
1

An anisotropic micro-sphere-based approach for
fiber orientation adaptation in soft tissue

Pablo Sáez, Estefanía Peña, Manuel Doblaré and Miguel ÁngelMartínez

Abstract—Evolutionary processes in biological tissue, such as
adaptation or remodeling, represent an enterprising area of
research. In this work we present a multi-scale model for the
remodeling of fibered structures, such as bundles of collagen
fibrils. With this aim, we introduce a von Mises statistical
distribution function to account for the directional dispersion
of the fibrils and we remodel the underlying fibrils by changing
their orientation. To numerically compute this process we make
use of the micro-sphere approach, which provides a useful multi-
scale tool for homogenizing the micro-structure behavior,related
to the fibrils of the bundle, in the macro-scale of the problem.
The results show how the fibrils respond to the stimulus by
reorientation of their structure. This process leads to a stiffer
material eventually reaching a stationary state. These results
are in agreement with those reported in the literature and they
characterize the adaptation of biological tissue to external stimuli.

Remodeling, micro-sphere, biological tissue, hyperelasticity,
anisotropy

I. I NTRODUCTION

Remodeling and growth are important evolutionary pro-
cesses in biological tissue on which large amount of research
has been focused during recent years. We refer to (1; 2)
for a review of concepts such as remodeling, growth and
morphogenesis. To give a brief overview of these processes
we take the definition of growth as the variation of mass via
the increase/decrease of the number or size of cells. See, e.g
the works of (3; 4; 5). Morphogenesis defines changes in the
shape of the tissue and remodeling defines changes in the
micro-structure by reorganization and/or synthesizing ofthe
constituents with negligible changes in the total organ volume.
Although these processes can occur simultaneously, we will
describe herein a model for the remodeling of fibered soft
tissue via reorientation of the fibrils that make up the tissue.

In particular we will study the remodeling of collagen.
Collagen, as the main bearing structure in many biological
tissues, is very sensitive to remodeling. It is composed of
three α-chains coiled up in a helical-like structure which
reassembles again to create the so called collagen fibril. The
reorientation process is known to be driven by both mechanics
and biochemical quantities. Strain or stress have been proposed
as possible mechanical stimuli. In this work we assume a
general mechanical stimulus that will drive the reorientation.
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During the last few years several remodeling models have been
proposed. Some of these treat fibers, as 1D elements as in
(6), where a consistent linearization was presented in a finite
element context. In (7) the eight-chain model (8) was used
to model reorientation in living tissue. Moreover, the study
presented an experimental test of reorientation of collagen
fibers when a mechanical load was applied. Reorientation
in biological structures has also been reported in (9) in the
context of adaptation of endothelial cells to shear stress,and
(10) reported the reorientation of blood vessel fibers due toan
increase in blood pressure.

To take into account the micro-structure of the tissue, in
(11) the information regarding the dispersion of fibrils was
introduced by means of a von Mises statistical distribution
function. In (13) a Bingham distribution was presented to char-
acterize the statistical orientation blood vessel fiber, and some
comparative studies were carried out. In this contribution, we
will use the von Mises distribution for such a purpose. These
micro-structural issues have motivated numerous multi-scale
approaches (see e.g. (16) among many others). The micro-
sphere-based approach (17; 14; 16) presents is a novel and
promising multi-scale technique for the study of fibered tissue
that will be used in this work.

Moreover, the mechanics of fibrils has also gained attention.
The Worm-like Chain model (WLC) has been used for mod-
eling the DNA double helix (see e.g (18)) and subsequently
adopted for elastomer in (8) and for biological tissue in (7).
It was recently used in (16) in the micro-sphere framework
to characterize the passive behavior of blood vessels and in
(19) for remodeling. Here we will extend the approximation of
(16) to include remodeling of fibrils. Other authors have used
the spread exponential model proposed in (12). We will adopt
herein this latter phenomenological approach. The inclusion
of the micro-structure information, both the mechanics of the
fibrils and their dispersion, within the micro-sphere approach
allows a more detailed analysis of the adaptation process. We
will focus on these aspects in this contribution.

II. M ATERIAL MODEL

The model presented follows the classical kinematic treat-
ment of finite strains and incompressible materials. LetX ∈
Ω0 be a material point in the reference configuration,x ∈ Ω
the same point in the spatial configurationΩ andϕ the motion
mapping. The gradient ofϕ with respect toX is known as
the deformation gradient tensorF = ∇Xϕ. The deformation
gradient and the Cauchy-Green tensorC = F

T · F may be
decoupled to account for the volumetric and isochoric partsin
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(a) ODF for b=1.
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(b) ODF for b=10.

Fig. 1. Shape of the von Mises ODF for b=1 and b=10.

the standard manner

F = [J1/3
I] ·F, (1)

C = [J2/3
I] ·C, (2)

with J1/3
I andJ2/3

I tensors associated with changes in vol-
ume andF andC with the isochoric deformation.I represents
the second order unit tensor. Letr now be a vector in the
reference configuration. Its associated isochoric counterpart in
the current configurationt ∈ Ω is given by the push-forward
operation as̄t = F̄ · r.

As usual in Continuum Mechanics of anisotropic fibered
biological tissue, we will make use of a Strain Energy Density
Function (SEDF) in decoupled form: volumetric and isochoric
parts, while the latter is decoupled again into isotropic and
anisotropic parts respectively

Ψ = Ψvol +Ψiso +Ψani (3)

with Ψvol(J) the SEDF associated to the volumetric part,
Ψiso(I1) to the isotropic contribution, associated to the extra-
cellular matrix modeled here by a Neo-Hookean constitutive
model asΨiso = µ[I1−3]. J = det(C), µ a material parameter
and I1 = tr(F). Ψani is related to the anisotropic contribution
of the tissue, associated in our case to the collagen fibers.

To account for the anisotropy of the tissue we use the von
Mises distribution (ρ) which establishes the dispersion of the
fibrils around a preferential direction of anisotropy,a. Note
that this function present mid-plane symmetry and rotational
symmetry properties around the preferential directiona. The
π-periodic von Mises function (4) has been adopted in this
work.

ρ(θ) = 4

√

b

2π

exp(b[cos(2θ) + 1])

erfi(
√
2b)

, (4)

whereb ∈ R
+ denotes the so called concentration parameter.

When b → 0, Eq. 4 leads to an isotropic material, while
b→ ∞ represents a transversely isotropic state. Erfi(x) is the
imaginary error function approximated by a sufficiently large
number of terms by means of its MacLaurin series expansion.

erfi(x) ≈ π−1/2



2x+
2x3

3
+

k
∑

j=3

x2j−1

a(j)



 , (5)

with a(j) = 0.5[2j − 1][j − 1]!. Eq. 5 provides sufficient
accuracy for values ofb ≤ 20 with expansions of at least
60 terms. Fig. 1 shows the representation of two distributions
for different values ofb.

Moving to the fibril behavior, we set an exponential-type
SEDF, that may be written together with its derivative as

ψ(λ̄i) =















0 if λ̄i < 1

k1

2k2

[

exp(k2[λ̄
2
i − 1]2 − 1)

]

if λ̄i ≥ 1

(6)

∂λ̄i
ψ(λ̄i) =











0 if λ̄i < 1

2k1λ̄i

[

λ̄2
i − 1

]

exp(k2
[

λ̄2
i − 1

]2
) if λ̄i ≥ 1

(7)

with k1 andk2 material parameters and̄λi = ‖ti‖. As this is
derived from Eq. 6, the fibrils do not bear any load under
compression. We obtain the Piola-Kirchhoff and Kirchhoff
stress tensors from Eq. 6 as

Si = 2∂Cψ(λ̄i) = 2λ̄−1

i ∂λ̄i
ψ(λ̄i)ri ⊗ ri (8)

τ i = F · Si · F
t = 2λ̄−1

i ∂λ̄i
ψ(λ̄i)t̄i ⊗ t̄i (9)

The micro-sphere approach homogenizes by no more than
averaging over the unit sphere the variable of interest(•).
To numerically integrate such an average, this integral is ap-
proximated through a discretization of(m) discrete orientation
vectors and the corresponding weight factorswi (17) as

〈(•)〉 =
1

4π

ˆ

U2

(•)dA ≈

m
∑

i=1

w
i(•)i (10)

Despite the numerical aspect of the micro-sphere approach,
the integration directions can be interpreted as the orientations
of the fibrils within the collagen bundle. In Fig. 2 we present
the fibril distributions shown in Fig. 1, with a more physical
interpretation.

(a) Fibrils for b=1. (b) Fibrils for b=10.

Fig. 2. Fibril representation of the statistical distributions of Fig 1.

The averaged SEDF and Kirchhoff stress are then expressed
as:

Ψani =
1

4π

ˆ

U2

nρψ(λ)dA ≈

m
∑

i=1

nρiw
iψ(λi) (11)

τ ani =
1

4π

ˆ

U2

nρτdA ≈

m
∑

i=1

nρiψ
′(λi)λ̄

−1

i t̄i⊗ t̄iw
i (12)

with Ψani and ψ the SEDF in the macro and fiber levels
respectively,ρi the probabilistic value for each integration
direction andn the fibrils number density.
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III. R EORIENTATION PROCESS

The reorientation process is provided by appropriate rate
equations in the spirit of (6; 19). These reorientation equations
that define the evolution of the integration directions, will also
undergo a change in the distribution shape. Following the
approaches adopted by the latter authors, for 1D fibers and
the micro-sphere approach respectively, the spatial velocity
gradient and its symmetric and antisymmetric part are given
by

l = Ḟ · F−1 = d+ ω (13)

The time derivative ofri is a rotation with angular velocity
vectorωi,

ṙi = ωi × ri, with (14)

ωi := ri ×Ξ3 (15)

we obtain the rate ofri as

ṙi = [I− ri ⊗ ri] ·Ξ3 (16)

whereΞ describes a matrix of eigenvectors of a given general
quantity. ThereforeΞI , with I = 1, 2, 3, represents the
minimum, medium and maximum eigenvectors respectively.
We make the supposition that the fibrils reorient towards the
maximum principal directionΞ3, e.g. a strain measure. In
order to update precisely the vectorri, we use the exponential
map (see (20; 6) and references therein), adopting an explicit
update, leading to

r
n+1

i = exp(ω̂n

i ∆t) · r
n

i (17)

whereω̂i
n = −ε·ωi

n is the associated skew symmetric tensor
andε the third-order permutation tensor.

IV. RESULTS

In this Section we will discuss an example of the model
described above. We setk1 = 20, k2 = 5, b = 1, similar to
the values reported in (16). We take the time step∆t = 0.1
and apply a uniaxial test to our model, with a deformation
gradientF = 1/

√
λex ⊗ ex + 1/

√
λey ⊗ ey + λez ⊗ ez, up

to λ = 1.5. Moreover we will suppose that the preferential
direction is pre-oriented along the direction of stretching, that
is ez. To visualize the evolution of the position of the fibrils,
we present the fibril distribution in Fig. 3 for different times,
leading to a very concentrated distribution of the fibrils atthe
end of the process.

Fig. 4(a) presents the evolution of the stress in the stretching
direction, showing the asymptotic behavior expected, where
the reorientation reaches a stationary state. However, biologi-
cal structures have many different mechanical properties that
change their passive and active behavior. To extend the results,
we also provide results for a softer material, withk2 = 4
and the others parameters as described above. When the ratio
between the matrix stiffness and fiber stiffness decreases the
remodeling occurs in a more gradual way as shown in Fig.
4(b).In fact, the process presents the most realignment forthe
initial isotropic material (b = 0), as presented in (19), and
almost no realignment for very concentrated fibrils (b→ ∞).

(a) Fibrils distribution at t=0 (b) Fibrils distribution at t=5

 

 

(c) Fibrils distribution at t=25

 

 

(d) Fibrils distribution at t=100

Fig. 3. Distribution of the fibrils at different times of the analysis,
starting from a concentration parameterb = 1. The figures show how the
concentration evolves during the reorientation process, leading att = 100 to
an almost 1D fiber.
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Fig. 4. Evolution of stresses inez as the adaptation evolves .

V. D ISCUSSION

This work presents a 3D reorientation model for fibered
biological tissue to take into account the change of shape of
this kind of structures. Most previous works treat this issue
in a unidimensional way and only a few of them account
for information of the micro-structure (21; 22). By means of
the anisotropic micro-sphere-based approach, we have been
able to carry out a multi-scale model to take into account the
micro-structural behavior in the macro-scale. Moreover, we
have been able to give a more physical interpretation of the
integration directions, associating them to the fibrils of the
collagen bundle, and subsequently constructing a 3D structure
of the bundle. Given this micro-structure, we were able to
compute the reorientation of the fibrils.

Despite the possibilities presented by our model for re-
modeling and other evolving processes such as growth, some
limitations should be pointed out. The first, is the experimen-
tal determination of those parameters related with the fibril
reorientation. This will be our primary goal in the future.
Besides, the mean direction should be allowed to rotate to align
with the maximum principal direction, which will give much
more flexibility to the model presented. Another important
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aspect to take into account is the use of different driving
mechanical stimuli. Many other variations and new material
parameters could be included to fit more realistic situations,
but the goal herein is to present a methodology for anisotropic
materials and not to provide a complete sensitivity analysis of
the behavior of the model.

VI. CONCLUSIONS

We have proposed a novel 3D reorientation model of fibered
structures. The model captures the adaptation of biological
tissue by means of orientation of the fibrils due to a mechanical
stimulus via reorientation. We have been able to capture
the stiffening evolution of the tissue in the direction of the
orientation.
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