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Nomenclature

Ac = cross-sectional area of heat exchanger

As = surface area for radiative heat transfer

A0 = a constant

A1 = a constant

a = acceleration

cp = coolant specific heat capacity

fc = coolant volume fraction in the core

fh = hydrogen volume fraction in the core

g = planetary gravity

Isp = specific impulse

Mo = total mass of the vehicle

mc = mass of HRS coolant inside the core

mr = mass of HRS coolant outside the core

mhrs = total mass of the HRS

mt = total HRS coolant mass

ṁ = propellant mass flow rate before shutdown

ṁd = propellant mass flow rate after shutdown

n = n times the gravity of the planet or moon

Pd = delayed power generation

Po = reactor power before shutdown

∆P = pressure drop over the core

p = pressure

∆p = pressure drop over heat exchanger

R = heat exchanger outer radius

Ro = rocket radius

r = radial coordinate

T = temperature of propellant

Tc = outlet temperature of coolant

Tc = average temperature of coolant

Td = thrust after shutdown

Tf = fuel temperature

Ti = inlet temperature of coolant
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To = thrust before shutdown

∆T = difference between outlet and inlet coolant temperature

t = time elapsed since shutdown

to = time at power before shutdown

V = average coolant velocity

Vcore = volume of the core

∆V = change of vehicle velocity

ve = exhaust velocity of propellant

β = fraction delayed neutrons

γ = heat decay fraction of the nominal power, Pd
Po

δ = gap thickness

ϵ = emissivity

µ = viscosity

ρc = coolant density

σ = Stefan-Boltzmann constant

I. INTRODUCTION

It is well-known that a nuclear thermal rocket (NTR) cannot be abruptly shut down. After

a power manoeuver, the reactor has contaminated itself with fission products and the decay heat

released must be removed by maintaining an adequate flow of hydrogen through its passages.

The objective of this work was to derive a first estimate of how much hydrogen will be needed to

prevent the core from overheating after shutdown, and, from this, be able to assess the advantages

of using a dedicated decay heat removal system to reduce or eliminate the amount of hydrogen

needed to prevent the core from overheating after shutdown. Furthermore, the use of such a heat

removal system could be needed by certain special nuclear thermal propulsion concepts, such as

the fission fragment rocket [1] or the more recently proposed pulsed nuclear thermal rocket [2],

where significant amplification of specific impulse, Isp, as well as thrust can be obtained by the

direct use of fission fragments or by pulsing the nuclear core, respectively.
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II. HYDROGEN NEEDED TO PREVENT THE CORE OVERHEATING AFTER A MA-

NEUVER

Many semi-empirical formulations for decay heat after shutdown in a nuclear reactor are avail-

able, but in view of the uncertainties in the context considered here and for preliminary estimate

purposes, the simplest expression, due to Way and Wigner [3], known as the Wigner-Way formula,

which is valid from 10 seconds to 100 days after shutdown, seems appropriate:

Pd(t) = 0.0622Po

[
t−

1
5 − (to + t)−

1
5

]
(1)

where Pd is the power generation due to beta particles and gamma rays, Po is the reactor power

before shutdown, to is the time, in seconds, of operation at this power before shutdown, and t is

elapsed time since shutdown, in seconds.

From this relationship, we can assess the hydrogen needed for “aftercooling” of the nuclear-

rocket engine after shutdown. To begin with, we need to calculate the total decay heat power

after shutdown, which, according to Eq. (1), depends on the power Po and time to used during the

previous maneuver (with the nuclear-rocket engine operating at nominal power). There are two

important cases to consider, as follows.

A. Case I: In-space Orbital Maneuver

Let us first consider an in-space orbital maneuver and neglect the gravitational acceleration of

planetary or moon bodies. The maneuver consists of a change of velocity ∆V . If the acceleration

a is assumed constant during the maneuver, then it is given by

a =
ṁve
Mo

(2)

where ṁ is the mass flow rate of the propellant (hydrogen) during the maneuver, ve is the exhaust

velocity of the propellant, and Mo is the total mass of the vehicle, which is assumed constant, i.e.

the mass of propellant ejected during the maneuver is assumed to be negligible compared to Mo.

The time to needed for such a maneuver is given by ato = ∆V , which results in the following

relationship:

to =
∆VMo

ṁve
(3)
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Noting that the thrust, To, is given by To = ṁve, then to may be rewritten as

to =
∆VMo

To
(4)

The rate at which kinetic energy is being put into the jet, which equals the reactor power, is

given by

Po =
1

2
ṁv2e (5)

or

Po =
1

2
Tove (6)

Inserting Eqs. (6) and (4) into Eq. (1) yields

Pd(t) = 0.0311Tove

[
t−

1
5 −

(
∆VMo

To
+ t

)− 1
5

]
(7)

This decay heat power must be removed by exhausting additional propellant to prevent the

core overheating. Therefore, according to Eq. (5), the mass flow rate of propellant needed during

decay heat removal after shutdown, ṁd, is given by

ṁd(t) =
2Pd(t)

v2e
(8)

which combined with Eq. (7) yields

ṁd(t) = 0.0622
To

ve

[
t−

1
5 −

(
∆VMo

To
+ t

)− 1
5

]
(9)

By integration of Eq. (9) one obtains the total mass of propellant md(t) needed for cooling the

reactor over a period of time t after a shutdown:

md(t) = 0.0622
To

ve

∫ t

tmin

[
t−

1
5 −

(
∆VMo

To
+ t

)− 1
5

]
dt (10)

where tmin is 10 seconds, the lower limit of the range of validity of the Wigner-Way formula

(Eq. (1)), and t is also in seconds and must be less than 8.64× 106 seconds (100 days), the upper

limit of the range of validity of the Wigner-Way formula. In practice, t will be the time at which the
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power falls to a level where other means of heat removal (conduction and radiation) are sufficient

to cool the core. Performing this integral, we obtain

md(t) = 0.0778
To

ve

[(
∆VMo

To
+ 10

) 4
5

− 10
4
5 + t

4
5 −

(
∆VMo

To
+ t

) 4
5

]
(11)

Of course, the core will also need to be cooled over the first 10 seconds following shutdown. Eq. (11)

therefore represents a slight underestimate of the amount of propellant required.

B. Case II: Lift-off or Landing on a Planet or Moon

An interesting case to consider is during lift-off, or landing on a planet or moon, where high

thrust is essential and a NTR is more attractive than other options. For this case, let us consider

that our rocket with initial mass Mo and propellant exhaust velocity ve is working with a total

acceleration, say, ng, i.e. n times the gravitational acceleration of the given planet g, where n is in

the range 2–5. The thrust is given by

To = Mong (12)

and then Eq. (11) becomes

md(t)

Mo
= 0.0778

ng

ve

[(
∆V

ng
+ 10

) 4
5

− 10
4
5 + t

4
5 −

(
∆V

ng
+ t

) 4
5

]
(13)

This hydrogen will continue generating thrust at a decreasing rate, and contributing to the final

velocity of the space vehicle, and this must be taken into account in the calculations.

The decreasing thrust is calculated as Td(t) = ṁd(t)ve, which, using Eq. (9), can be expressed

as

Td(t) = 0.0622To

[
t−

1
5 −

(
∆VMo

To
+ t

)− 1
5

]
(14)

and for the lift-off maneuver becomes

Td(t) = 0.0622Mong

[
t−

1
5 −

(
∆V

ng
+ t

)− 1
5

]
(15)
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FIG. 1: Propellant required for cooling the nuclear rocket after a LEO maneuver.

C. Discussion

To obtain some idea of the shape of the curve predicted by Eq. (13), let us consider a Mars

Design Reference Mission. In this, a large launch vehicle of ∼100 tonnes is placed in low Earth

orbit (LEO) (∆V = 9.3 km/s). Also, let us take the maximum exhaust velocity for a solid NTR

to be 9 km/s or thereabouts. The resulting curves are shown in Fig. 1 using several values of

acceleration.

As can be seen from this figure, the propellant mass as a percentage of the mass of the vehicle

is independent of the mass of the vehicle and only depends on the acceleration and ∆V . The

hydrogen needed to prevent the core from overheating is about 2% of the total vehicle mass. The

specified mass of the NERVA NTR when full was more than 178,000 kg. 2% of this is 3560 kg.

III. FEASIBILITY OF USING A DEDICATED HEAT REMOVAL SYSTEM

It is interesting to assess the advantages of using a dedicated residual heat removal system

(HRS) to reduce or eliminate the amount of hydrogen needed to prevent the core overheating after

shutdown. The advantages of using a HRS must primarily be weighed against the additional space-

craft mass incurred as a result of incorporating this auxiliary cooling system into the vehicle. In

this section, we perform some calculations on the mass requirements of the system. Although these

are admittedly very simplified calculations, nevertheless, they will allow us to gain an important

insight into the mass of the system.
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The additional HRS mass can be estimated using the fact that the total mass of the HRS will

primarily depend on two factors, namely: (a) the inventory of coolant mass used, and (b) the mass

of the pumping equipment. Let us examine these two factors separately.

A. Coolant Mass Inventory

Let us consider the schematic shown in Fig. 2 for the calculation of the total mass of coolant

needed. In this, for the sake of generality, a flat circular design is selected as the most simple heat

exchanger for radiative heat removal. Coolant is entering the core with a temperature Ti and, after

being heated in the core by an amount ∆T , is exiting at an outlet temperature

Tc = Ti +∆T (16)

To a good approximation Tc ≃ Tf , where Tf is the fuel temperature, and thus ∆T ≃ Tf − Ti.

The total coolant mass inventory in the HRS can be divided into two contributions, namely:

the coolant in the core, mc, and the coolant circulating outside the core (i.e. in the exchanger),

mr. Thus, the total coolant mass inventory mt is given by

mt = mc +mr (17)

To calculate the coolant inventory outside the core, we proceed as follows.

First, let us calculate the pressure drop in the exchanger depicted in Fig. 2. For the one-

dimensional viscous flow in cylindrical co-ordinates, the momentum equation yields [4]:

dp

dr
=

12µV

δ2
(18)

where p is pressure, r the radial coordinate, µ the coolant viscosity, V the average velocity of the

coolant inside the exchanger, and δ the gap thickness, as depicted in Fig. 2.

However, by continuity:

ṁc = ρcV Ac = ρcV 2πrδ (19)

where ṁc, ρc and Ac are the coolant mass flow rate, density and heat exchanger local cross-sectional

area, respectively.
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FIG. 2: Schematic of HRS coolant exchanger for the pressure drop calculation.

The coolant mass flow rate is given by the overall energy balance condition for heat removal:

ṁc =
Pd

cp∆T
(20)

where cp is the coolant specific heat capacity, and ∆T is, as defined above, the difference between
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the core inlet and outlet coolant temperatures. Thus, the coolant velocity varies with radius

according to

V =
Pd

2πrδρccp∆T
(21)

For the sake of generality, it is convenient to express the decay power Pd as a function of the

nominal power Po before shutdown:

Pd = γPo (22)

Then Eq. (20) can be expressed as

ṁc =
γPo

cp∆T
(23)

In this way, we can calculate the coolant mass requirement for a HRS working at nominal power,

i.e. γ = 1 (e.g. for a fission fragment rocket [1] or a pulsed NTR [2]), or only for decay heat removal

after shutdown, for propellant saving purposes, as discussed in previous sections. In the latter case

γ ≃ 0.06 or 6% of the nominal power immediately after shutdown.

Combining Eqs. (21) and (22):

V =
γPo

2πrδρccp∆T
(24)

Eq. (18) then becomes

dp

dr
=

6µγPo

πrδ3ρccp∆T
(25)

This equation, integrated between the internal radius of the exchanger (which in our simple

model is the radius of the rocket) r = Ro and the external radius r = R, yields the required

pressure difference to sustain the flow:

∆p =
6µγPo

πδ3ρccp∆T
ln

(
R

Ro

)
(26)

Noting that R ≫ δ, the available heat transfer surface area is given by

As ≃ 2π
(
R2 −R2

o

)
(27)
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with the factor of 2 taking into account the fact that there are two available surfaces (upper and

lower). Using this relationship to substitute for R in Eq. (26), and then solving for the gap thickness

of the heat exchanger yields:

δ =

[
3µγPo

πρccp∆T∆p
ln

{
As

2πR2
o

+ 1

}] 1
3

(28)

The total mass of coolant circulating within the exchanger is calculated as mr =
1
2ρcAsδ, which,

using Eq. (28), results in:

mr =
ρcAs

2

[
3µγPo

πρccp∆T∆p
ln

{
As

2πR2
o

+ 1

}] 1
3

(29)

Energy balance requires that the energy produced per unit time in the core must be radiated

into space by the HRS. The local coolant temperature within the heat exchanger is, to a good

approximation, the temperature at which the HRS is initially radiating into space. Therefore

γPo = ϵσ
(
Tc

4 − T 4
ν

)
As (30)

where ϵ is the HRS emissivity, σ is the Stefan-Boltzmann constant, Tc is the appropriate average

value of the coolant temperature, As is, as before, the radiative heat transfer area of the vehicle,

and Tν is the local radiation temperature, which is just a few degrees Kelvin far from the Sun, and

thus, to a good approximation, T 4
ν can be neglected in comparison to Tc

4
.

It is desirable to maximize the gain in temperature in the coolant in order to increase the rate

of radiative heat transfer to empty space. Taking into account the fact that this temperature must

be less than or equal to the temperature of the fuel, Tf , i.e. Tc < Tc ≤ Tf , and that, as discussed,

∆T ≃ Tf − Ti, and assuming that ϵ = 1, which is a valid approximation if working with high

temperatures, Eq. (30) may be rewritten as

As =
γPo

σTc
4 (31)

which, when inserted into Eq. (29), gives

mr =
ρcγPo

2σTc
4

[
3µγPo

πρccp∆T∆p
ln

{
γPo

2πσTc
4
R2

o

+ 1

}] 1
3

(32)

Finally, we need an estimate of the mass of coolant inside the core, mc. This can be approxi-
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mately inferred by the following reasoning.

The volume of coolant inside the core will be a fraction of the total volume of the core, Vcore.

Denoting this fraction fc, then we have

mc = fc ρcVcore (33)

If the propellant (hydrogen) channels are also used as coolant channels for the HRS after shut-

down, then fc will equal the fraction of propellant (hydrogen) used in the core, fh. Even if it is

necessary to use dedicated coolant channels, e.g. as in the pulsed NTR concept [2], fh could be

taken as an upper limit for fc for the HRS. Thus, if the assumption that fc ≤ fh is accepted as

reasonable, Eq. (33) becomes

mc ≤ fh ρcVcore (34)

The volume fraction of hydrogen in an NTR is mostly determined by neutronic considerations.

Because the hydrogen used as the propellant is also used as a moderator, a specific volume ratio

between the volume of hydrogen Vh (as moderator) and the volume of fuel Vf is needed in order

to thermalize neutrons. This ratio is Vh
Vf

≃ 1.5 or thereabouts, meaning that fh ≃ 0.6.

Thus, Eq. (17) can be rewritten as

mt ≃ fh ρcVcore +
ρcγPo

2σTc
4

[
3µγPo

πρccp∆T∆p
ln

{
γPo

2πσTc
4
R2

o

+ 1

}] 1
3

(35)

B. Pumping Equipment Mass

The second factor to be considered is the mass of the pumping equipment, mp, which includes

the pump, piping and valves associated with the pump and turbine-drive system. For an NTR,

this mass can be estimated by the following functional relationship [5]:

mp = A1
ṁc

ρc
∆P

2
3 +A0 (36)

where ṁc is the coolant mass flow rate, ρc the coolant density, ∆P the pressure drop over the core,

A1 a constant of value A1 = 0.049 kg-sm−3 Pa−
2
3 , and A0 a constant of value A0 = 50 kg included

to take into account the reality that a pump-turbine system for nearly zero flow rate will still have

a finite mass.
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The coolant mass flow rate ṁc is calculated using Eq. (23), which, when inserted into Eq. (36),

gives

mp = A1
γPo

cpρc∆T
∆P

2
3 +A0 (37)

The total mass of the HRS including the coolant, mhrs, is given by

mhrs = mt +mp (38)

which, using Eqs. (37) and (35), yields

mhrs ≃ fh ρcVcore +
ρcγPo

2σTc
4

[
3µγPo

πρccp∆T∆p
ln

{
γPo

2πσTc
4
R2

o

+ 1

}] 1
3

+A1
γPo

cpρc∆T
∆P

2
3 +A0 (39)

To obtain an estimate of the mass of the HRS predicted by Eq. (39), we assume some typical

values of the parameters: For a nuclear core of radius 0.25 m and length 0.75 m (somewhat similar to

a NERVA nuclear core), the resulting core volume is Vcore ≃ 0.15 m3; with fh = 0.6 (as discussed

above); σ = 5.670 × 10−8 Wm−2K−4; Tf ≃ 3000 K, which is close to the maximum melting

temperature of some nuclear fuels investigated; a rocket radius Ro = 3 m; a maximum permissible

coolant core and heat exchanger pressure drop of 1.0 MPa [6]; A1 = 0.049 kg-sm−3 Pa−
2
3 and

A0 = 50 kg [5]. Choosing lithium as the most suitable coolant for space applications [2, 7], we have

ρc = 400 kgm−3, cp = 4169 J kg−1K−1 and µ = 0.14 × 10−3 kgm−1 s−1; and we take the coolant

inlet temperature Ti to be the melting temperature of lithium, i.e. Ti ≃ 500 K.

Finally, the coolant temperature falls as it circulates in the HRS and heat is radiated into space.

However, for a HRS with a very small gap thickness, i.e. δ → 0 (which is desirable in order to

minimize the inventory of coolant inside the exchanger), each radial element of coolant circulating

inside the exchanger will store a very small amount of sensible heat per unit radial length (dr). If

the initial temperature of the coolant is high enough, which is the case if Tc ≃ Tf ≃ 3000 K, then

the coolant temperature would reduce rapidly. So, if it is allowable to assume that Tc ≃ Tf

2 , the

resulting relationship between HRS mass and power is as shown in Fig. 3.

Noting that the power immediately after shutdown Pd is about 6% of the reactor power before

shutdown according to Eq. (1), then, for a Phoebus-2A-like reactor, which delivered over 4000 MW

of thermal energy within the NERVA/Rover programme, for γ = 0.06, Pd = 240 MW, and thus

Fig. 3 shows that the required HRS mass would be ∼200 kg. Although the value calculated is,
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FIG. 3: HRS mass as a function of power calculated using Eq. (39).

admittedly, a very rough estimation, in which some factors contributing to the mass of the system,

such as the structure of the heat exchanger, the thickness of its walls, etc. have not been considered,

nevertheless this allows us to gain some insight into realistic values for HRS mass. To stay on the

safe side, let us assume the true mass of the HRS is double this figure, i.e. ∼400 kg. This is just

11% of the mass of hydrogen (propellant) estimated to be required for NTR cooling purposes in

subsection IIC. It seems as if a dedicated HRS is certainly worth considering.

C. HRS for Fission Fragment and Pulsed NTR Concepts

There are at least two known nuclear rockets concepts which demand the use of a dedicated

HRS for heat removal when working at nominal power. One of these is the fission fragment rocket

[1] and the other the pulsed NTR [2]. In the former, due to isotropic emission, the fission fragments

not terminating inside the propellant deposit energy inside the reactor walls, and thus cooling the

walls coated with fissioning fuel is crucial [8]. In the latter, if the pulsed NTR is intended for

specific impulse (Isp) magnification, then all the fission fragment energy is unwanted and must be

removed by an auxiliary system.

For both concepts, if we assume a nominal power on the order of 1 GW, then, according to

Fig. 3, the HRS mass requirements should be ∼1 ton. To be on the safe side, we can assume a mass

an order of magnitude larger than the calculated figure, i.e. ∼10 tons. Although this might seem a

prohibitively large figure, it must be borne in mind that, for these concepts, the magnification in

Isp can be 2–3 times or even more (depending of the reduction in radiative losses inside the core).

With such Isp magnification factors and because of the strong dependence of the propellant mass
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needed on Isp, the reduction in the mass of propellant required to, say, lift 100 tons of payload into

LEO will be ∼100 tons.

D. Delayed Neutrons Flux After Shutdown

In the preceding sections, only the heat generated after shutdown from the radioactive decay of

fission products was considered and the fission heat from delayed neutrons was neglected. This is a

valid approximation after a few minutes, because the heat generated from fission products reduces

much more slowly than the fission heat from delayed neutrons. However, the delayed neutrons

resulting from fission occurring before shutdown continue to be released and have an important

effect on the neutron flux and heat generation rate immediately after the reactor is shut down [9],

and must therefore be considered in the calculation of the mass requirements for a HRS.

If, as before, Po is the reactor power before shutdown, then the power at time t after the insertion

of negative reactivity due to fission heat from delayed neutrons Pn(t) is given by [9]

Pn(t)

Po
≃ β

β − ρ
exp

(
−t

80 (s)

)
(40)

where β is the fraction of delayed neutrons, and ρ the negative reactivity inserted.

This expression gives an idea of the variation of fission heat power after shutdown by the

rapid insertion of control rods, producing a large negative step change in reactivity. For instance,

assuming ρ = −0.1, which is about as large a value as can be realized in a reactor [9], and noting

that β is 0.0065 for uranium-235, the resulting power ratio will initially be about 0.06, i.e. the

fission heat power will be 6% of the steady-state, pre-shutdown, value.

This figure is very similar to the power from the decay of fission fragments immediately after

shutdown. Thus, to be on the safe side, by doubling the value of the delayed power Pd used in

Eq. (39), we will approximately double the estimated mass requirements for our HRS, i.e. ∼800

kg, rather than ∼400 kg. Even so, a dedicated HRS is still worth serious consideration based on

the estimates presented here.

IV. CONCLUSIONS

An estimate of the propellant needed for shutdown aftercooling in nuclear thermal reactors and

the feasibility of using a dedicated heat removal system was analyzed. Some interesting conclusions

are drawn by this study as follows:
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(a) Up to a 2% of the total mass of the spacecraft in hydrogen will be wasted in a LEO manoeuver

after shutdown of the nuclear core. This non-negligible hydrogen mass overcomes by far the

unavoidable hydrogen boil-off losses.

(b) By using a dedicated heat removal system, this sacrificed hydrogen could be saved and used

more properly for propulsion.

(c) Mass requirements of a dedicated heat removal system when it is weighed against the pro-

pellant saving gained makes a very attractive option.

(c) The attractiveness of a dedicated heat removal system in NTRs is even higher if used in

advanced nuclear rocket concepts as the fission fragment rocket or pulsed NTRs, where the

gain in propellant would be not just by aftercooling saving but also from the magnification

in Isp
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