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1. Introduction 22 

Stochastic hydrogeology has been a topic in WRR and other journals for over 40 years. 23 

Arguably, the topic reached its maturity more than a decade ago. In parallel, numerical 24 

modeling has become routine in hydrogeological studies. In spite of this, non-deterministic 25 

models have not reached practitioners. In this debate paper we want to stress the limitations 26 

of stochastic modeling when applied to real applications, comment on the reasons why 27 

stochastic models fail to become an attractive alternative for practitioners, and suggest tips 28 

that may improve our ability to produce transferable non-deterministic models.  29 

Spatial variability and uncertainty 30 

Heterogeneity is a fundamental property that must be accounted for when studying natural 31 

processes. One approach is to consider groundwater parameters as regionalized variables, or 32 

spatial random functions (SRFs) based on the principles stated by Matheron (1965). An SRF, 33 

𝑍𝑍(𝒙𝒙,𝜔𝜔), is a function of space whose outcome is non-deterministic. For any number of points 34 

(𝒙𝒙𝟏𝟏,… ,𝒙𝒙𝒏𝒏), 𝑍𝑍(𝒙𝒙𝟏𝟏,𝜔𝜔) … 𝑍𝑍(𝒙𝒙𝒏𝒏,𝜔𝜔) are non-independent random variables and all the body of 35 

statistics based on Kolmogorov’s axioms apply. On the other hand, fixing 𝜔𝜔 = 𝜔𝜔0, we get one 36 

realization of the random field, a single space function, and all the body of calculus applies. 37 

The collection of all the space functions for the different 𝜔𝜔 values is called the ensemble.  38 

A fundamental question arises: Why use random functions to represent a deterministic 39 

reality? The answer is uncertainty, arising from incomplete information regarding the true 40 

hydrological and biogeochemical processes occurring over a wide range of temporal and 41 

spatial scales. In this context, the best we hope for is to have a few (potentially noisy) 42 

measurements, characteristic of some (unknown) support volume, and maybe some 43 

indications about general trends. As reality is uncertain, we model any given parameter by a 44 

SRF, and reality becomes just one of the infinite possible realizations. The first problem is how 45 

to get the statistics of the ensemble (statistical space) from one single realization (physical 46 
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space). This is possible only if some type of stationarity prevails and the ergodic hypothesis is 47 

invoked. Ergodicity implies that all states of the ensemble are available in each realization, a 48 

premise that can never be validated rigorously, as just a single realization is available. 49 

The stochastic equations 50 

By using a stochastic approach, the variables that appear in the classical equations used in 51 

hydrogeology become random, and the groundwater flow and solute transport equations 52 

become stochastic partial differential equations (s-PDE). Boundary and initial conditions may 53 

or may not be treated as SRFs. Several stochastic methods are available, such as:  54 

- Perturbation methods: consist of expanding the dependent variable in an asymptotic 55 

sequence and to derive individual PDE's for each term in the expansion. By solving them, 56 

low order approximations of the solution are obtained. Closure analysis becomes critical. 57 

An alternative is to directly write the PDEs satisfied by moments (i.e., moment equations).  58 

- Monte Carlo methods: involve generating equally-likely realizations of all parameters. 59 

Each run becomes a deterministic model and stochasticity stems from the ensemble. The 60 

output allows reconstructing the multivariate distribution of the dependent variable. 61 

These intensively CPU demanding methods are routinely used in complex problems. 62 

- PDF-based methods: to directly find the full conditional pdf or cdf of the dependent 63 

variable. So far this method has only been applied to very simple configurations.  64 

Importantly, structural uncertainty is not considered in these approaches which typically 65 

assume that the structure of the governing PDE for the state variable is fully known.    66 

 67 

2. Deterministic vs. stochastic approaches and scaling 68 

It is nothing but a modeler’s choice 69 
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When modeling a site, choosing a deterministic or a stochastic approach is just a modeler’s 70 

choice. Deterministic approaches are based on viewing parameters as constant in pre-specified 71 

zones, implying that the main features controlling flow and transport can be explicitly 72 

identified. Nonetheless, this does not imply neglecting the importance of heterogeneity, as 73 

deterministic parameter calibration incorporates uncertainty quantification. The main problem 74 

arises at the conceptualization stage, since data rarely suffice for unequivocal definition of 75 

zonation, since zone boundaries are fuzzy even if at all existing. 76 

Instead, stochastic approaches are motivated by recognizing both the importance of spatial 77 

variability and the impossibility of fully and precisely describing the statistical characterization 78 

of hydraulic parameters in full. Thus, the need for simplifying assumptions, such as log-79 

conductivity being fully characterized by two-point statistics (e.g., being multinormal, bimodal 80 

or defined as a suite of indicator functions), or else using reconstruction methods based on a 81 

combination of data and a priori defined spatial shapes (e.g., multiple point geostatistics). 82 

The problem of scales 83 

We consider spatial variability at four different scales: pore, local, formation, and regional. 84 

Early and most successful results in stochastic hydrogeology correspond to the regional scale, 85 

such as the derivation of effective hydraulic conductivity [Matheron, 1967; Gutjahr et al., 86 

1978] or that of macrodispersion [Gelhar and Axness, 1983] as a function of some statistical 87 

parameters of hydraulic conductivity, 𝐾𝐾. While effective 𝐾𝐾 values are still used routinely in 88 

numerical models, the concept of macrodispersion was rapidly challenged, once it was clear 89 

that solute transport was always non-ergodic [Kitanidis, 1988]. This is actually a key point. If 90 

macrodispersion is invoked, deterministic transport models would suffice (no need for 91 

stochastic models). This could be of interest in large-basin water resources management 92 

problems, or in long-range pollution, where local scale variations should be smoothed out on 93 

purpose to avoid the possibility of somebody asking: What happens in my back yard?  94 
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At the formation scale, flow and transport are of a three-dimensional nature. Most problems 95 

of interest in hydrogeology occur at this scale, and it is where stochastic models might find 96 

their niche. Examples would be flow in the vicinity of a well, or solute transport near the 97 

source, that can only be properly resolved if heterogeneity is fully accounted for and, more, if 98 

models are properly conditioned to geological data. Loosely quoting Prof. Andre Journel from 99 

Stanford University in a talk given in 1992: “…if I ever find myself crossing paths with 100 

somebody using unconditional realizations, I will cross the street”.  101 

The local scale is the one used to define the governing equations used in most hydrogeological 102 

models. The real applications are mostly limited to laboratory experiments. Thus, this scale is 103 

more appropriate for research efforts rather than actual field problems. Finally, the pore scale 104 

has traditionally been ignored in hydrogeology. Lately there have been significant advances in 105 

the field of micro-CT imaging, allowing the study of flow and transport in pore networks with 106 

resolutions down to microns.  107 

The question is then how and up (or better down) to what size we need to take our models 108 

and whether there is a clear gain in using stochastic descriptions of reality. The answers are 109 

still unclear. The unresolved issues are process dependent and therefore in the sequel we 110 

clearly separate those of flow, conservative transport, and reactive transport.  111 

 112 

3. Groundwater flow: Process description, unresolved issues, and model choices 113 

Several unresolved issues can be considered here: 114 

(1) Hydrogeology includes the word “geology”. Practitioners are perfectly aware, and 115 

hydrogeology reports routinely start with a thorough geological description. Yet, some 116 

stochastic hydrogeologists disregard this point as in “I will not allow data to contradict my 117 

beautiful mathematical theory”. Considerable efforts have been devoted to generate process-118 

based or pattern-based geological descriptions. Conditioning on hard geological data is a must, 119 
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but certainly not enough. Direct reconstruction methods oversmooth the shape of facies 120 

interphases, with significant implications in transport. Soft data, either geophysical data or 121 

prior descriptions of geological patterns, should be incorporated with care, as there is the 122 

danger of conditioning “too much”. We contend that the need for conditioning the model on 123 

the best available geological description is known by practitioners and thus widely used in 124 

deterministic modeling; yet, we routinely build our stochastic models based on simplistic 125 

geometrical depictions and hope that the SRF framework will be smart enough to take over. As 126 

a consequence, practitioners have the impression that deterministic models, if uncertainty is 127 

properly evaluated, can outperform stochastic models in terms of robustness [see the 128 

unambiguous discussion by Pool et al., 2015]. 129 

(2) Flow at the local scale is satisfactorily modeled using Darcy’s law. At the formation 130 

scale Darcy’s law is just hypothesized, without proof.  131 

(3) Hydraulic conductivity is a macroscopic quantity derived rigorously from the 132 

dissipation of viscous forces. Yet, in practice K  is mostly derived from hydraulic tests (thus 133 

representative of some undefined support volume) or indirectly obtained from empirical 134 

formulae (too local to become representative), without considering the pore network 135 

geometry [except for recent advances in pore scale simulations, Pereira Nunes et al., 2016] .  136 

(4) Storage coefficient (𝑆𝑆) is a rigorous quantity, derived theoretically in terms of specific 137 

weight of water, aquifer thickness, porosity, and compressibility of water and the mineral 138 

skeleton. Nevertheless, it is seldom computed this way. When 𝑆𝑆 is derived from the 139 

interpretation of pumping tests, the results have very little to do with the actual value. 140 

Variations in 𝑆𝑆 are never properly characterized (we will emphasize this point later) and at 141 

most they are hypothesized or estimated from weak correlations with other parameters.  142 

(5) In unsaturated flow, water retention curves or relative permeability functions are 143 

mostly empirical and therefore they are site specific and dependent on window resolution.  144 
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(6) Not all are bad news. Upscaling of hydraulic conductivity is a well resolved problem, 145 

with a number of analytical and numerical methods available. While local 𝐾𝐾 values are highly 146 

uncertain and may span a wide range of orders of magnitude even in seemingly homogeneous 147 

aquifers, upscaled 𝐾𝐾 values are less variable and less uncertain due to the averaging process.  148 

 149 

The issue then is whether we feel comfortable advocating for stochastic modeling in flow 150 

problems. Practitioners might think that such models should only be used if large data sets of 151 

piezometric head and hydraulic parameters are available. Actually it is quite the opposite; they 152 

are best suited for when information is minimal and we must rely on our technical knowledge, 153 

which we can introduce in the model as priors (which become model hypotheses).  154 

Following this idea, we stress the paradox of model reconstruction. Let us assume a simple 2D 155 

model where transmissivity 𝑇𝑇(𝒙𝒙) is spatially variable (with a given mean and variance, 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 ) 156 

and storage coefficient 𝑆𝑆 is constant in space. We then perform a series of hydraulic tests and 157 

interpret them using hydraulic tomography. It is immediately observed that the 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝒙𝒙) values 158 

(est indicating estimated values) are spatially variable with the same mean but a much smaller 159 

variance than that of 𝑇𝑇(𝒙𝒙) (𝜎𝜎𝑙𝑙𝑙𝑙𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒
2 ≪ 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 ). On the other hand 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 becomes spatially variable 160 

and provides information about connectivity, a term that lacks a formal definition but that 161 

intuitively informs about the continuity and directionality in the natural arrangement of 162 

geological facies or bodies. Detecting the location of conducting features, implies the need to 163 

condition the model on all available geological information (hard or soft), without having to 164 

impose a very high variance variogram in unconditional realizations, or else deterministically 165 

delineate the highly conductive interconnected features. Moreover, the small value of 𝜎𝜎𝑙𝑙𝑙𝑙𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒
2  166 

may lead to the wrong conclusion that the medium is quite homogeneous and there is no need 167 

to account for heterogeneity.  168 
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Another point of discrepancy is the usefulness of models. In the words of Gupta and Nearing 169 

[2014] we are “…more interested in the specific value of models to developing understanding 170 

about the dynamics/behavior of a system, and less so in their use for prediction at a specific 171 

time and place”. While the authors of this paper fully support this statement, we believe most 172 

practitioners, local authorities and policy makers would definitely be against it. They want 173 

answers, given in quantitative terms and with full certainty. Is this a reason why practitioners 174 

rely on deterministic models? Most probably they think that whatever comes out from models 175 

is the closest to the truth they can get. Yet, they probably do not realize that whenever they 176 

ask for risk assessments they are actually adopting a stochastic vision of the problem. We 177 

should blame ourselves for not being able to convey such a message.  178 

Finally, when analyzing subsurface flow at different scales we find that the same formal 179 

equation is applicable provided we accurately upscale heads, parameters, and boundary 180 

conditions. This has resulted in a large number of numerical codes capable of solving the flow 181 

equation using a bunch of well-stablished numerical methods. Actually, the same codes can be 182 

used for deterministic or stochastic models for the direct problem, and some commercial 183 

codes can actually handle the inverse problem also in both cases. CPU time may or may not be 184 

an issue, but technically there are no major differences.  185 

 186 

4. Conservative transport: Upscaled equations and model choices 187 

In conservative transport the situation is radically different than for flow. As discussed later, 188 

there is a strong division in the community regarding the governing equations that should be 189 

used, and on the most appropriate numerical methods to solve them.  190 

As the variable of interest in transport is solute concentration, it seems adequate to use an 191 

Eulerian approach, with traditional numerical methods (e.g., finite differences or finite 192 

elements). This does not work. An alternative is the use of Lagrangian methods that track the 193 
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movement of mass. The circle is closed if particles are used to estimate concentrations, leading 194 

to Eulerian-Lagrangian methods. All of this is well-known, but it relies on assuming we know 195 

with certainty the proper governing equation. And here it seems we cannot bring the 196 

community to agreement, causing an infinite sense of confusion that would definitely prevent 197 

practitioners from using any of the developed theories. That is, no matter what they do, half of 198 

the scientists will claim they are not using the proper equation or numerical method, so why 199 

not use the simplest equation even if everybody agrees it does not work?  200 

A starting point would be to agree on the equation valid at the pore scale, and then perform 201 

upscaling. And this is already controversial. With a pore network description at the micrometer 202 

scale, one might reconstruct particle trajectories by solving the Stokes equation, to compute 203 

the velocity field, and allow for advection and diffusion. But a particle is not a molecule, so we 204 

cannot blindly apply the solutions of molecular diffusion to particles without formal upscaling.  205 

Coupling advection and diffusion in a medium composed of voids and solids gives rise to 206 

hydrodynamic dispersion. If this follows Fick’s law, the governing equation of transport is the 207 

advection-dispersion (ADE). But dispersion is governed by variations in groundwater velocity at 208 

all scales (in time and space). Upscaling flow leads to a reduction in the variance of upscaled 209 

velocities, and therefore the need for block-dispersion parameters [Rubin et al., 1999] to 210 

properly reproduce solute dispersion (the limit is macrodispersion in a constant velocity 211 

model), still assuming that the ADE is valid at some local scale. However, this last statement is 212 

controversial. Many authors argue that the ADE does not hold at any scale. Others invoke that 213 

the ADE properly fits experimental data [Ginn et al., 2013].  214 

An example of the discussion of the proper transport equation to use was provided in the 2015 215 

AGU Chapman conference, which devoted one session to discuss whether a local ADE with 216 

sufficient data is enough to model the MADE site and another one to present the performance 217 

of alternative equations. An example of the former is that of Salamon et al. [2007], who 218 
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considered that the ADE is valid at the meter scale; even in such a small field with a high 219 

density of data, the problem could not be considered deterministic, as simulations in equally 220 

probable conductivity maps provided substantially different results (Figure 1). It is clear that 221 

while all realizations could capture the presence of tailing in the spatial distribution, none of 222 

them could provide a good description of the observed front edge of the plume, which exhibits 223 

an uncharacteristic flat profile.  224 

 225 

Figure 1 226 

 227 

We must keep in mind that at the MADE site most authors have only tried to reproduce the 228 

integrated mass along the flow direction, rather than the full 3D spatial distribution of point 229 

concentrations. The bad quality of the fits obtained from simulations based on the ADE and 230 

upscaled parameters have been associated to either the sampling strategy or to the presence 231 

of rate-limited transfer processes. The latter is supported by two direct evidences: (1) Vacuum 232 

extractions at 0.5 bar and 5 bars showed that bromide was not distributed uniformly in the 233 

local pore space, the latter extracts containing about 3 times the concentration of the former; 234 

(2) observation of aquifer outcrops reveal the presence of high permeable interconnected 235 

structures at the sub-meter scale sandwiched between low-permeability units. 236 

Interestingly, it turns out that by simply adding a single-rate mass transfer term into the local 237 

ADE, the simulated front edge of the plume significantly improves (Figure 2). There is a 238 

rationale for this; even if the ADE were valid at some undefined small scale, there is no reason 239 

why Fick’s law would hold at some intermediate scale. Actually, it has been shown that 240 

transport is always non-Fickian, so that the expression “anomalous transport” is misleading. In 241 

the last two decades, efforts have been devoted to writing alternative and phenomenological 242 

transport equations. There are three main alternatives, whether the form of the equation is 243 
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borrowed from the field of physics (resulting in a Continuous Time Random Walk –CTRW- 244 

model), mathematics (leading to a fractional ADE –fADE- model) or that of chemistry (single-245 

rate or multi-rate mass transfer –SRMT/MRMT- models).  246 

 247 

Figure 2 248 

 249 

Despite being heavily contested, all non-Fickian models share a good characteristic: they do 250 

work! Such models work well in reproducing integrated observables, such as breakthrough 251 

curves displaying realistic tailing, negative asymmetrical spatial concentration profiles, or 252 

concentration build-up in pump-and-treat remediation efforts after pumping ceases [de Barros 253 

et al., 2013]. Yet, so far, all parameters models are difficult, if at all possible, to correlate with 254 

physical parameters describing heterogeneity, although it is clear that they should heavily 255 

depend on medium architecture [Zhang et al., 2013; Bianchi and Zheng, 2016].  256 

Going back to the MADE site, let us assume that transport is controlled by diffusion from low 257 

permeable areas. Fernàndez-Garcia and Sanchez-Vila [2015] showed that when the memory 258 

function follows a power law distribution, the effective coefficient of a time-dependent single-259 

rate mass transfer model (t-SRMT) scales with the inverse of time. This nicely fits (without 260 

calibration) the compilation of SRMT coefficients from Haggerty et al. [2004], presented in 261 

Figure 3 together with the estimated time-representative mass transfer coefficients reported 262 

by Guan et al. (2008) for the MADE site, showing that they do not follow the trend. This may 263 

have two different interpretations: (1) that the estimated parameters were affected by subgrid 264 

heterogeneity not included in the upscaled model, or (2) that the behavior of the ensemble 265 

does not preclude that of any given specific site. In fact, Figure 4 shows that the coefficients 266 

reported by Guan et al. [2008] follow the t-SRMT associated with a double rate mass transfer 267 

model, questioning the common use of power law memory functions.    268 
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 269 

Figure 3 270 

Figure 4 271 

 272 

In summary, the model to be used is a modeler’s personal choice. All non-Fickian models are 273 

equally adequate to reproduce observations, and are equivalent under restrictive conditions.  274 

Yet, there are limitations. Most applications use a reduction in the number of dimensions, as 275 

they aim at fitting global observables. Therefore, it is not possible to match local concentration 276 

maps with non-Fickian models, and we should be very careful when calibrating parameters 277 

from point measurements. Altogether there seem to be strong reasons why practitioners feel 278 

uneasy about using non-Fickian models and keep relying on the ADE, even though it is known 279 

to provide inadequate answers.  280 

 281 

5. Reactive transport: Process description, observables, and model choices 282 

For most reactions, the equations and the corresponding rates are well-known and can be 283 

found in the literature, even in textbooks, based on data from batch experiments. When 284 

advection gets into the picture, mapping reactions is challenging, as the transport of reactants 285 

and products are controlled by aquifer heterogeneity. The question is whether incorporating 286 

additional source terms to account for reactions will result in proper equations for transport of 287 

reactive species. In general, the answer is no. Reactions take place at the molecular scale, 288 

driven by local chemical imbalances that might be a consequence of transport processes.  289 

Upscaling becomes a real challenge for reactive transport. The question is, can we use the 290 

rates derived from batch experiments in a real field model? Obviously not. Let us consider the 291 

simple reactive problem of annihilation, where at any given point in space two substances 𝑋𝑋 292 

 12 



and 𝑌𝑌 cannot coexist, as whenever they get in contact an instantaneous irreversible reaction 293 

takes place (𝑋𝑋 + 𝑌𝑌 → ∅). The amount of reaction 𝑞𝑞 taking place at any point and time is  294 

𝑞𝑞�𝒙𝒙, 𝑡𝑡𝑘𝑘+1� = min �𝑋𝑋�𝒙𝒙, 𝑡𝑡𝑘𝑘�,𝑌𝑌�𝒙𝒙, 𝑡𝑡𝑘𝑘��.       (1) 295 

Notice that we are adopting here a simple explicit scheme just for the purpose of illustration 296 

(most probably it would be the worst numerical scheme to use in any real application). The 297 

transport equation for 𝑋𝑋 (we could also write the one for 𝑌𝑌) is 298 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐿𝐿(𝑋𝑋) − 𝑟𝑟,          (2) 299 

where 𝐿𝐿(·) stands for any transport operator. If we were solving the reactive problem in some 300 

coarse mesh, the total reaction 𝑄𝑄 at time 𝑡𝑡 in one element 𝑉𝑉 of the mesh would be 301 

𝑄𝑄�𝑡𝑡𝑘𝑘+1� = ∫ min �𝑋𝑋�𝒙𝒙, 𝑡𝑡𝑘𝑘�,𝑌𝑌�𝒙𝒙, 𝑡𝑡𝑘𝑘�� 𝑑𝑑𝑑𝑑𝑉𝑉 .      (3) 302 

In (3), 𝑋𝑋, 𝑌𝑌 are the point concentrations that can never be estimated with certainty, and so the 303 

need to map some smoothed version of the concentrations 𝑋𝑋�, 𝑌𝑌� using any of the transport 304 

equations already discussed. Now, it turns out that in volume 𝑉𝑉, 𝑋𝑋�, 𝑌𝑌� can coexist, and that  305 

𝑄𝑄�𝑡𝑡𝑘𝑘+1� ≠ ∫ min �𝑋𝑋��𝒙𝒙, 𝑡𝑡𝑘𝑘�,𝑌𝑌��𝒙𝒙, 𝑡𝑡𝑘𝑘�� 𝑑𝑑𝑑𝑑𝑉𝑉 .      (4) 306 

If transport was conservative, we could write an upscaled equation for 𝑋𝑋� as already presented, 307 

but since reaction will take place, the governing equation would look like 308 

𝑑𝑑𝑋𝑋�
𝑑𝑑𝑑𝑑

= 𝐿𝐿∗(𝑋𝑋�) − 𝑞𝑞∗,         (5) 309 

where 𝐿𝐿∗ could represent any operator including a non-Fickian dispersive term, selected by the 310 

modeler. But then, what is 𝑞𝑞∗? It turns out that the actual expression for 𝑞𝑞∗ depends on grid 311 

size and on the transport model used. The most significant point to make here is that now 𝑋𝑋�, 𝑌𝑌� 312 

are observable quantities, that is, amenable of being measured. 313 
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As a consequence, the approach relying on setting up a domain discretization and adopting a 314 

strategy based on defining flow, assuming a model for the conservative transport equation and 315 

producing forward simulations of reactive transport at that scale is bound to fail. The reason is 316 

that variability in concentrations at the local (sub-grid) scale is the reaction driver, while 317 

models provide some averaged concentrations at the grid scale. At this point we still do not 318 

know how to properly upscale the parameters controlling reactions. Efforts based on volume 319 

averaging theory provide a correct setup [Porta et al., 2013; Wood and Valdes-Parada, 2013], 320 

but this has not been adapted to real field problems and require averaging over large volumes 321 

as compared to the characteristic length scale of heterogeneity.  322 

Direct upscaling is typically challenged in real field applications by the presence of hydraulically 323 

connected features [Trinchero et al., 2008: Pedretti et al., 2014], often exceeding the size of 324 

the model representative volume. The spatial distribution of highly permeable persistent 325 

geological bodies that concentrate solutes in connected channels controls not only the arrival 326 

of toxic concentrations and its subsequent risk to human life or ecosystems [Henri et al., 2015; 327 

Fiori et al., 2015] but also the occurrence of biochemical reactions [Rubol et al., 2014; Sanchez-328 

Vila et al., 2013], as they provide most of the nutrients that are vital to ecological systems. The 329 

representation of connected features in stochastic theories is still a major challenge.  330 

 331 

6. Discussion: Do stochastic models represent somehow reality? Can we do better? 332 

We start by stating that deterministic models do not represent reality at all. The reason is the 333 

combination of unsampled natural heterogeneity and scenario uncertainty. This is a point to 334 

convey to practitioners [see the lucid discussion of Renard, 2007]. So, despite all problems and 335 

limitations, only stochastic models have a chance of providing the answers needed for proper 336 

groundwater management efforts. We must make a clear effort to explain why all answers 337 
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must be provided in probabilistic terms, incorporating the concept of acceptable risk defined 338 

as the probability of any system to unsatisfactorily meet the demands in space or time.  339 

In this section we address the issue of numerical methods applied to solve the different 340 

equations proposed in this text in order to provide the best tools to be used in stochastic 341 

reactive transport models, further discussing pros and cons. Codes that can handle multiple 342 

species and chemical reactions are typically based on Eulerian numerical methods. A major 343 

challenge is the description of natural hydro-bio-chemical heterogeneities at the proper scale 344 

[e.g., Rubol et al., 2014; Cirpka and Valocchi, 2007].  345 

To illustrate the problem, let us consider a precipitation problem involving the mixing of two 346 

different waters carrying in solution two aqueous species, 𝐴𝐴 and 𝐵𝐵, in instantaneous local 347 

equilibrium with a solid mineral 𝑀𝑀, and driven by the chemical reversible reaction 𝐴𝐴 + 𝐵𝐵 ↔ 𝑀𝑀. 348 

De Simoni et al. [2005] demonstrated that the reaction rate given by the local ADE-based 349 

model can be decomposed into the product of two terms;  350 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓𝑐𝑐ℎ(𝑢𝑢) 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢),         (6) 351 

where 𝑓𝑓𝑐𝑐ℎ(𝑢𝑢) = 2𝐾𝐾𝑝𝑝�𝑢𝑢2 + 4𝐾𝐾𝑝𝑝�
−3/2

 is driven by chemistry and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢) = ∇𝑡𝑡𝑢𝑢 𝐷𝐷 ∇𝑢𝑢 352 

expresses how the two waters mix. Here, 𝑢𝑢 is the conservative component defined by 353 

subtraction of the concentrations of reactants, 𝑢𝑢 = [𝐴𝐴] − [𝐵𝐵], 𝐾𝐾𝑝𝑝 is the constant of 354 

equilibrium, and 𝐷𝐷 the dispersion coefficient. Considering that the aquifer is homogeneous, 355 

initially in chemical equilibrium, and that a water with a characteristic chemical signature Δ𝑢𝑢0 356 

is continuously injected through an infinite source line perpendicular to the flow direction, the 357 

solution of the transport problem is 358 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢0 + Δ𝑢𝑢0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝑥𝑥−𝑣𝑣𝑣𝑣
√4𝐷𝐷𝐷𝐷

�.        (7) 359 

Assuming that 𝑢𝑢0 + Δ𝑢𝑢0 ≪ 𝐾𝐾𝑝𝑝, and integrating (7) in space and time we obtain that the total 360 

amount of mineral precipitated is proportional to the square root of 𝐷𝐷 and given by  361 
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𝑅𝑅(𝑡𝑡) = ∫ ∫ 𝑟𝑟(𝑥𝑥, 𝑡𝑡′)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑′+∞
−∞

𝑡𝑡
0 = Δu02 𝑓𝑓𝑐𝑐ℎ(𝑢𝑢0)(8𝜋𝜋)−1/2 𝐷𝐷1/2 𝑡𝑡−1/2.    (8) 362 

This implies that small errors in the estimation of the dispersion coefficient may drastically 363 

affect the estimation of the total amount of reaction, depending on the problem at hand. A 364 

large body of literature includes variations in the expression of 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 to analyze scalar 365 

dissipation rates in conservative [Le Borgne et al., 2010] and non-conservative tracers [Engdahl 366 

et al., 2013], a concept directly related to measurements of entropy. 367 

The most important disadvantage of Eulerian methods is that the inherent truncation errors 368 

involved in the space and time discretization typically induce artificial oscillations and 369 

numerical dispersion. The latter results in an overestimation of the total amount of reaction, 370 

and it is known to depend on two characteristic numbers, Grid-Courant (𝐶𝐶𝐶𝐶 = 𝑣𝑣Δ𝑡𝑡
Δ𝑥𝑥

), and Grid-371 

Peclet (𝑃𝑃𝑃𝑃 = 𝑣𝑣Δ𝑥𝑥
𝐷𝐷

), where ∆x and ∆t denote the spatial and temporal discretization, and 𝑣𝑣 is 372 

the flow velocity. The dependence of the numerical dispersion on these dimensionless 373 

numbers relies on the chosen discretization scheme. In general, one can state that the relative 374 

error caused by numerical dispersion is 375 

ϵc = 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛
𝐷𝐷

− 1 = 𝑓𝑓(𝐶𝐶𝐶𝐶,𝑃𝑃𝑃𝑃) − 1,        (9) 376 

where 𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛 is the dispersion coefficient exhibited by the computer simulation and 𝐷𝐷 is the 377 

true value. For a wide range of schemes this can be explicitly written as [Peaceman, 1977] 378 

𝑓𝑓(𝐶𝐶𝐶𝐶,𝑃𝑃𝑃𝑃) = 𝑃𝑃𝑃𝑃 ��1
2
− 𝛼𝛼� + 𝐶𝐶𝐶𝐶 �𝑤𝑤 − 1

2
��,       (10) 379 

where α is the spatial weighting factor for the advective flux and 𝑤𝑤 is the temporal weighting 380 

factor (explicit, implicit or Crank-Nicholson). Combining (8) and (9) leads to an expression for 381 

the relative error in the total amount of reaction induced by the chemical system 382 

𝜖𝜖𝑅𝑅 = 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑅𝑅

− 1 = �𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛
√𝐷𝐷

− 1 = �𝑓𝑓(𝐶𝐶𝐶𝐶,𝑃𝑃𝑃𝑃)− 1.      (11) 383 
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Figure 5 shows the behavior of 𝜖𝜖𝑅𝑅 as a function of 𝑃𝑃𝑃𝑃 and 𝐶𝐶𝐶𝐶 for an implicit approximation 384 

scheme with upstream weighting (α=0 and 𝑤𝑤=1), a popular scheme among reactive transport 385 

codes. Results suggest that 𝑃𝑃𝑃𝑃 < 1 leads to very small relative errors (𝜖𝜖𝑅𝑅 < 1%).  386 

 387 

Figure 5 388 

 389 

The question is then what 𝑃𝑃𝑃𝑃 is typically used in stochastic modeling? A rough estimation can 390 

be done: When heterogeneity is explicitly described by high-resolution conductivity maps, cell 391 

longitudinal and transverse dispersivities are taken as proportional to the element size, e.g., 392 

α𝐿𝐿≈0.1 ∆x and α𝑇𝑇≈0.01 ∆x. This is supported by stochastic theories and the review of tracer 393 

data performed by Gelhar et al. [1992]. This means that for a standard discretization method 394 

the corresponding Grid-Peclet numbers range between 10 and 100, which leads to a more 395 

than 100% relative error. For instance, at the Cape Code site the evolution of the spatial 396 

moments of Bromide led to α𝐿𝐿/α𝑇𝑇≈ 60, yielding a Pe value of transverse dispersivity over 600. 397 

Thus, the overestimation of the total reaction becomes even worse when chemical reactions 398 

are controlled by transverse dispersivity, a common situation in contaminant transport [e.g., 399 

Cirpka et al., 2015]. No wonder that a lot of research has been devoted in recent years to 400 

overcome this problem by developing new numerical methods.  401 

Particle tracking methods constitute attractive numerical techniques but they have only 402 

recently been applied to reactive transport modeling [Tartakovsky et al., 2007]. They are based 403 

on tracking a large number of particles injected into the system to simulate the evolution of a 404 

plume and moved by explicit expressions that try to represent the underlying processes. Since 405 

the method is meshless, truncation errors and artificial dispersion are negligible. The method 406 

can efficiently and effortlessly incorporate non-Fickian transport [Zhang and Benson, 2008] or 407 

multiple porosity systems [Benson and Meerschaert, 2009; Henri and Fernàndez-Garcia, 2015].  408 

 17 



However, the method is not free of disadvantages. The main one is the need for reconstructing 409 

concentrations (actually activities) from particles. This step is theoretically free of numerical 410 

errors only for an infinite number of particles. In real applications, with a limited number of 411 

particles injected, kernel-based approaches largely minimize reconstruction errors [Fernàndez-412 

Garcia and Sanchez-Vila, 2011; Siirila-Woodburn et al., 2015]. Since the propagation of the 413 

latter with time is unknown, Eulerian-Lagrangian formulations that estimate concentrations as 414 

the simulation progresses cannot be assessed. Thus, pure Lagrangian formulations based only 415 

on particle interactions seem best suited to simulate reactive transport [Rahbalaram et al., 416 

2015; Paster et al., 2014]. However, they are limited in the type of reactions they can handle 417 

efficiently: Linear sorption, first-order decay, and reaction chains.   418 

For non-linear reactions, where transport of all particles cannot be decoupled, efficient search 419 

algorithms based on computational geometry are then a must [Paster et al., 2014]. Examples 420 

are the bimolecular reaction [Ding et al., 2013] and Michaelis-Menten enzyme kinetics [Ding 421 

and Benson, 2015]. Some unresolved issues are: (1) There is no formal particle upscaling 422 

process; (2) the methods assume that transport and reactions are uncoupled. Henri and 423 

Fernàndez-Garcia [2014] have shown that network reactions can substantially affect particle 424 

advection and dispersion.  425 

In sum, stochastic reactive transport modeling can best represent reality but suffer from 426 

numerical problems stemming from the need to deal with large grid-𝑃𝑃𝑃𝑃 numbers. Some of 427 

these issues can be solved using Lagrangian approaches, but at the expense of other non-428 

trivial numerical problems. In contrast, deterministic models with zonal parameterization can 429 

substantially reduce 𝑃𝑃𝑃𝑃 by using large effective dispersivity values, but are forced to face 430 

structural and conceptual problems due to the emergence of macroscopic processes such as 431 

incomplete mixing. The lack of understanding of these processes in real applications tends to 432 

overpredict the actual reaction rates, seriously questioning the use of these models.  433 
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 434 

7. Outlook and final discussion 435 

Hydrogeological modeling is the best way to integrate all available information in a site. 436 

Moreover, it is required in any professional report.  Models should embed natural 437 

heterogeneity, but information is never sufficient. We contend that the only way to deal with 438 

modern hydrogeology problems is by relying on stochastic modeling, being the mathematically 439 

correct way to address the degree of uncertainty in the outcome of any study. As a corollary of 440 

this statement, all results should be given in statistical terms (pdfs or expected values plus 441 

some quantification of the prediction error). The driving processes, and thus the PDEs to adopt 442 

in any modeling effort are scale-dependent. Also, hydraulic parameters embedded in the 443 

equations depend on scale, but also in the interpretation method used to obtain them.  444 

Geological architecture is critical; any model that hopes to resemble reality must incorporate 445 

as detailed geology as possible. Geology controls the location of high/low conductivity areas 446 

and the presence of conducting connected features. This is known by practitioners and so 447 

profusely used in deterministic modeling, but most times it is neglected in stochastic models; 448 

so, the general impression is that deterministic models provide the most robust results.  449 

When analyzing flow problems, deterministic and stochastic methods are mature, and 450 

numerical codes for forward and inverse problems exist. It is time that we start (or keep) 451 

teaching stochastic modeling and advocate for its use, allowing a (most probably slow) 452 

permeation of the ideas among practitioners.  453 

The situation is quite different for problems involving solute transport. There is a strong 454 

disagreement in the community regarding the governing effective equations that should be 455 

used, being controversial and sometimes misunderstood. The ADE may be valid at some local 456 

scale, but cannot reproduce most of the observations at larger scales. Alternatives consider 457 

the use of the proper upscaled equations and the set of parameters that are valid at some 458 
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degree of discretization. But what is the meaning of the word “valid” here? Upscaled models 459 

only work in an ensemble sense; that is, they cannot be used to model point concentrations, 460 

but only integrated observables. That is, they cannot estimate intra-block variability, or how 461 

this is transferred to predictions. It is important that we acknowledge this fact and use models 462 

cleverly, without trying to ask them to give answers they cannot provide.  463 

This effect is even more relevant for reactive transport. Most reactions are driven by variations 464 

in the chemical signature at the local scale, so they cannot be directly addressed in upscaled 465 

models. Thus, there is a need to provide proper physically upscaled equations and parameters 466 

that can answer questions regarding reaction rates and quantities observed in real field 467 

applications. Several efforts have been pursued in this direction, but mostly in unconditional 468 

synthetic fields, without any proof that they would also hold at the field scale.  469 

Deterministic models do not represent reality at all. They just provide the modeler’s best 470 

guess. This is sometimes enough to provide overall mass balance and to analyze simple 471 

scenarios. Anything else needs an approach that properly incorporates heterogeneity and 472 

uncertainty. So, despite of all the problems, limitations, and negative comments given in this 473 

text, we contend that only stochastic models have any chance of providing the answers 474 

needed for proper groundwater management. We must convey to managers and stakeholders 475 

the message that all hydrogeological answers must be provided in statistical terms, 476 

incorporating the concept of acceptable risk defined as the probability of any system to 477 

unsatisfactorily meet a potential demand.  478 

 479 

8. Postscript: Comments on the other papers in the debate  480 

We appreciate the opportunity of providing comments on the other three papers in the 481 

debate. We enjoyed reading the paper of Cirpka and Valocchi (2016) that actually addresses 482 

very similar topics that this one, in particular in blaming stochastic theoreticians for restraining 483 
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the use of non-deterministic models by practitioners. They further consider that stochastic 484 

hydrogeologists have been mostly dealing with questions that have very little relevance in 485 

practice. It seems that the gap between scientists and practitioners is continuously widening. 486 

We think it is even worse, as some of the former actually despise the idea of providing answers 487 

to practical problems. Two points to highlight are that model choice is critical and that 488 

conditioning is key. These are also main points in our text, and so there is little we can 489 

comment upon. Last, we agree with the authors that the evaluation of uncertainty should be a 490 

primary target of stochastic analysis. 491 

We read with interest the contribution of Fiori et al. (2016), focusing on the relevance and 492 

interest of further pursuing theoretical developments in stochastic subsurface hydrology. The 493 

authors base their approach on the sequence of heterogeneity statistical characterization 494 

(achieved by field investigation), followed by the solution of the flow and transport equations. 495 

We fully agree with them that we need data and that the community has developed new and 496 

promising methods to get them. But the question still remains regarding the spatial resolution, 497 

data support window, and how these data can be used as input into models. This is another 498 

message to convey to practitioners: data is not error free, it is scale-dependent, and 499 

interpretation methods are not innocuous, but rather transfer our own view of processes. Our 500 

main point of disagreement is that we claim that full aquifer characterization goes beyond 501 

statistical descriptions only and should be conditioned on actual data.  502 

We also appreciate the interesting contribution of Fogg and Zhang (2016). We share a similar 503 

message which points out that spatial distribution of hydraulic parameters must account for 504 

transport and deposition processes, rather than rely on simple statistical descriptions (e.g. 505 

based on variance or integral scales). We also agree that most efforts in stochastic 506 

contaminant hydrology are restricted to small plumes in clastic sedimentary systems at the 507 

102-103 m scale. This means that present stochastic methods may not be directly applicable 508 

and must therefore be adapted for modeling complex geologic environments such as 509 
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crystalline rocks (covering one third of the Earth’s surface), carbonates (strongly present in 510 

Europe), or evaporates (characteristic of dry regions). The authors further argue that regional 511 

scale groundwater quality management is likely the biggest challenge in stochastic 512 

hydrogeology. Several points are worth emphasizing in this respect. The complexity at the 513 

regional scale renders the geologic description most important, and hypothesis such as 514 

stationarity and ergodicity unfeasible. Fortunately, observables tend to be integrated 515 

measures, thus with moderate uncertainty as compared to point values.  516 

As a final statement, we want to stress the need to educate students on stochastic modeling, 517 

as well as the need to convey the message to practitioners, stakeholders and politicians that 518 

using deterministic modeling is something they cannot afford, as it would mean providing 519 

incomplete and misleading answers. Instead, all results should be given in probabilistic terms, 520 

rather than providing a single value with a zero probability of being correct. The increasing 521 

interest in asking results to be provided in terms of risk evaluations is on our side. 522 

 523 

Acknowledgements 524 

Funding was provided by MINECO/FEDER (project INDEMNE, code CGL2015-69768-R), and by 525 

MINECO and the UE (project WE-NEED, code PCIN-2015-248). XS acknowledges support from 526 

the ICREA Academia Program. The data used are available upon request to the authors.  527 

 528 

References 529 

Benson, D.A., Meerschaert, M.M. (2009), A simple and efficient random walk solution of multi-530 

rate mobile/immobile mass transport equations, Adv. Water Res., 32, 532-539. 531 

Bianchi, M.; Zheng, C.M. (2016) A lithofacies approach for modeling non-Fickian solute 532 

transport in a heterogeneous alluvial aquifer, Water Resour. Res., 52(1), 552-565, doi: 533 

10.1002/2015WR018186. 534 

 22 



Cirpka, O.A.; Chiogna, G.; Rolle, M.; Bellin, A. (2015) Transverse mixing in three-dimensional 535 

nonstationary anisotropic heterogeneous porous media, Water Resour. Res., 51(1), 241-536 

260, doi: 10.1002/2014WR015331. 537 

Cirpka, O.A.; Valocchi, A.J. (2007) Two-dimensional concentration distribution for mixing-538 

controlled bioreactive transport in steady state, Adv. Water Res., 30(6-7), 1668-1679.  539 

Cirpka, O.A.; Valocchi, A.J. Debates - Stochastic subsurface hydrology from theory to practice: 540 

Does stochastic subsurface hydrology help solving practical problems of contaminant 541 

hydrogeology?, Water Resour. Res., in press. 542 

de Barros, F.P.J., Fernàndez-Garcia, D.; Bolster, D.; Sanchez-Vila, X. (2013) A risk-based 543 

probabilistic framework to estimate the endpoint of remediation: Concentration rebound 544 

by rate-limited mass transfer, Water Resour. Res., 1–14, doi:10.1029/2012WR020171.  545 

De Simoni, M; Carrera, J.; Sanchez-Vila, X.; Guadagnini, A. (2005) A procedure for the solution 546 

of multicomponent reactive transport problems, Water Resour. Res., 41(11), Art. No. 547 

W11410, doi: 10.1029/2005WR004056. 548 

Ding, D.; Benson, D.A. (2015) Simulating biodegradation under mixing-limited conditions using 549 

Michaelis-Menten (Monod) kinetic expressions in a particle tracking model, Adv. Water 550 

Res., 76, 109-119.  551 

Ding, D.; Benson, D.A.; Paster, A.; Bolster, D. (2013) Modeling bimolecular reactions and 552 

transport in porous media via particle tracking, Adv. Water Res., 53, 56-65.  553 

Engdahl, N.B.; Ginn, T.R.; Fogg G.E. (2013) Scalar dissipation rates in non-conservative 554 

transport systems, J. Cont. Hydrol., 149, 46–60, doi:10.1016/j.jconhyd.2013.03.003. 555 

Fernàndez-Garcia, D.; Sanchez-Vila, X. (2011) Optimal reconstruction of concentrations, 556 

gradients and reaction rates from particle distributions, J. Cont. Hydrol., 120-121, SI, 99-557 

114.  558 

Fernàndez-Garcia, D.; Sanchez-Vila, X. (2015) Mathematical equivalence between time-559 

dependent single-rate and multirate mass transfer models, Water Resour. Res., 51(5), 560 

3166–3180, doi: 10.1002/2014WR016348.  561 

Fiori, A.; Bellin, A.; Cvetkovic, V.; de Barros, F.P.J.; Dagan, G. (2015) Stochastic modeling of 562 

solute transport in aquifers: From heterogeneity characterization to risk analysis, Water 563 

Resour. Res., 51(8), 6622-6648, doi:10.1002/2015WR017388. 564 

 23 



Fiori, A.; Cvetkovic, V.; Dagan, G.; Attinger, S.; Bellin, A.; Dietrich, P.; Zech, A.; Teutsch, G. 565 

Debates - Stochastic subsurface hydrology from theory to practice: What is characterization 566 

and stochastic theory good for?, Water Resour. Res., in press. 567 

Fogg, G.E.; Zhang, Y. Debates - Stochastic subsurface hydrology from theory to practice: 568 

Geologic perspective on stochastic hydrogeology, Water Resour. Res., in press. 569 

Gelhar, L.W.; Axness, C.L. (1983) Three-dimensional stochastic analysis of macrodispersion in 570 

aquifers, Water Resour. Res., 19(1), 161–180.  571 

Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. (1992) A critical review of data on field-scale dispersion 572 

in aquifers, Water Resour. Res., 28(7), 1955-1974.  573 

Ginn, T.R.; Nassar, M.K.; Kamai, T.; Klise, K.; Tidwell, V.; McKenna, S. (2013) On a recent solute 574 

transport laboratory experiment involving sandstone and its modeling, Water Resour. Res., 575 

49(11), 7327-7338, doi:10.1002/2013WR013729. 576 

Guan, J.; Molz, F.J.; Zhou, Q.; Liu, H.H.; Zheng, C.M. (2008) Behavior of the mass transfer 577 

coefficient during the MADE-2 experiment: New insights, Water Resour. Res., 44(2), Art. No. 578 

W02423.  579 

Gupta, H.V.; Nearing, G.S. (2014) Debates-The future of hydrological sciences: A (common) 580 

path forward? Using models and data to learn: A systems theoretic perspective on the 581 

future of hydrological science, Water Resour. Res., 50(6), 5351-5359, doi: 582 

10.1002/2013WR015096. 583 

Gutjahr, A.L.; Gelhar, L.W.; Bakr, A.A.; MacMillan, J.R. (1978) Stochastic analysis of spatial 584 

variability in subsurface flows. 2. Evaluation and application, Water Resour. Res., 14(5), 953-585 

959. 586 

Haggerty, R.; Harvey, C.F.; von Schwerin, C.F.; Meigs, L.C. (2004) What controls the apparent 587 

timescale of solute mass transfer in aquifers and soils? A comparison of experimental 588 

results, Water Resour. Res., 40(1), Art. No. W01510. 589 

Henri, C.V.; Fernàndez-Garcia, D. (2014) Toward efficiency in heterogeneous multispecies 590 

reactive transport modeling: A particle-tracking solution for first-order network reactions, 591 

Water Resour. Res., 50(9), 7206-7230.  592 

Henri, C.V.; Fernàndez-Garcia, D. (2015) A random walk solution for modeling solute transport 593 

with network reactions and multi-rate mass transfer in heterogeneous systems: Impact of 594 

biofilms, Adv. Water Res., 86, 119-132. 595 

 24 



Henri, C.V., Fernàndez-Garcia, D.; Barros F.P.J. (2015) Probabilistic human health risk 596 

assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk 597 

statistics, hot spots, and preferential channels, Water Resour. Res., 51.  598 

Kitanidis, P.K. (1988) Prediction by the method of moments of transport in a heterogeneous 599 

formation, J. Hydrol., 102(1–4), 453–473.  600 

Le Borgne, T.; Dentz, M.; Bolster, D.; Carrera, J.; de Dreuzy, J.-R.; Davy, P. (2010) Non-Fickian 601 

mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media, 602 

Adv. Water Res., 33(12), 1468–1475, doi:10.1016/j.advwatres.2010.08.006. 603 

Matheron, G. (1967) Elements pour une théorie des milieux poreux, Masson, Paris. 604 

Neuman, S.P.; Tartakovsky, D.M. (2009) Perspective on theories of non-Fickian transport in 605 

heterogeneous media, Adv. Water Res., 32(5), 670–680. 606 

Paster, A.; Bolster, D.; Benson, D.A. (2014) Connecting the dots: Semi-analytical and random 607 

walk numerical solutions of the diffusion-reaction equation with stochastic initial 608 

conditions, J. Comput. Physics, 263, 91-112.  609 

Peaceman, D.W. (1977) Nonlinear stability analysis for difference equations using semi-implicit 610 

mobility, Soc. Petrol. Engin. J., 17(1), 79-91.  611 

Pedretti, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Benson, D.A. (2014) Apparent 612 

directional mass-transfer capacity coefficients in three-dimensional anisotropic 613 

heterogeneous aquifers under radial convergent transport, Water Resour. Res., 50(2), 1205-614 

1224, doi:10.1002/2013WR014578. 615 

Pereira Nunes, J.P.; Blunt, M.J.; Bijeljic, B. (2016) Pore-scale simulation of carbonate 616 

dissolution in micro-CT images, J. Geoph. Res.-Solid Earth, 121(2), 558-576.  617 

Pool, M.; Carrera, J.; Alcolea, A.; Bocanegra, E.M. (2015) A comparison of deterministic and 618 

stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer, J. 619 

Hydrol., 531, SI, 214-229, doi: 10.1016/j.jhydrol.2015.09.064. 620 

Porta, G., Chaynikov, S.; Riva, M.; Guadagnini A. (2013), Upscaling solute transport in porous 621 

media from the pore scale to dual‐and multicontinuum formulations, Water Resour. Res., 622 

49(4), 2025-2039. 623 

Rahbaralam, M.; Fernàndez-Garcia, D.; Sanchez-Vila, X. (2015) Do we really need a large 624 

number of particles to simulate bimolecular reactive transport with random walk methods? 625 

A kernel density estimation approach, J. Comput. Physics, 303, 95-104.  626 

 25 



Renard, P. (2007) Stochastic hydrogeology: What professionals really need?, Ground Water, 627 

45(5), 531-541, doi:10.1111/j.1745-6584.2007.00340.x. 628 

Rubin, Y.; Sun, A.; Maxwell, R.; Bellin, A. (1999) The concept of block-effective 629 

macrodispersivity and a unified approach for grid-scale- and plume-scale-dependent 630 

transport, J. Fluid Mechanics, 395(9), 161-180.  631 

Rubol, S.; Freixa, A.; Carles-Brangari, A.; Fernàndez-Garcia, D.; Romani, A.M.; Sanchez-Vila, X. 632 

(2014) Connecting bacterial colonization to physical and biochemical changes in a sand box 633 

infiltration experiment, J. Hydrol., 517, 317-327, doi: 10.1016/j.jhydrol.2014.05.041. 634 

Salamon, P.; Fernàndez-Garcia, D.; Gomez-Hernandez, J.J. (2007) Modeling tracer transport at 635 

the MADE site: The importance of heterogeneity, Water Resour. Res., 43(8), Art. No. 636 

W08404, doi: 10.1029/2006WR005522. 637 

Sanchez-Vila, X.; Rubol, S.; Carles-Brangari, A.; Fernandez-Garcia, D. (2013) An analytical 638 

solution to study substrate-microbial dynamics in soils, Adv. Water Resour., 54, 181-190, 639 

DOI: 10.1016/j.advwatres.2013.02.004.  640 

Siirila-Woodburn, E.R.; Fernàndez-Garcia, D.; Sanchez-Vila, X. (2015) Improving the accuracy of 641 

risk prediction from particle-based breakthrough curves reconstructed with kernel density 642 

estimators, Water Resour. Res., 51(6), 4574-4591.  643 

Tartakovsky, A.M.; Meakin, P.; Scheibe, T.D.; West, R.M.E. (2007) Simulations of reactive 644 

transport and precipitation with smoothed particle hydrodynamics, J. Comput. Physics, 645 

222(2), 654-672, doi:10.1016/j.jcp.2006.08.013.  646 

Trinchero, P., X. Sanchez-Vila, D. Fernàndez-Garcia (2008), Point-to-point connectivity, an 647 

abstract concept or a key issue for risk assessment studies, Adv. Water Res., 31, 1742-1753. 648 

Wood, B.D.; Valdes-Parada, F.J. (2013) Volume averaging: Local and nonlocal closures using a 649 

Green's function approach, Adv. Water Res., 51, 139-167, 650 

doi:10.1016/j.advwatres.2012.06.008. 651 

Zhang, Y.; Green, C.T.; Fogg, G.E. (2013) The impact of medium architecture of alluvial settings 652 

on non-Fickian transport, Adv. Water Res., 54, 78-99, doi:10.1016/j.advwatres.2013.01.004. 653 

Zhang, Y.; Benson, D.A. (2008), Lagrangian simulation of multidimensional anomalous 654 

transport at the MADE site, Geophys. Res. Lett., 35, L07403, doi:10.1029/2008GL033222. 655 

   656 

 26 



Figure captions 657 

Figure 1: Longitudinal integrated mass distribution profiles measured at the MADE site of the 658 

tritium plume and different Monte Carlo realizations considering that the local ADE is valid 659 

at the metric scale [modified from Salamon et al., 2007]. All simulations display 660 

(insufficient) tailing, and there is a strong variability between individual realizations.  661 

Figure 2: Best fit of the integrated mass profiles at the MADE site at time t=328 day by 662 

assuming a single-rate mass transfer model with a mass transfer coefficient αf=0.0033 d-1 663 

and a field capacity (rate of immobile vs. mobile porosity) β=7.  664 

Figure 3: Compilation of the review data presented by Haggerty et al. [2004] for single-rate 665 

mass transfer coefficients estimated for a number of experiments worldwide, adding the 666 

estimations of Guan et al. [2008] for the MADE site. The latter values do not follow the 667 

general trend described by the inverse of residence time.  668 

Figure 4: Estimation of mass transfer coefficients reported by Guan et al. [2008] and best fit 669 

obtained from the t-SRMT model assuming two mass transfer rates acting simultaneously. 670 

Figure 5: Relative error of the total amount of reaction as a function of grid-Pe and grid-Cu for 671 

an Eulerian implicit approximation scheme with upstream weighting (α=0 and w=1). 672 

  673 

 27 



 674 

Figure 1: Longitudinal integrated mass distribution profiles measured at the MADE site of the 675 

tritium plume and different Monte Carlo realizations considering that the local ADE is valid at 676 

the metric scale [modified from Salamon et al., 2007]. All simulations display (insufficient) 677 

tailing, and there is a strong variability between individual realizations.  678 
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Figure 2: Best fit of the integrated mass profiles at the MADE site at time t=328 day by 681 

assuming a single-rate mass transfer model with a mass transfer coefficient αf=0.0033 d-1 and 682 

a field capacity (rate of immobile vs. mobile porosity) β=7.  683 
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 685 

Figure 3: Compilation of the review data presented by Haggerty et al. [2004] for single-rate 686 

mass transfer coefficients estimated for a number of experiments worldwide, adding the 687 

estimations of Guan et al. [2008] for the MADE site. The latter values do not follow the general 688 

trend described by the inverse of residence time.  689 
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 691 

Figure 4: Estimation of mass transfer coefficients reported by Guan et al. [2008] and best fit 692 

obtained from the t-SRMT model assuming two mass transfer rates acting simultaneously. 693 
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 695 

Figure 5: Relative error of the total amount of reaction as a function of grid-𝑃𝑃𝑃𝑃 and grid-𝐶𝐶𝐶𝐶 for 696 

an Eulerian implicit approximation scheme with upstream weighting (α=0 and w=1). 697 
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