it to the investigation of the robustness of three
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different types of network models and three real-world networks under HDA
and HBA.

3. Simulation Results

Firstly, we discuss the robustness of three well-known network models:
Erdös-Rényi (ER) random networks [5], Watts-Strogatz (WS) small-world
networks [6] and Barabási-Albert (BA) scale-free networks [7]. For above
network models, the networks size N is 3000. Here we set m = m0 = 3
for BA networks, the rewiring probability p = 0.01 for WS networks and
the connection probability p = 0.002 for ER networks. Figure 1(a) shows
R(t) and s(q) as a function of q under HDA on ER networks. One can see
that the value of s(q) decreases with the increment of q and s(q) ≈ 0 when
q = qc. On the other hand, the value of R(t) increases with q and R =
R(1) ≈ R(qc) = R′ when q > qc. This means that the calculating procedure
of R can be effectively stopped at q = qc, where the giant component is
completely destroyed. Meanwhile, we can see that qc ≪ 1, which indicates
that the computational cost of R can be significantly decreased. In the case
of WS networks (Figure 1(b)), the increment of R(t) can also be ignored
when q > qc. For BA networks (Figure 1(c)), although the value of qc is
quite small, we can see that R ≈ R′ when q > qc.

For attacking strategy of HBA, the computationally efficient robustness
measure R′ are displayed as well (Fig. 1(d)-(f)), indicating that the compu-
tational cost of R can also be lowered under HBA for three different network
models. Meanwhile, due to the lowest qc value of BA networks, the calculat-
ing efficiency of R′ for BA networks is highest in three network models.

To further confirm the reasonability of R′, we also investigate R(t) and
s(q) as a function of q on three real networks: coauthorship network, power
grid and the Internet. Here, the coauthorship network is a network of coau-
thorships between scientists working on network theory and experiment [48];
the power grid is an undirected unweighted representation of the topology
of the western states power grid of the United States [6]; the Internet is a
symmetrized snapshot of the Internet structure at the level of autonomous
systems. From Figure 2, one can see that R ≈ R′ when q > qc in all three
real networks whatever the attacking strategy is, which is in good accordance
with the result of three network models.

To measure the computational efficiency for R′ against R, we investigate
the reduction of node attack steps for R′ against R on different networks
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Figure 1: R(t) and s(q) as a function of q under HDA on different network models: (a)
ER; (b) WS; (c) BA. R(t) and s(q) as a function of q under HBA on three network models:
(d) ER; (e) WS; (f) BA. For these network models, the network size N = 3000 and the
average degree ⟨k⟩ = 6. Here we set m = m0 = 3 for BA networks, the rewiring probability
p = 0.01 for WS networks and the connection probability p = 0.002 for ER networks. Each
figure is averaged over 10 independent realizations.
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Figure 2: R(t) and s(q) as a function of q under HDA on three real networks: (a) coauthor-
ship network; (b) power grid; (c) the Internet. R(t) and s(q) as a function of q under HBA
on three real networks: (d) coauthorship network; (e) power grid; (f) the Internet. Here
the size of three real networks is Ncoauthor = 379, Npower = 4941 and Ninternet = 22963,
respectively.
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(Table 1). In our approach, the reduction of node attack steps Nr = N −
qcN = (1− qc)N , where N is the number of nodes in the network.

Table 1: The reduction of node attack steps Nr for different networks. Here the value of
qc and N are come from data of Figures 1 and 2.

ER WS BA coauthorship power grid the Internet
1−qc Nr 1−qc Nr 1−qc Nr 1−qc Nr 1−qc Nr 1−qc Nr

HDA 0.60 1800 0.61 1830 0.96 2880 0.78 295 0.90 4447 0.96 22044
HBA 0.62 1860 0.90 2700 0.97 2910 0.60 227 0.88 4348 0.97 22274

From Table 1, one can see that the reduction of node attack steps is con-
siderable for all networks. More than 60% of attack steps are unnecessary,
especially for BA networks (97%) and the Internet (97%). As we do not
need to calculate the largest connected component and search for the node
of largest degree in it in the omitted steps, calculation costs decrease con-
siderably. Therefore, the computational efficiency for R′ against R is greatly
improved.
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Figure 3: R(t) as a function of q under HDA and HBA with different network sizes
(N = 100, 500, · · · , 2500) on three network models: (a) ER, HDA; (b) WS, HDA; (c)
BA, HDA; (d) ER, HBA; (e) WS, HBA; (f) BA, HBA. The inset shows the relationship
between the computationally efficient robustness measure R′ and network size N . Here
the average degree ⟨k⟩ = 6, and each datum is averaged over 10 independent realizations.

In our approach, the time requirement for R′ and R is O(N3). To explore
the calculation efficiency of R′ against R in more detail, we investigate the
real execution time for R′ and R on different networks (Table 2).
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Table 2: The real execution time (in seconds) for R′ and R on a specific environment,
where CPU: i5-4590; Memory: 8G; OS: Ubuntu 16.04 LTS; Programming language: R
3.3.2. Here the network parameters are the same as that in Figures 1 and 2.

ER WS BA coauthorship power grid the Internet

R′ R R′ R R′ R R′ R R′ R R′ R
HDA 8.70 14.18 7.85 13.57 0.58 10.55 0.25 0.93 4.99 25.06 33.26 377.58
HBA 430.05 435.72 60.40 69.98 1.51 11.56 0.41 0.92 41.49 60.84 2754.98 3096.76

From Table 2, we can see that the real execution time for R′ is significantly
smaller than execution time of R on different types of networks. Especially,
more than 94% execution time is saved for BA networks under HDA.

Next, we will discuss the effect of the network size N on the computa-
tionally efficient robustness measure R′. Figure 3 shows R(t) as a function
of q with different network sizes (N = 100, 500, · · · , 2500), and the relation-
ship between R′ and N is depicted in the inset. This shows that, for three
network models, R ≈ R′ when the value of q goes beyond a critical value
whatever the value of N is, reflecting that the calculation efficiency of R can
be improved under different network sizes. One can see that the value of R′

decreases with the increment of N for three network models. On the other
hand, the value of R′ is almost the same when N is large. From Eq. (3), we
can get R′ ≈ qc − q2c/2 for large N values, thus an approximate value of R′

is displayed with respect to large N values.
The average degree is an important topology parameter in complex net-

works. It is known that network robustness is heavily affected by the network
average degree [42]. To explore the impact of the average degree ⟨k⟩ on R′, we
plot the relationship between R(t) and q on three network models with differ-
ent average degrees (⟨k⟩ = 6, 8, · · · , 16), and the inset shows R′ as a function
of ⟨k⟩ (Figure 4). This shows that, for three network models, R ≈ R′ when
the value of q goes beyond a certain threshold whatever the value of ⟨k⟩ is,
indicating that the calculation efficiency of R can be improved under differ-
ent average degrees. Besides, one can see that the value of R′ increases with
⟨k⟩, regardless of the network models and attacking strategies, indicating
improved network robustness for more compact structures.

4. Conclusion

To summarize, we have proposed a computationally efficient robustness
measure R′, where the time-consuming calculation process of robustness mea-
sure R can be effectively stopped at a critical threshold qc, at which the giant
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Figure 4: R(t) as a function of q under HDA and HBA with different average degrees
(⟨k⟩ = 6, 8, · · · , 16) on three network models: (a) ER, HDA; (b) WS, HDA; (c) BA, HDA;
(d) ER, HBA; (e) WS, HBA; (f) BA, HBA. The inset shows the relationship between
the computationally efficient robustness measure R′ and the average degree ⟨k⟩. Here the
network size N = 3000, and each datum is averaged over 10 independent realizations.

component is completely collapsed. We confirm the reasonability of R′ on
three different types of network models and three real-world networks. The
results show that R′ is effective on all these networks. Furthermore, the ef-
fects of the network size and the average degree on R′ are investigated. It is
found that the value of R′ increases with the average degree of networks, yet
an opposite effect is observed for the network size.
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