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Abstract—In this paper we propose a runtime-based se-
lective task replication technique for task-parallel high per-
formance computing applications. Our selective task replica-
tion technique is automatic and does not require modifica-
tion/recompilation of OS, compiler or application code. Our
heuristic, we call App FIT, selects tasks to replicate such that
the specified reliability target for an application is achieved. In
our experimental evaluation, we show that App FIT selective
replication heuristic is low-overhead and highly scalable. In
addition, results indicate that complete task replication is
overkill for achieving reliability targets. We show that with
App FIT, we can tolerate pessimistic exascale error rates with
only 53% of the tasks being replicated.

I. INTRODUCTION

As High Performance Computing (HPC) systems grow
in size and complexity, they become more vulnerable to
faults [9]. Moreover it is expected that hardware-only fault-
tolerance solutions will not be adequate to handle the
expected error rates [13] in the future. Thus, software-based
solutions must complement hardware techniques to address
the reliability of future HPC systems and applications. These
solutions can be provided at programming model (PM)
and/or runtime level. Currently task-based parallel PMs are
becoming widely used to implement HPC applications for
achieving higher performance [10]. In addition, it has been
shown that dataflow execution model improves performance
of HPC applications with asynchronous execution [4]. As
a result, programming platforms such as OpenMP 4.0 [30]
and Intel Threading Blocks (TBB) [2] have recently added
support for task-based dataflow parallelism. Thus we find
that it is important to provide software-based fault-tolerance
for task-parallel dataflow HPC applications.

Redundant computation and checkpoint/restart are two
well-known techniques to achieve fault-tolerance. In re-
dundant computation, multiple replicas of a program are
executed in parallel, such as task replication in a task-based
HPC application. Redundant computation can be used for
recovering from task failures as well as for detecting silent
errors. It recovers from task failures since if a task replica
fails, the remaining replicas can still continue their com-
putations. It detects silent errors, such as data corruptions,
by comparing the results of the replicas. A data corruption
is called silent if it is undetected. Silent data corruptions

(SDCs) jeopardize the correctness of the results of HPC
applications [18] and as a result they pose a significant
threat. However, detecting SDCs is not sufficient, it is also
necessary to recover from SDC errors. Checkpoint/restart
can be utilized for SDC error recovery. In checkpoint/restart,
the state of the computation, called checkpoint, is saved
periodically and when a SDC error is detected, the com-
putation restarts from the latest checkpoint thus recovering
from SDC. In this work we combine redundant computation
- in our case replication of application tasks - and check-
point/restart to address SDCs and failures of task-parallel
HPC applications while increasing reliability.

The straightforward way to achieve this goal is to replicate
all application tasks, that is, complete task replication1.
However complete task replication may be prohibitive due
to the high resource cost and in fact might be excessive due
to the uneven susceptibility of the different program parts to
SDCs [24]. Therefore effective and efficient techniques are
needed to selectively replicate tasks. However the optimal
selective replication is NP-hard which can be formalized
as a bounded knapsack problem [26]. Therefore, practical
selective replication solutions must employ heuristics. In our
main contribution, we propose a runtime-based, fully auto-
matic and completely transparent heuristic, called App FIT,
to selectively choose tasks for replication. Our design does
not require any modifications at all to application code or
operating system.

With App FIT, users can set the desired reliability in Fail-
ures in Time (FIT)2 that their application requires and our
heuristic transparently and automatically replicates tasks se-
lectively to make sure that this target reliability is achieved.
The App FIT heuristic is useful when application users need
the flexibility to specify the required level of reliability
since different applications may have different reliability
requirements as shown in [16].

In our experimental evaluation, we find that complete task
replication over-allocates resources. In fact, we show that
by using our selective task replication heuristic App FIT
heuristic, we can tolerate pessimistic exascale error rates
with only 53% of task replication. Moreover, results show

1We use replication to refer to replication and checkpoint/restart together.
2FIT is a commonly used unitless reliability metric defined as number

of failures per billion hours.
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that App FIT has very low overheads by smart replication
of tasks. In fact, the fault-free performance overhead of
App FIT is found to be negligible.

We highlight two findings from our experiments and
the analysis of the results. First, we find that complete
replication is not needed to cope with the future HPC error
rates. Second, our evaluation confirms our intuition that
fault-tolerance based on task-parallel dataflow programming
is efficient, scalable and low-overhead. Briefly, our contri-
butions are:

• Design, implementation and evaluation of low overhead
and highly scalable selective task replication.

• An automatic and efficient heuristic to selectively repli-
cate tasks while reducing costs significantly.

The rest of this paper is organized as follows: Section II
presents background and our motivation. Section III provides
the design of task replication. Section IV discusses our
heuristic. Section V presents the experimental evaluation.
Section VI surveys related work. Finally, Section VII sum-
marizes this work.

II. BACKGROUND AND MOTIVATION

This section introduces the error classification and fail-
ure model (Section II-A). Then it discusses task-parallel
dataflow programming (Section II-B). Finally, it presents our
motivation for selective replication (Section II-C).

A. Error Classification and Failure Model

Throughout this study, we refer to failures or errors as
the manifestation of faults. Errors are classified into three
categories based on their propagation (or lack thereof) from
typical error detection/correction hardware. The first class is
the Detected and Corrected Errors (DCE) where an error is
detected and corrected by the hardware. The second class
consists of errors that are Detected and Uncorrected Errors
(DUE) where the hardware is unable to recover from the
detected error. DUEs are expected to become more frequent
in the future with the increasing likelihood of double-bit and
multi-bit flips [15, 35] for caches and memory. Moreover, a
single bit flip in parity protected processor structures such as
register files could also lead to a DUE. DUEs typically result
in the crash of applications since it is not possible for the
faulted processor/hardware to recover [42]. The third class of
errors consists of Silent Data Corruptions (SDCs). In SDC,
the error is not detected, and the application terminates with
wrong results. Recent research suggests that SDC can be a
serious threat for HPC and exascale [18, 34]. A previous
study at CERN found that SDC could be a serious concern
since the observed SDC rate was orders of magnitude higher
than manufacturer specifications [31]. Thus in this study we
target SDCs and DUEs.

Figure 1. Example code in Dataflow and Fork-join.

B. Task-parallel Dataflow Programming

Tasks, as a higher level abstraction than threads, provide a
more natural interface for expressing parallelism in parallel
programs. Depending on how tasks are scheduled for exe-
cution and how they interleave during execution, task-based
parallel programming can be either fork-join parallelism [11]
or dataflow parallelism [21]. In both, tasks execute in parallel
but are synchronized differently. Under fork-join parallelism
tasks have to be explicitly synchronized with a join barrier
whereas under dataflow parallelism tasks are synchronized
implicitly depending on their inputs and outputs. Annotating
these inputs and outputs of tasks in a correct and complete
way is the programmer’s responsibility as a programming
discipline in dataflow programming models. However they
are most often simply the inputs and outputs of functions.
There are also tools for the automation of the annotations
[39]. One can find example implementation of fork-join
tasks in OpenMP 3.0 [12] and dataflow tasks in OmpSs [14],
OpenMP 4.0 [30] and Intel TBB [2].

A recent comparison between dataflow and fork-join
parallelism by Amer et al. [4] suggests that the dataflow
execution model tends to perform better because it exploits
the available parallelism better. This can be demonstrated
with a simple contrived example in Figure 1. Figure 1 (a)
is an example dataflow code in OmpSs PM with three tasks
A1, A2 and B each incrementing the elements of an array.
In tasks A1 and A2, the inout keyword is used to declare
array A as both input and output. In similar way, array B
in task B is declared as both input and output. Figure 1 (b)
is the same example but for fork-join in OpenMP 3.0 PM.
The difference between Figure 1 (a) and (b) is that the fork-
join tasks do not declare explicitly their inputs and outputs
and the fork-join code has the taskwait pragma directive
between tasks A1 and A2. The figures under the code are
the dependency graphs of the tasks for dataflow and fork-
join, respectively. In dataflow the dependencies between the
tasks are inferred from tasks’ inputs and outputs whereas
the dependencies in fork-join has to be enforced explicitly
with a synchronization barrier like the taskwait directive.
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Such synchronization in fork-join is necessary because the
input of task A2 is the output of task A1 and task A2 cannot
start execution before task A1 completes. However, using a
taskwait barrier also prevents the execution of task B
although it does not depend on neither task A1 nor task
A2. In dataflow the dependence between the tasks is more
accurately reflected indicating that task B can execute even
before task A1 if its input is ready.

C. Motivation for Selective Replication

We propose selective task replication as a practical solu-
tion for real-life HPC programs that do not require complete
fault coverage. At high level, we foresee the following
scenario for using selective task replication. In this scenario,
the user sets the desired application reliability in terms
of Failures in Time (FIT). This scenario is related to the
observation that different applications may have different
reliability requirements. Hence the conservative approach
of replicating the entire execution may not be necessary.
Instead, replicating only the reliability critical parts of the
application might be sufficient to satisfy the application’s
reliability requirements. In fact, the pioneering work of Fang
et al. [16] finds that the algorithmic characteristics of parallel
programs correlate with the error resilience properties. They
report that different applications show different level of
resilience and exhibit different SDC rates. Hence the appli-
cation users can specify the level of resilience (FIT) for their
applications and our heuristic then automatically decides at
runtime the tasks to replicate such that the reliability of the
application is always below the specified FIT threshold.

III. TASK REPLICATION

This section details our task replication implementa-
tion. We implement our framework in publicly available
OmpSs PM and its Nanos runtime. However, our selective
task replication heuristics are applicable for other task-
parallel dataflow platforms. Nevertheless, the performance of
OmpSs+Nanos is on par with the highly optimized commer-
cial and open source implementation of OpenMP [5], [6] and
it has successfully served as a pilot platform to push dataflow
task parallelism to OpenMP 4.0. In the case of the distributed
OmpSs+MPI model, it combines dataflow execution with the
message passing model providing significant performance
benefits. It hides the communication latencies and achieves
higher performance compared to MPI only model [25].

Baseline Task Replication Design: Figure 2 shows our
design in action. At the beginning of the task, the task’s
inputs are checkpointed 1©. Then a replica is created by
creating a duplicate task descriptor 2©. In Nanos a task
descriptor is an internal data structure which represents an
instance of a task. It wraps the inputs and the outputs of
the task as well as a pointer to its code. Both the original
task descriptor and its replica are scheduled for execution.
Idle threads from a thread pool poll the internal structures

Figure 2. Task replication design: SDC mitigation

which store the scheduled task descriptors and execute
them asynchronously. The original task descriptors and their
replicas are executed in parallel but they are synchronized at
the end of their execution. This is the only synchronization
point where the results of the task and its replica are
compared 3©. The inequality of the results signifies that
SDC has occurred. In this situation, first the task’s initial
state is restored from its checkpoint and is re-executed 4©.
Then all three results are compared and the majority vote
is selected as the task’s result 5©. Although we use bitwise
comparison in this design, other comparators such as residue
error checkers can easily be deployed in the runtime.

Selective Task Replication Design: The criteria for task
selection is the rate that is estimated for a task based on its
argument size. This rate indicates how likely a task will fail.
At runtime the failure rates for a task are estimated before
the execution of a task and the decision for the selection
of the task for replication is taken by our heuristic. We will
elaborate on how failure rates are estimated in Section IV-A.

IV. TASK SELECTION HEURISTIC

When selecting tasks dynamically at runtime, our goal
is to avoid utilizing profiling information, which requires a
prerun as well as to avoid collecting additional information
at runtime since both are expensive. Therefore we propose
our heuristic, called App FIT, that makes use of only
already existing information at runtime to achieve efficient,
lightweight and near-optimal selective task replication. By
using the free information, i.e. information about task inputs
and outputs, from dataflow, we are able to design and
implement App FIT which does not require any profiling.
We will now first present how we estimate failure rates for
tasks and then we will present App FIT.

A. The Estimation of Failure Rates

In this subsection we first present how we calculate
failure rates in FITs for each application task and for the
whole application/benchmark. We use the FIT rates for
crashes (DUEs) and SDCs of Michalak et al. [29] for the
Roadrunner supercomputer. Michalak et al. obtained these
rates via accelerated neutron-beam test. We take the FITs
of a Roadrunner TriBlade node and adjust them for each
individual task and each benchmark proportional to their
task argument sizes which are available at the beginning
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of task executions. Let us call the task failure rates for
crashes/DUEs and SDCs as λF (T ) and λSDC(T ) respec-
tively. Consequently, the higher the argument size, the higher
the estimated failure rate is. Similarly the benchmark FIT
rates are estimated with respect to size of the benchmark
input size. We use the benchmark FIT rates to calculate
and specify the target reliability thresholds which are to be
achieved by the App FIT heuristic. For instance, if the crash
failure is 2.22 ×103 for 32 GBs as given in [29], then for
32 MB program input the crash failure would be 2.22, or
for a task argument of 32 KB the crash failure would be
2.22 ×10−3. Finally a task’s overall failure rates λF (T )
and λSDC(T ) are sum of all its arguments’ failure rates
respectively.

We now elaborate on how our framework is orthog-
onal to the failure rate estimation and analysis studies.
Our framework is independent of the method for estimat-
ing/measuring the failure rates of each individual tasks or
benchmarks. As stated above, we use DUE and SDC rates
from the measurements of [29]. However, these rates can
be obtained by any other methods such as the analysis of
system failure (memory, storage, network) histories/logs or
application/task-specific vulnerability analysis. Such studies
are orthogonal and independent and can be seamlessly inte-
grated to our heuristic. Moreover, these studies can account
for various additional features that can affect the reliability
factors of individual tasks. These features are in essence
captured by refining task failure rates. For instance, the
reliability factor of a task can be affected by the feature
that the task contains many silent stores [23] which would
mask any prior SDC at the memory location of the store
operation. This will be captured by a vulnerability analysis
in terms of a lower failure rate. Our heuristic, without any
further modification, will simply make use of this refined
task failure rate instead of the previous rate.

We assume that the checkpoints are stored in a safe
memory region such that their failure rates can be ignored.
For the voter, since it memory footprint is small, its failure
rates are small enough to be considered safe. However, in
any case, we can increase reliability by taking multiple
checkpoints and using multiple voters without incurring too
much performance penalty since the overhead of taking
checkpoints and voting is low enough to perform them
multiple times.

B. App FIT heuristic

App FIT heuristic is for the scenario where the user
aims to run its application under a FIT threshold and
while the application is executing, the threshold is never
exceeded. Given that the user knows the FIT threshold, we
assume it also knows the total number of tasks which the
runtime takes as an input. Let N be total number of tasks.
While the execution continues, when a task is about to
execute, App FIT checks atomically the following condition

Table I
DETAILS OF OUR TASK-PARALLEL BENCHMARKS

Shared-memory Benchmarks

Sparse LU LU decomposition
Matrix size 12800x12800 doubles, block size 200x200

Cholesky Cholesky factorization
Matrix size 16384x16384 doubles and block size 512x512

FFT Fast Fourier Transform
Matrix size 16384x16384 complex doubles, block size 16384x128

Perlin Noise Noise generation to improve realism in motion pictures
Array of pixels with size of 65536, block size 2048

Stream Linear operations among arrays
Array size 2048x2048 (doubles), block size 32768

Distributed Benchmarks

Nbody Interaction between N bodies
Array size 65536 bodies, block size depends on #nodes

Matrix Multiplication Matrix Multiplication using CBLAS
Matrix size 9216x9216 doubles and block size 1024x1024

Pingpong Computation and communication between pairs of processes
Array size 65536 doubles, block size 1024

Linpack HPL Linpack
Matrix size 131072 doubles, block size 256, 8x8 grid

to decide whether to replicate the task T :
current fit+(λF (T )+λSDC(T )) > (threshold/N)×(i+1)

(1)
where current fit is the current FIT of the computation
at the time which is maintained by App FIT, λF (T ) and
λSDC(T ) is task T ’s estimated crash and SDC failure rates
respectively, threshold is the specified threshold by the user
and i is the number of tasks that had been decided on so
far. If the condition holds, it means that if App FIT does not
replicate the task, then after the task computation finishes the
current fit will surpass the intended threshold portion for
the tasks (including the current task) finished by that time.
Therefore, App FIT decides to replicate the task. After the
task finishes, App FIT updates current fit by adding the
FIT of the task. If the condition does not hold, App FIT
does not replicate the task.

App FIT, in its current design, only adds tasks to repli-
cate. It could have been designed such that some replica
tasks are removed dynamically however this has the draw-
back of losing the reliability obtained from and the compu-
tation of the removed tasks. In its current design, there is
never such loss. In addition, removal of tasks would require
dynamic inspection of task which would incur additional
performance penalty.

V. EVALUATION

In this section we provide the evaluation and analysis of
our technique. As stated earlier, we implement our ideas in
OmpSs [14] and Nanos [40]. We perform our experiments
in the Marenostrum supercomputer [3]. Up to 64 nodes and
16 cores per node are used in the experiments. Table I
summarizes our benchmarks [1]. In addition to shared-
memory benchmarks, we have distributed benchmarks to
evaluate the performance overheads of task replication and
our heuristics and their impacts on the application scalability
at large scale and with high core counts. In shared-memory
benchmark experiments all 16 cores in one node are used.
In distributed benchmark experiments 1024 cores over 64
nodes are used. We run each experiment 10× and report
averages.

4



A. Experimental Results

Figure 3. App FIT results

1) Evaluation of App FIT Heuristic: We evaluate
App FIT designed for obeying pre-specified FIT thresholds
to see whether complete replication is needed to handle
future error rates by specifying the thresholds such that their
reliability matches today’s systems. We set thresholds as
follows: It is expected that in future HPC or exascale systems
the error rates in a single node will increase about one order
of magnitude [32]. To handle this increase, we decrease the
current FITs of our benchmarks by 10× so that the overall
application FITs, thus their reliabilities, stay the same.

Figure 3 shows the replication results of App FIT. The
figure shows the percentage of computation time replicated
due to the replication of tasks and the percentages of the
number of tasks replicated for 10× and 5× error rates. On
average App FIT replicates only 53% and 30% of the tasks,
and 60% and 36% additional execution time to keep the
same reliability level at 10× and 5× rates respectively3.

Takeaway-1: Results show that complete replication is
not required for the predicted exascale error rates to achieve
the same reliability levels as today. Moreover the amount of
replication can be decreased further by assuming modest
increases in error rates or relaxing reliability requirements.

Generally the percentages of the number of tasks repli-
cated and the percentages of computation time replicated
are close except for Linpack and Matmul. This is because
they have some tasks that are clearly more distinctive than
other tasks in terms of their FITs because of their memory
usage and execution times. Moreover, the difference in terms
of the percentages of replication across the benchmarks is
mainly due to the task granularity and the number of tasks.
That is, the more and the finer-grain the tasks are, the less the
percentage of replication is. Coarser and low number of tasks
restrains App FIT to obey the threshold in a more efficient
way. For instance, Cholesky, FFT, and Nbody have relatively
coarser and low number of tasks and thus they incur more
replication. In contrast, Stream, Matmul and Perlin have high
number (25K-48K) of finer tasks. Another observation is for

3In our experiments App FIT achieves FITs that are lower and close to
the specified FITs. For brevity we omit the current FITs of benchmarks,
the specified thresholds and the thresholds that App FIT achieves.

Perlin and SparseLU there is a significant difference between
the resulting replication percentages when 10× and 5× rates
are used. This is because there is a few number of tasks
whose reliability impacts are much higher than others and
their selection for replication is sufficient to obey 5× rates.

Finally, the performance overhead of App FIT is not
significant since it checks a single condition and calculates
the FIT of a task through a tight code consisting of one
branch and about 50 multiplication and addition instructions.

2) Evaluation of Task Replication: In this section we
evaluate the overheads and scalability of selective task
replication. In the experiments we replicate all tasks in an
application. This way, if complete task replication (having
high resource cost, more than %100) is shown to be scalable
and to have low performance overheads, then it follows that
selective replication (having lower resource cost) is also scal-
able and has low performance overheads. This is supported
by the fact that the performance overheads of our heuristics
are indeed very low. In addition, we use the McCalpin’s
artificial and memory-intensive stream benchmark [28] to
stress-test our task replication design in terms of overheads
and scalability. Task replicas are executed on spare cores.

Figure 4 shows the performance overheads of task repli-
cation with respect to the fault-free execution (wall-clock)
times for all benchmarks. As seen, the overheads are very
low and 2.5% on average.

Next we evaluate the effect of replication on the scalability
of the benchmarks. We also assess the effect of fault recov-
ery on the scalability with per task fixed fault rates. Figure 5
shows the scalability of complete task replication for shared-
memory benchmarks i.e., speedups over 1 core with the
given fault rate (each case has a different baseline). As seen,
replication scales very well (except Stream). Stream does not
scale with 16 cores even without task replication. It does
not have much parallelism and mainly consists of memory
operations which hinders its scalability even when there
is no replication. Note that slight differences in speedups
across different fault rates are due to the experimental noise
(also holds for distributed applications). Figure 6 shows
the scalability of complete task replication for distributed
benchmarks i.e., speedups over 64 cores with the given fault
rate (each case has a different baseline). We see that task
replication is highly scalable for distributed applications.
By evaluating these applications, we show task replication
is well-suited for task-parallel distributed programs and is
highly scalable at large scale and for high core counts.

Takeaway-2: Overhead and scalability results indi-
cate that task-parallel dataflow programming makes fault-
tolerance affordable while enabling design of replication
heuristics.

VI. RELATED WORK

Replication is a well-known technique that has been
adopted in various domains from aviation to distributed
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Figure 4. Task replication overheads

Figure 5. Complete replication scalability (shared memory)

Figure 6. Complete replication scalability (distributed)

systems [33]. This technique has been used for reliability,
performance and ensuring quality of service. However in
most cases the complete replication of a system or an ap-
plication can be prohibitively costly to achieve the intended
purpose. As a result, selective replication becomes the only
viable solution. For instance concerning the performance
of systems, the work of Beckmann et al. [8] investigates
selective replication to increase the performance of the
caches of chip multiprocessors using a metric based on hit
latency and misses. In case of aiming for better quality of
service (QoS), Gruneberger et al. [20] propose a selective
replication heuristic to increase QoS while keeping costs
affordable for the distributed event-processing systems.

However selective replication as a way to address the
trade-off between resource costs and reliability has not been

investigated thoroughly, particularly in HPC community.
Moreover, on one hand, the aforementioned studies [8, 20]
cannot be employed to increase reliability while keeping
cost affordable since those techniques and heuristics do not
capture the reliability critical aspects of systems. On the
other hand, there is the growing body of evidence showing
that selective fault-tolerance support is of key-importance
to decrease the resource costs while providing the required
level of reliability. For instance, Luo et al. [24] and Fang et
al. [16] find that different applications and different phases
in applications (in our case tasks) exhibit different vulnera-
bilities. Although neither of these works state it explicitly,
it follows that selective fault-tolerance is a natural fit to
achieve a reasonable trade-off between costs and the required
level of reliability for different applications. Thus, to the
best of our knowledge, our selective replication heuristic is
the first to address the trade-off between resource costs and
application-specific reliability requirements, in particular for
task-parallel HPC applications. The work of Subasi et al.
[38] is based on programmer knowledge in order to achieve
effective partial replication. The NanoCheckpoints [36] and
the message logging protocol proposed by Martsinkevich et
al. [27] address fail-stop errors of task-parallel computations.
SSD [37] is designed by using machine learning techniques
to mitigate silent errors in HPC applications.

Meanwhile even though the performance and efficiency
advantages of task-based dataflow programming models [19]
and runtimes [41] are well-established, to the best of our
knowledge, there has been no research investigating selective
replication in these programming models. As consequence,
we strive to leverage the resilience advantages of such
frameworks to develop fully automatic runtime selective task
replication heuristics. Although our selective task replication
framework does not provide complete failure coverage such
as errors from the operating system or network/MPI com-
munications, it is orthogonal and seamlessly integrable to
system-wide fault-tolerance solutions such as [7, 18].

There has been work at compiler level to selectively
duplicate instructions that may cause user-visible errors
[17, 22]. Shoestring [17] uses the data flow and control flow
graphs of programs to select vulnerable instructions for error
detection by duplication. Laguna et al. use machine learning
to learn code instructions that must be protected to avoid
corruptions. They use compiler to protect only those learned
vulnerable instructions through duplication. As opposed to
our scheme, these techniques do not offer error recovery.

VII. CONCLUSION

In this study we propose low-overhead and scalable se-
lective task replication for task-parallel programs to mitigate
SDCs and DUEs. To achieve selective task replication,
we develop a selective task replication technique for task-
parallel programs. We present our automatic and transparent
heuristic to select the tasks to replicate for keeping FIT of

6



a program under a given threshold. Results show that it has
low overhead and selects tasks in an efficient way.

In this research, our key findings were: First, complete
replication of HPC applications is not required to mitigate
the foreseen exascale error rates while achieving the same
reliability levels today which are typically sufficient for the
applications to correctly finish their computations. Second,
task-parallelism and dataflow offer key properties making
fault-tolerance support for future HPC systems affordable.
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