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Abstract Arterial hypertension is a chronic medi-
cal condition associated with an elevated blood pres-
sure. Chronic arterial hypertension initiates a series of
events, which are known to collectively initiate arte-
rial wall thickening. However, the correlation between
macrostructural mechanical loading, microstructural cel-
lular changes, and macrostructural adaptation remains
unclear. Here, we present a microstructurally motivated
computational model for chronic arterial hypertension
through smooth muscle cell growth. To model growth,
we adopt a classical concept based on the multiplica-
tive decomposition of the deformation gradient into an
elastic part and a growth part. Motivated by clinical ob-
servations, we assume that the driving force for growth
is the stretch sensed by the smooth muscle cells. We em-
bed our model into a finite element framework, where
growth is stored locally as an internal variable. First,
To demonstrate the features of our model, we investi-
gate the effects of hypertensive growth in a real human
carotid artery. Our results agree nicely with experimen-
tal data reported in the literature both qualitatively and
quantitatively.
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1 Motivation

Hypertension is characterized through a substantial el-
evation in blood pressure, which initiates the adapta-
tion of vascular tissue. The immediate change, on a
short-term scale, is the adaptation of smooth muscle
cell (SMC) contractile forces in the connective tissue,
which can reduce the lumen diameter to compensate for
the extra stresses. In addition, we can observe two long-
term adaptation processes. The first long-term change
is related to the secretion of collagen in the extracellu-
lar matrix, which gradually stiffens the arterial tissue.

normotensive hypertensive

Fig. 1 Hypertensive anisotropic arterial growth. In con-
trast to the normtensive artery (left), the hypertensive artery
(right) displays progressive smooth muscle cell growth result-
ing in chronic arterial wall thickening.

The second long-term change consists of the increase of
SMCs both in volume and in number. Experimentally,
this adaptation manifests itself in a thickening of the
vessel wall. In this work, we focus on this latter phe-
nomenon, the growth of SMC in response to chronic hy-
pertension.

SMCs are responsible for vascular contraction, also
known as myogenic tone [6,56], which is directly related
to the intracellular calcium concentration and to the ion
channels of the cell [7]. This force attempts to compen-
sate the over-stress in the vessel wall to maintain the
same vessel diameter [23,46].

SMCs typically grow through hypertrophy, by in-
creasing their volume, through hyperplasia, by increas-
ing their number, or through a combination of both
[47,49]. This micro-structural change leads to the well-
documented thickening of the vessel wall to restore the
homeostatic stress state illustrated in Figure 1. These
changes are more pronounced in small or resistance ves-
sels [12,44]. A multitude of experimental findings is re-
lated to hypertension-induced thickening of the arterial



wall; many of them are related to drug performance,
to the genetic expression of substances, and to the plain
case of thickening. Some of these studies look at essential
hypertension while other asses hypertension by means of
hypoxic states or ligands of some particular arteries.

Wiener et al. [62] studied aorta arteries of rats and
observed a decrease of the lumen diameter of 9% while
the thickness increased by 18% from 182.5um in the nor-
motensive state to 215.5um in hypertension. Owens and
Schwartz [49] reported an increase of 35% in SMC size
due to hyperplasia also in aorta of rat. The same authors
showed an increase of 39.67% and a 21.16% in SMC mass
in a different type of rats [48]. Schofield et al. [55] looked
at the evolution of small human arteries and observed
that internal diameter decreased from 140um to 118um,
while thickness increased by 46.39%. Since smaller ar-
teries display a more pronounced contractile response,
such a drastic decrease could be caused by contractile
phenomena. In fact, the above studies also addressed
changes in the miogenic response in response to hyper-
tension.

Studies on the carotid artery are also numerous.
Boutouyrie et al. [5] reported a rise of the internal diam-
eter in human carotids from 5.25 mm to 5.66 mm and
an increase in thickness of 27.27% from 0.487 mm to
0.572 mm. However, the same work showed a slight de-
crease in the lumen diameter from 2.33 mm to 2.32 mm
in the radial artery accompanied by a 21.98% increase
in thickness. Fridez et al. [13] studied the influence of
hypertension in carotid arteries of rats. They showed
that the internal radius increased in hypertensive rats
but it increased at slower rate than in the control group.
The thickness increased by 58.4% from 142 pm to 225
pm. However, this represented just a 30% increase with
respect to control group. The same group also observed
that the thickness of outer lamelar units grew more than
those of inner units. Eberth et al. [8] also studied the
morphological changes in the carotids of rats and re-
ported an increase in the internal radius from 531 pm
to 592 pm while the thickness increases from 23.1 pm to
85.7 pm after 56 weeks.

These results demonstrate how vascular adaptation
can differ, not only between different arteries and species
but also with the same artery of the same species. Vari-
ation from specimen to specimen, different degrees of
SMC activation, genetic disorders, age, life style, and
many more factors can be a cause of this variability. To
point out a last example, Feihl et al. [10] collected data
from different authors who all studied small subcuta-
neous human arteries. While there was a strong quan-
titative variability in the adaptive response, the qual-
itative trends were all similar to the trends described
above.

The computational study of growth has gained in-
creasing attention in the theoretical and computational
mechanics community, [1, 28, 43, 59]. Mechanical mod-
eling of growth has been addressed in different ways.
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Typically, growing biological tissues are considered as
open systems [35]. Their different configurational set-
tings and their numerical treatment within the finite el-
ement method are discussed in Kuhl and Steinmann [34].
Typically, we can distinguish two fundamental forms of
growth: volume growth [24] and density growth [33]. The
first allows for changes in volume while keeping the den-
sity constant while the second maintains a constant vol-
ume while the density is allowed to change [36,41,42].
The works of Skalak et al. [57] and Rodriguez et al. [51]
pioneered the underlying kinematic description of vol-
umetric growth. Within the past decade, various au-
thors and groups have adopted and refined this con-
cept [15,22,30]. An alternative approach towards growth
is based on the constrained mixture theory, where several
constituents of a tissue are allowed to growth indepen-
dently [27,29]. A similar approach [18,19,32] was recently
extended to reactive mixtures [2]. We would also like to
point out the early work of Fung and Liu [14], which
demonstrates that the growth of blood vessels induces a
change in the natural configuration, associated with the
notion of residual stress.

The goal of this work is to present a computa-
tional model of volumetric growth for SMC based on
the anisotropic microstructure of the vascular tissue. We
adapt a well-established growth model and its underly-
ing consistent numerical procedure. We focus on SMC
growth in response to chronic hypertension and on its
impact on arterial wall thickening. First, we briefly re-
iterate the general mechanical background of soft tissue
and growth mechanics used in this work. Then, based
on experimental data, we will compute a simple case of
hypertension that allows us to calibrate the material pa-
rameters of our model. In particular, we model growth
of SMC as a stretch-driven process, activated by an el-
evated pressure. We update the state of growth implic-
itly by means of a Newton-Raphson scheme. Finally, we
present a real human carotid geometry to illustrate the
features of our model, before we close by discussing the
main conclusions of our work.

2 Baseline elasticity of cardiovascular tissue

Two important aspects enter the mechanical description
of the cardiovascular tissue, the kinematically non-linear
behavior of quasi-incompressible materials and constitu-
tively non-linear behavior of quasi-incompressible mate-
rials. We will briefly summarize both in the following
subsections.

2.1 Kinematics of quasi-incompressiblity

First, we reiterate the basic equations of the kinemat-
ically non-linear behavior. Our key kinematic quantity
is the deformation gradient, the tangent of the motion,
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represented by a two-point linear mapping over the ref-
erence configuration. Based on the motion ¢, we define
the deformation gradient as

F=Vxep (1)

and denote its Jacobians as J = det(F). We can then
introduce the right Cauchy Green tensor

C=F"F (2)

as a characteristic deformation measure. Moreover, we
can introduce the spatial velocity gradient 1 = F-F!=
Vv in terms of the velocity v = ¢, where {6} =
0y {6} |x denotes the time derivative at fixed material
position X. The symmetric part of the spatial veloc-
ity gradient defines the spatial rate of deformation ten-
sor d = 1™, To account for the characteristic quasi-
incompressibile behavior of soft biological tissues, we
adopt a volumetric-isochoric decomposition of the de-
formation gradient [11,16],

F=J'3F. (3)

The overbar is associated with the prefix isochoric
and denotes the volume-preserving part. Accordingly,
F denotes the isochoric deformation gradient with
det(F) = 1, and

C—F'.F (4)

denotes the associated isochoric right Cauchy Green ten-
sor. It proves convenient to introduce its first and fourth
invariants,

jlzétl and j4:CZN (5)

where N = n®mn denotes the structural tensor defined in
terms of the characteristic microstructural direction n.

2.2 Constitutive equations of quasi-incompressibility

Second, we summarize the basic equations of the consti-
tutively non-linear behavior. For soft biological tissues
it is common to adapt the framework of hyperlasticity,
based on the definition of a strain energy density func-
tion ¥. To account for the quasi-incompressible behav-
ior, we additively decompose this strain energy density
function into a volumetric and isochoric parts,

U =W, (J) + Piso (C) . (6)

The first term, the volumetric contribution ¥, is pri-
marily related to the water content in the tissue. The
second term, the isochoric contribution Wiy, is typically
further split into an isotropic contribution related to the
elastin content ¥,), and an anisotropic contribution re-
lated to the collagen fibers ¥,,. From the evaluation of
the dissipation inequality [25,40], we obtain the second
Piola-Kirchhoff stress tensor,

S = 28CW - Svo] + Siso (7)

which consists of a volumetric part,
Svol = 20cWyo1 = J OyWye C 1, (8)
and an isotropic part,
Siso = 20cWiso = 20cWiso : IcC =J"2P:S.  (9)

Here S = 0&Wiso 18 the fictitious second Piola-Kirchhoff
stress and P denotes the fourth order projection tensor
defined as P = ]I—% C~'®C. By applying the contravari-
ant push forward operation, we obtain the Cauchy stress
o for the finite element implementation,
1 t

a:jF-S-F. (10)
The tensor of tangent moduli, a fourth order tensor that
relates stress and strain increments, is essential for a
consistent finite element implementation. It represents
the total derivative of the stress S with respect to the
deformation tensor C,

C = 2dS = Cyo1 + Cino, (11)
and consists of a volumetric contribution,
Ciol =2dcSvo1 = 2JpC '@ C —2Tple-1, (12)
and an isochoric contribution,

Ciso = 2dcSiso = P: C: P' — 2tr(J72/%8,,)P 13)

-2[SeCct+Clws,
where p denotes the hydrostatic pressure and
p = p + JIyp. In addition, we have intro-
duced the following abbreviations for the fourth
order temsors P = Ig1 — 1C™' @ C™' and
Io-n = i[C7'®C™! + C'®C™!], where the non-
standard fourth order tensor products take the
following interpretation, {e®o};jr = {e}ir {o};; and
{e®o}ijn = {o}ir {o}jn-

Remark 1 (Elasticity of arterial tissue) The mod-
eling of arterial tissue has been widely described in litera-
ture [26]. It is common to describe the isochoric response
Uiso by means of an isotropic contribution W, and an
anisotropic contribution W), related to the elastin and
the collagen content, respectively. This feature can be de-
scribed as

LDiso (71;74) - chla(fl) + wcol (74) )

where I1 and I, are the first and fourth invariant of the
isochoric part of the deformation according to equation
(5). The isotropic part related to the elastin content, We),,
is typically parameterized in terms of a single stress-like
material parameter p, e.g., as

Wela<71) =M [71 - 3] .



Table 1 Material parameters for media and adventitia of
human common carotid artery (CCA) and of human internal
carotid artery (ICA) [54,58].

M [kPa] kl [kPa} k‘z [-]

CCA media 4.31 2.19 4.15

CCA adventitia 0.04 7.32 66.81

ICA media 11.01 2.14  20.72

ICA adventitia 0.04 15.97 51.01
ulkPa] k, [kPa] ky [-]

Fig. 2 Regional variation of material parameters pu, k1, and
ko along human carotid artery.

The anisotropic part related to the collagen content, Wey,
has been discussed intensely in the literature. O’Connell
et al. [45] have studied the structural organization of the
arterial layers, and found that the collagen fibers fol-
low a helicoidal distribution from the outer to the in-
ner layer. Collagen fibers are bundled around SMC and
around some secondary fibrils, which cross-link the main
collagen fibers. In the adventitia, the outermost layer of
the artery, collagen displays a rather random distribu-
tion, while in the media layer, the middle layer, collagen
and SMC' forms several sublayers with slightly different
preferential orientations. Garcia [17] reported an almost
circumferential orientation of the collagen fibers in the
media of carotid arteries. Here, for simplicity, we as-
sume the following ansatz

Yeol (1) exp(ko[I1 — 1]%) — 1].

B 2k2[
Based on experimental data [58], we obtained the me-
chanical parameters in different regions of the human
carotid artery. Table 1 summarizes the calibrated mate-
rial parameter values. Figure 2 illustrates the regional
variation of the mechanical parameters along the carotid
artery.
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Fig. 3 Kinematic of growth. Composition of a elastic defor-
mation gradient F. and a growth tensor F,

3 Growth of cardiovascular tissue
3.1 Kinematics of growth

Within the framework of finite growth, the key kinematic
assumption is the multiplicative decomposition of the
deformation gradient F into an elastic part F, and a
growth part Fy [51],

F=F. F,. (14)

The underlying concept is adopted from the multiplica-
tive decomposition in finite elastoplasticity [38]. While
we can think of the growth tensor F, as a second-order
variable to characterize arbitrary forms of isotropic or
anisotropic growth, here we will parameterize the growth
tensor exclusively in terms of a single scalar-valued vari-
able, the growth multiplier ¢ [20]. We denote the Ja-
cobians of the elastic tensor and of the growth tensor
as Jo = det(Fe) and J, = det(F,), respectively, such
that J = J.J;. We can then introduce the elastic right
Cauchy Green tensor C, in the following form.

C.=F.-F.=F/ -C-F} (15)

The pull back of the spatial velocity gradient 1 to the
intermediate configuration

F! 1.F.=L.+L, (16)

introduces the additive decomposition into an elastic
contribution L. and a growth contribution L,

Lo-F B~ B B ad L-F, B (1)

such that the rate of deformation tensor of the inter-
mediate configuration follows as dg = 1™ with 1, =
F.-L, - F.'. Figure 3 illustrates the kinematics of finite
growth, the deformation tensors C and C,, and the map-
pings F = F. - F; and F' = F - F’ between tangent
spaces and cotangent spaces.

Remark 2 (Growth of arterial tissue) For the par-
ticular problem of growth in arterial tissue, we adopt the
formulation proposed by Himpel et al. [24] and Giktepe
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et al. [21]. To account for experimental observations of
SMC growth [47-49], we define the growth tensor as

Fg=1+[0—-1]n,®n,

where ¥ is the scalar-valued growth multiplier that de-
fines the level of growth and n, characterizes the ra-
dial direction [50]. This particular format of the growth
tensor characterizes smooth muscle cell thickening in
the radial direction n, while the ellipsoidal muscle cells
maintain the same length, see Figure ?77. Acutely, SMC
maintain their original length by contracting. Chroni-
cally SMC' grow in the radial direction to reduce elevated
wall stresses Some experiments indicate that SMC may
also contract in the axial direction, to decrease the lumen
diameter. However, for simplicity, here we assume that
the azial dimension remains constant.

3.2 Constitutive equations of growth

Next, we embed the kinematic characterization of
growth into the hyperelastic baseline description intro-
duced in Section 2.2. To this end, we reparameterize the
Helmholtz strain energy function ¥(C,), which was ini-
tially parameterized in terms of the elastic deformation
tensor C,, in terms of the total deformation tensor C
and the growth tensor Fg, such that ¥(C,F,) and

U =0c¥:C+0p,V: F, (18)

Thermodynamic considerations motivate the introduc-
tion of the second Piola-Kirchhoff stress,

S =20c¥ = 20c, ¥ : 0cC. =F; ' -S.-F;*,  (19)

with Se = Jc ¥. To derive the Lagrangian tangent mod-
uli, essential for a consistent finite element implemen-
tation, we evaluate the total derivative of the S with
respect to C.

C=2dcS=C.+C,
= 26CS\Fg + 2808’17
= 2(9(;S|Fg +2 [6ng : 619Fg} X (9c’L9|F
(20)
The first term of equation (20) represents the classical

elastic tangent moduli, 2dc,Se, pulled back to the un-
deformed reference configuration,

C.= 2dcsng = [F,'®F; '] : 2dc.S. : [F;"®F."].
(21)
The second term of equation (20) is related to the lin-
earization of the growth model,
C, = 2dcS|, = 2[0S : BF,] ® 0|,  (22)
where
Op,S =—[F,'®S + SeF, ']
—[F;'®F;']: 5C: [F;'®C. + C.®F,; "],
(23)

while 0yF,; and Og¥ are specific of the chosen growth
tensor Fy and will be provided in following sections. To
obtain the Eulerian tangent moduli ¢ for the finite ele-
ment implementation, we push Lagrangian tangent mod-
uli C of equation (20) forward to the deformed configu-
ration,

c:§[F®F]:C:[Ft®Ft]. (24)

Last, we define the evolution of the growth multiplier ¢
according to [20], with

) = K(9)$(Z) (25)
where E represents the growth stimulus. Here, x(¢) is
a limiting function that ensures that the tissue does not
grow unboundedly [39],

(26)

1 [Ymax _ g9 Y
0=t [22

with dyk(¥) = —yk(F)/[9™** — 3], where 9™** defines
a growth threshold, and 7 and ~ control the speed and
the non-linearity of the growth process [24]. The func-
tion ¢(Z) represents the growth criterion similar to the
flow rule in the theory of plasticity. In the following, we
discuss two different approaches to drive the evolution
of growth, stress driven and strain drive.

3.8 Numerical implementation

For the numerical implementation, we integrate the evo-
lution of growth in time using an implicit Euler backward
scheme,

9 = [P — /At (27)

where At denotes the current time increment. This al-
lows us to introduce the discrete local residual

R =" — 9" — k(9)p(E)At. (28)

To solve this non-linear equation, we expand the residual
up to the first order term. This allows us to solve the
problem within a Newton iterative scheme according to
the following equation,

R(9)" 4 Dy R(V)"

g [P =97 = 0. (29)
The tangent of the residual
K=dyR =1— [0y + J09r| At (30)

allows us to incrementally update the growth multiplier
9L« 97 — R/K, determined by the current stimuli
and loading history. Table 2 summarizes the local algo-
rithmic treatment of the numerical procedure, which is
embedded in the finite element framework on the con-
stitutive level.



Table 2 Algorithm for implicit Euler scheme of strain-driven
volumetric growth
Input: F*71 ¢
1. Evaluate kinematics C**', Fi' = F**' . F! and stresses
SLHl gttt
2. Check for growth
IF (Asmc > Aerit)
THEN Determine new growth multiplier
WHILE R > tol DO
Calculate residual R = 9" — 9™ — k(9) (=) At
Calculate tangent I = 1 — [k0y ¢ + POy k]| At
Update growth 9" « 9° — R/K™*
END
3. Compute Cauchy stresses o'
Compute tangent moduli c'*?

Output: o' 1 9 F!

Remark 3 (Stress-driven anisotropic growth)
We first define the evolution of the growth multiplier 9
in terms of a stress-based stimulus [20, 31],

= K(9)p(Me),
using a stress-driven growth criterion

(b(Me) = tr(Me) — Myt -

Here, M, = C,-S,, is the elastic Mandel stress and Mg
denotes the physiological pressure above which growth oc-
curs. The derivative of the growth criterion with respect
to the growth multiplier ¥ required for the consistent lin-
earization reads

({919¢ = —0yCq : Se + C, : 09S¢

with 0yCe = —Fg_t . aﬁFg - Ce — G - 0yF, - Fg_1 and
09Se = %Ce : 09Ce. Finally, to complete the tangent
moduli in (20), we provide the derivative of the growth
multiplier with respect to the Cauchy-Green strain ten-
sor, Oct = Oce? : 0cCe = Hﬂt[%ce : Ce + Se]/IC
. Within a finite element setting, stress-driven growth
requires an additional internal iteration to update the
growth multiplier, since its driving force, the current
stress, is typically not known a priori.

Remark 4 (Strain-driven anisotropic growth)
Alternatively, we could define the evolution of the growth
multiplier O in terms of a strain-based stimulus [20],

= K(0)(Fe),
using a strain-driven growth criterion

¢(Fe) = Ae - Acrit = Fe : [nz ® nz} - )\crit .

Here M.y denotes a physiological stretch above which
growth occurs. We have assumed that the SMC are
aligned with the collagen fibers in the extracellular matrix
and that they undergo an affine deformation, meaning
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that their elastic stretches A\e are approrimately identi-
cal, Ae = Asmc = Acol = Fo @ [n, ® n.]. The remaining
term for the tangent moduli then simply reads

By = —A/A2.

Unlike stress-driven growth, strain-driven growth does
not require an additional internal iteration to update
the growth multiplier, since its driving force, the current
strain, is typically a priori known. Strain-driven growth
is therefore computationally more stable and robust.

4 Arterial growth in hypertension

In this section we present some results of the two ap-
proaches described above and discuss their potential to
model arterial growth due to hypertensive conditions.

4.1 Growth in a cylindrical prototype artery

In this first subsection, we explore a simple prototype
model of growth in the arterial wall to illustrate the char-
acteristic features of growth. We simulate an idealized
artery slice, made up of media and adventitia layers. We
choose the growth parameters to 9™ = 2, ~ = 2 and
7 = 1. We ask the question what driving force quan-
tity is more suitable for hypertension-induced growth.
To initiate growth, we adopt the following simulation
protocol:

1. Gradually pressurize an artery up to the normoten-
sive state at a physiological pressure of 13.3 kPa.

2. Calculate the resulting critical physiological stretches
Aerit and stresses Mc,i¢ locally and store their values
in a pointwise fashion.

3. Apply the pressure up to the hypertensive state at a
chronically elevated pressure of 16.0 kPa.

4. Allow the tissue to grow chronically to compensate
for the extra deformation and stress.

Figures 4 and 5 illustrate a finite element simulation
of growth in a cylindrical prototype artery. Figure 4
displays the maximum principal strains and stresses in
a slice of the common carotid artery under normoten-
sive and hypertensive conditions. Figure 5 compares the
growth multiplier and the maximum principal stresses
for strain- and stress-driven growth. The arterial wall
thickness and the regional profiles of the growth multi-
plier differ substantially for the strain- and stress-driven
cases.

For the stress-driven case, as displayed in Figure 5, bot-
tom row, growth increases radially from inward to out-
ward in a rather drastic way. Since the adventitia layer is
much stiffer than the media layer, this results in higher
stresses in the adventitia, making it grow much faster in
the stress-driven case. Moreover, the higher growth rate
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normotensive
max principal strain max principal stress

EMax[-] S [kPa]

hypertensive
max principal strain max principal stress

EMax[-] SMX[kPa]

Fig. 4 Normotensive and hypotensive conditions in a cylin-
drical prototype artery with maximum principal strains, left,
and stresses, right.

in the adventitia initiates a marked perpendicular expan-
sion towards the center thereby decreasing the circumfer-
ential dimension of the media. For the strain-driven case,
growth also increases radially, but significantly smoother
than for the stress-driven case. For the first time, in
contrast to previous studies [24,52], we have simulated
growth in an artery wall with distinct layers and distinct
stiffnesses. Our results show that it is critical to account
for the different properties in different layers to predict
experimental findings. As we have discuss in the intro-
duction, arterial thickening occurs meanly in the media,
caused by hypertrophy and hyperplasia of SMC. For the
stress-driven stimulus, growth seems to occur mainly in
the adventitia layer which would contradict these find-
ings.

Strain-driven growth, as displayed in Figure 5, top row,
displays a more uniform growth distribution across the
thickness. Since the circumferential stretch is more uni-
form than the stress distribution, growth occurs in a
more distributed way, which seems to favorably agree
with experimental findings.

The debate about the most adequate driving force for
different processes in cells, e.g., cell differentiation or cell
migration, remains vivid and still ongoing. Along these
lines, the choice of a stress- or strain-driven approach to
characterize hypertensive growth still remains unclear.
From our results we conclude that growth in arterial tis-
sue is highly sensitive to the choice of the underlying

strain driven
growth multiplier max principal stress

[-] S"kPa]

2.00

1.95

1.90

stress driven
growth multiplier max principal stress

o S"* [kPa]

2.00

1.90

Fig. 5 Strain driven and stress driven growth in a cylindrical
prototype artery with growth multiplier, left, and maximum
principal stresses, right.

mechanical stimulus. In the particular case of growth
in arteries it is known that growth occurs primarily in
the media layer, since there is where the SMC are sit-
uated. To better characterize the constitutive response
of the arterial wall, we will from now on assume that
SMC growth is allowed to occur only in the media layer.
Moreover, we will assume that stretch of the SMC is the
mechanical variable that stimulates the growth process.

4.2 Growth in a human carotid artery

We now adopt the strain-driven approach towards ar-
terial growth. According to Remark 4, the mechani-
cal stimulus that triggers growth is the SMC stretch
Asmc = A = Fe @ [n, ® n,], and the growth crite-
rion is expressed as ¢(Fo) = Asmc — Acrig. To illustrate
the features of the proposed approach, we compare our
simulation with experimental findings [13]. We begin by
studying the growth process in a slice of the common
carotid artery as shown in Figure 6.

Figure 7, top, shows the evolution of a representative
SMC in the medial layer of the common carotid artery.
The SMC size increases in the radial direction while the
longitudinal direction remains constant. Figure 7, bot-
tom, shows the evolution of growth in a circular section
of the common carotid artery at different time steps.
In response to hypertension, the maximum growth mul-
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evolution of smooth muscle cell size

t=0d t=233d

evolution of arterial cross section

t=0d t =33d

1.0

t=67d t=100d
t=67d t=100d
1.5

Fig. 7 Growth of a representative smooth muscle cell in the medial layer of the common carotid artery and its effect of the
circular section at characteristic time steps. In response to hypertension, the growth multiplier gradually increases to ¢ = 1.47,
indicating an increase of smooth muscle cell thickness of almost 50%.

external carotid artery

common carotid artery

internal carotid artery

Fig. 6 Human carotid artery with three representative cross-
sections in the common carotid artery, the internal carotid
artery, and the external carotid artery, highlighted in dark.

tiplier increases to ¥ = 1.47, indicating an increase of
smooth muscle cell thickness of almost 50%.

Figure 8 shows the evolution of the growth multiplier
over a period of 100 days, both for the experimental
measurements in [13] and for the computational simula-
tion with our model. Results displays a similar tendency
throughout the growth process. Our results slightly over-
estimate the amount of growth during the first few days,
and slightly underestimate the amount of growth long
time.

Figure 9 displays the evolution of the maximum princi-
pal stresses in inner, media, and outer layers of a human
carotid artery. Stresses in the media layer decrease as
a result of SMC growth. SMC growth, myogenic tone,
and other physiological process have the common goal
to reduce elevated wall stress caused by hypertension.
Their ultimate goal is to bring the wall stress back to its
physiological range, i.e., reduce its values towards the
normotensive situation. As the growth multiplier ¢ in-
creases, the growth tensor F, increases and causes the
elastic tensor F. to decrease. This reduces the elastic

temporal evolution of growth
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Fig. 8 Temporal evolution of growth in human carotid
artery. Circles represent experimentally measured growth
[13]; squares represent computationally simulated growth.

stress Se. While the media layer grows and its stresses
decrease, stresses in the adventitia layer undergo a sub-
stantial increase. The increase of adventitia stress is
caused by the radial expansion of the media.

Figures 10 and 11 display growth in four representa-
tive longitudinal and transverse sections of the human
carotid artery after £ = 100 days of hypertension. Similar
to the previous findings, growth is heterogeneous across
the wall thickness, with smaller growth at the inner and
larger growth at the outer layer. Growth also displays
variations along the direction of flow.

Last, we summarize the spatio-temporal evolution of
growth in three representative slices of the human
carotid artery as highlighted in Figure 6. Figures 12, 13,
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evolution of growth in the common carotid artery

t=5d t=15d

t=40d t=100d

evolution of max principal stress in the media

evolution of max principal stress in the adventitia

Fig. 12 Spatio-temporal evolution of growth in a representative slice of the common carotid artery. Growth multiplier, top,
maximum principal stresses in the adventitia, middle, and maximum principal stresses in the media, bottom at 5, 15, 40, and

100 days of hypertension.

and 14 show the evolution of the growth multiplier, of the
maximum principal stresses in the adventitia layer, and
of the maximum principal stresses in the medial layer
in the common, external, and internal carotid artery at
four different time steps. Growth and stress display sim-
ilar trends in all three sections. This is in agreement
with the smooth variations in stretch between the nor-
motensive and the hypertensive states. Stresses in the
adventitia increase by 20%, while stresses in the media
decrease by 25% in the common carotid artery, by 13%
in the external carotid artery, and by 7% in the internal
carotid artery, respectively.

5 Discussion

Growth and remodeling of living systems has advanced
to a continuously growing field of research within the
past decade [1]. Many recent studies focus on shedding
light on different kinematic formulations, alternative bal-
ance equations, appropriate evolution equations, and
suitable mechanical stimuli [43]. Here, we have adapted

the classical kinematic decomposition of the deformation
gradient into an elastic and a volumetric growth part
[38,51]. We have discussed microstructurally-motivated
evolution equations for growth [21], and systematically
compared different mechanical stimuli for the growth
process [37]. To discretize the governing equations in
time and space, we have applied an implicit Euler back-
ward finite difference scheme in time and a geometrically
nonlinear finite element scheme in space. To efficiently
and robustly solve the set of governing equations, we
have linearized the growth formulation consistently and
embedded it locally at the integration point level.

We have shown that our model is capable of simulat-
ing hypertensive growth in arterial tissue. In particu-
lar, we have focused on growth-induced smooth muscle
cell hypertrophy. We have assumed that when subject
to mechanical stimuli, smooth muscle cells thicken in
the radial direction, while their length remains virtually
unchanged [21]. After comparing the two most common
mechanical stimuli for growth, stress and strain, we have
decided to choose the local smooth muscle cell stretch
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evolution of growth in the internal carotid artery

t = 40d t=100d

evolution of max principal stress in the media

evolution of max principal stress in the adventitia

Fig. 13 Spatio-temporal evolution of growth in a representative slice of the internal carotid artery. Growth multiplier, top,
maximum principal stresses in the adventitia, middle, and maximum principal stresses in the media, bottom at 5, 15, 40, and

100 days of hypertension.

as the stimulus for smooth muscle cell thickening. The
resulting mathematical model allows us to explore how
microstructural changes on the smooth muscle cell level
translate into a macrostructural thickening of the arte-
rial wall. This is conceptually similar to studying how
microstructural changes of heart muscle cells translate
into a macroscopic thickening of the ventricular wall in
cardiac hypertension [50]. While microstructural changes
in cardiac muscle cells [21] and skeletal muscle cells [64]
have been attributed to sarcomerogenesis, the creation
and deposition of new sarcomere units within the cell,
microstructural changes in smooth muscle cells are far
more complex and less well documented.

Our simulations display an excellent qualitative and
quantitative agreement with experimental findings, both
in terms of thickening and growth rates [13]. To demon-
strate the potential of the proposed approach, we have
shown the finite element simulation of a real patient-
specific carotid geometry. Cerebral arteries are an ob-
ject of intense investigation, since they are at high risk
of uncontrolled growth, aneurysm formation [3,60], and

rupture [63]. Our results indicate a homogeneous growth
throughout the medial layer along the entire carotid
length. Only small portions of the carotid bifurcation
displayed slightly elevated growth. While previous stud-
ies have mainly modeled the growing arterial wall as a
single-layer system [24, 36], here, we have modeled the
media and the adventitia as distinct layers with distinct
mechanical properties [26]. This approach raises an inter-
esting question related to the stress distribution. Stresses
in the media layer decrease due to the radial growth of
smooth muscle cells. This is a classical assumption in
the adaptation of biological tissue. Smooth muscle cells
respond, both acutely and chronically, to hypertension
with the goal to bring the wall stress back to its physi-
ological baseline state. Various interconnected mechan-
otransduction pathways in the cells are responsible for
sensing the underlying mechanical stimuli [53,65]. In par-
ticular, smooth muscle cells are known to sense stretch
in the extracellular matrix. Since smooth muscle cells are
mainly present in the media and not in the adventitia,
we have assumed that the media layer grows, while the
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evolution of growth in the external carotid artery

t=5d t=15d

t =40d t=100d

evolution of max principal stress in the media

evolution of max principal stress in the adventitia

Fig. 14 Spatio-temporal evolution of growth in a representative slice of the external carotid artery. Growth multiplier, top,
maximum principal stresses in the adventitia, middle, and maximum principal stresses in the media, bottom at 5, 15, 40, and

100 days of hypertension.

adventitia layer does not. Accordingly, the stresses in the
adventitia increase up to a 20-30%, caused by combined
effects of the elevated pressure and the growth of the
media layer. These results reflect the well-accepted idea
that the adventitia layer acts as a protection layer.

Despite these promising first results, we would like to
address a few fundamental limitations of the current
approach. First, our current model is based on purely
passive baseline elasticity. Smooth muscle cells display
an important active response, the myogenic tone, which
allows the arterial wall to contract or expand acutely
to maintain a baseline lumen [56]. Our arterial model
would improve by the inclusion of this feature, although,
up to date, only a few computational models of myo-
genic tone are available in literature [4,9]. The underly-
ing stimuli for growth could possibly include this basal
tone. However, myogenic tone is a response to the over-
stretch of the smooth muscle cells, which we utilize as
stimulus in our current model. We expect that the addi-
tional inclusion of basal tone could quantitatively scale
our current growth response, but it would not qualita-

tively modify the growth response overall. Second, our
current evolution equation for growth pre-imposes both
the growth level and its rate. Its constitutive parame-
ters could be calibrated experimentally to describe spe-
cific arteries and other cardiovascular tissues. At this
point though, they lack of a real physiological interpre-
tation. The challenge to tie the parameters to mechan-
otransduction pathways in arterial cells and tissue in-
troduces an additional limitation. Experiments are usu-
ally performed in the normotensive state and in the fi-
nal hypertensive state, but not in longitudinal studies
to explore the transition between the two. Accordingly,
most reported experiments do not allow us to calibrate
our rate parameters. Moreover, experimental character-
izations display huge variations across different species,
across different arteries from the same species, and even
across different specimen from the same artery.

In summary, we have adopted a well-established frame-
work for volumetric growth to simulate hypertensive
thickening of the human carotid artery. Our model
makes a first attempt to link the key kinematic variable
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Fig. 9 Temporal evolution of maximum principal stresses in
inner, media, and outer layers of human carotid artery.

of growth, a second order growth tensor, to microstruc-
tural changes of smooth muscle cells. The characteriza-
tion of growth in terms of microstructural variables such
as cell size and cell orientation smoothly integrates the
multiscale nature of the living system into the mathe-
matical model. Hypertensive arterial wall thickening is a
critical medical condition since it may lead to decreases
blood flow and other related complications. Computa-
tional models like ours can help to understand the under-
lying mechanochemical processes and provide a frame-
work for biological and clinical researchers to jointly en-
hance the pharmagolocial or surgical management of hy-
pertension.
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