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Abstract 29 

Objectives: Despite their various advantages, such as good aesthetic properties, 30 

absence of mercury and adhesive bonding to teeth, modern dental composites still 31 

have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled 32 

with composite materials. Recent research suggests that micro structured 33 

biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable 34 

physical material-microbe interactions. The objectives of this study were, therefore, to 35 

test the hypotheses that (i) different surface micro structures can be created on 36 

composites by a novel straightforward approach potentially suitable for clinical 37 

application, and (ii) that these surface structures have a statistically significant effect 38 

on microbial adhesion properties. 39 

Methods: Six different dental composites were initially tested for their suitability for 40 

micro structuring by polydimethylsiloxane (PDMS) stamps. The composites were 41 

light-cured between glass slides and micro-structured PDMS stamps. The nano-42 

hybrid composite Grandio Flow was the only of the tested composite with satisfying 43 

structurability, and, was therefore used for the bacterial adhesion tests. Composites 44 

samples were structured with four different micro structures (flat, cubes, linear 45 

trapezoid structures, flat pyramids) and incubated for 4 hours into centrifuged saliva. 46 

The bacterial adherence was then characterized by colony forming units (CFU) and 47 

scanning electron microscopy (SEM). 48 

Results: All four micro structures were successfully transferred from the PDMS 49 

stamps to the composite Grandio Flow. The CFU-test as well as the quantitative 50 

analysis of the SEM images showed the lowest bacterial adhesion on the composite 51 

samples with the smooth surfaces. The highest bacterial adhesion was observed on 52 

the composite samples with linear trapezoid structures, followed by flat pyramids and 53 
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cubes. The microstructure of dental composite surfaces statistically significantly 54 

influenced the adhesion of oral bacteria. 55 

Significance: Modifying the composite surface structure may be a clinically suitable 56 

approach to control the microbial adhesion and thus, to reduce the risk of secondary 57 

caries at dental composite restorations. Smaller composite surface structures may be 58 

useful for accomplishing this. 59 

 60 

Keywords: 61 
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Introduction 63 

Since the introduction of resin-based dental materials near the middle of the last 64 

century, composite restorations in dentistry became indispensable because of the 65 

patients aesthetic demands and ease of composite processing [1]. Composites are a 66 

mixture of organic and/or inorganic fillers surrounded by a monomer matrix which can 67 

be set-on-command by photopolymerization e. g. with blue LED lamps [2]. 68 

Depending on their filler particles sizes composites can for example be categorized 69 

into four different groups: macro-, micro-, hybrid- and nanofiller composites. In 70 

addition, they can be categorized according to their rheological properties into 71 

flowable and non-flowable composites. 72 

 73 

Despite their advantages, such as good aesthetic properties, absence of mercury 74 

and adhesive bonding to teeth, dental composite still have some drawbacks such as 75 

for example the polymerization shrinkage, their tendency to absorb water [3] and the 76 

onset secondary caries caused by microbes in teeth filled with composite materials 77 

[4]. 78 

A challenge arises through the surface treatment of composites. Inappropriate 79 

finishing procedures may result in increased surface roughness [Error! Bookmark 80 

not defined.7,Error! Bookmark not defined.8,5]. An important property in relation 81 

to the structural surfaces roughness of dental composites is the adhesion of oral 82 

microbes to the composites. Surface roughness influences bacterial colonization [6], 83 

particularly on composite materials [511]. Smooth surfaces are preferred clinically, 84 

because of their relatively low bacteria adherence [7]. Carlén et al. reported, 85 

however, that a polished hybrid composite to accumulate more bacteria than the 86 

unpolished one [511].  87 
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Some investigations showed that microbes adhere stronger on composites surfaces 88 

than to the natural tooth covered by a pellicle [8] or in comparison to other dental 89 

materials. A threshold level of composite surface roughness of Ra = 0.2 m has been 90 

discussed, below which no further reduction in microbial accumulation could be 91 

expected [9], however, no convincing explanation for this has been given. Although 92 

surface roughness seems to be an important factor for microbial accumulation on 93 

dental composites, materials properties such as filler-size [915] shape and content 94 

[10], composite surface tension [11], chemical surface composition [12], protein 95 

adsorption [511] and others seem to be important factors as well. 96 

It has been predicted that future commercial dental composites will possess 97 

antimicrobial properties [13] and the number of scientific literature addressing this 98 

subject has grown strongly in the last years [14]. Approaches to equip resin based 99 

dental materials with antimicrobial properties include silver [15] or zinc oxide nano 100 

particles [16], silver-supported antibacterial materials [17], zinc oxide eugenol [18], 101 

quaternary ammonium functionalities [19,20], alkylated ammonium chloride 102 

derivatives [21], chlorhexidine diacetate (CHXA) [22], carolacton [23] and others. The 103 

addition of antimicrobial agents to composites, however, may lead to reduced 104 

mechanical properties of the composites and in many cases the antimicrobial effect 105 

of the composites is not maintained [1319].  106 

A new and promising approach to reduce the microbial adhesion to different 107 

biomaterials surfaces uses specific micro or nano surface topographies or patterns 108 

[24,25,26,27,28]. The microbial adhesion reduction mechanisms of these materials 109 

surfaces are still an enigma, but some authors assume that an unfavorable physical 110 

interaction between microbes and the materials surface is responsible for their 111 

antimicrobial effect [2734,2835]. 112 
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Reducing microbial adhesion to materials with this approach has a number of 113 

advantages since it uses neither antibiotics nor other chemical antimicrobial agents 114 

or compounds. Hence these materials cannot lead to antibiotic resistance of 115 

microbes or negative side effects of drug release such as cytotoxicity to body cells. 116 

Based on these findings, the question arises if a surface structuring approach is 117 

also feasible for reducing microbial adhesion to dental materials such as dental 118 

composites. Little is known about the interaction of microbes and flowable 119 

composites. Due to their rheological properties flowables seem to be, however, the 120 

ideal materials for surface patterning. 121 

It was, therefore, the aim of this current study to test the hypotheses that (i) different 122 

surface micro structures can be created on composites by a novel straightforward 123 

approach potentially suitable for clinical application and (ii) that these surface 124 

structures have a statistically significant effect on microbial adhesion properties when 125 

compared with flat control samples of the same composite. To the best of knowledge, 126 

both have not been attempted previously and may, if successful, lay the foundations 127 

to a new way of functional surface structuring of dental composites.  128 
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Materials and methods 129 

 130 

Dental composites 131 

Six different composites were first tested for their structurability by 132 

polydimethylsiloxane (PDMS) stamps: The nanohybride composites CLEARFIL 133 

MAJESTY Posterior (CMP; Kuraray Europe GmbH, Frankfurt, Germany), Grandio 134 

Flow (GF; Voco GmbH, Cuxhaven, Germany); Premise (P; Kerr Corporation, Orange, 135 

USA), Tetric EvoFlow (TEF; Ivoclar Vivadent AG, Schaan, Liechtenstein), Venus 136 

Diamond (VD; Heraeus Kulzer GmbH, Hanau, Germany) and the microhybride 137 

composite XFlow (XF; Dentsply International, York, USA). All composites used in the 138 

current study were of the shade A2. The properties of the composites, as obtained 139 

from manufacturers data sheets, are listed in Tab. 1. 140 

 141 

PDMS-stamp assisted micro structuring 142 

Cut pieces of silicon (Si) wafers, with a size of 10 mm × 10 mm, and a thickness of 143 

0.5 mm with three different surface structures created by photolithography (cubes, 144 

linear trapezoid structures, flat pyramids) and flat native Si as control were used as 145 

initial master pattern samples. The exact dimensions of the structures can be found 146 

in the supplementary part. Initially only the cube structures were used for testing the 147 

structurability of the different composites. 148 

The structures were transferred from the Si masters to polydimethylsiloxane 149 

(PDMS) stamps made of PDMS Sylgard 184 (Dow Corning Corporation, Midland, 150 

USA). The ratio between pre-polymer and curing agent was 10:1 wt./wt. This liquid 151 

was poured on the Si masters and subsequently cured for 24 h at 75 °C resulting in a 152 

flexible PDMS stamp. Flat PDMS stamps cured on flat, unstructured Si were used for 153 

the creation of flat control samples. 154 
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Approximately 0.1 ml of the flowable composite material was deposited on a glass 155 

slide. Subsequently, the composite was covered with the structured PDMS stamp 156 

(size 1 cm  1 cm), and a slight pressure was applied to the stamp by hand. 157 

Afterwards, the composite was polymerized for 30 sec by an Elipar FreeLight 2 LED 158 

light curing unit (LCU; 3M ESPE AG, Seefeld, Germany) by subsequently curing 159 

overlapping areas covered by the light guide of the LCU. This procedure was applied 160 

to different composites. The thickness of the so structured and cured composite 161 

samples was approximately 1 mm. The different steps of the PDMS-stamp assisted 162 

micro structuring of the dental composites are illustrated schematically in Fig. 1.  163 

For microbial adhesion tests in the well plates, the composite samples were 164 

structured from both sides to avoid an influence of the un-structured bottom side of 165 

the samples on microbial adhesion results. 166 

The surface structure of the micro structured composites was characterized using a 167 

Zeiss Auriga 60 scanning electron microscope (SEM; Zeiss AG, Oberkochen, 168 

Germany). The pattern reproduction at the composites surfaces was qualitatively 169 

judged by eye from the SEM micrographs. 170 

 171 

Rheological characterization of dental composites 172 

The Advanced Rheometric Expansion System (ARES, TA Instruments Inc., New 173 

Castle, USA) was used for the rheological characterization of the composites in this 174 

study. The temperature during all measurements was 25°C. The flowable resin 175 

composites were squeezed on the lower part of a parallel plates viscometer module 176 

(diameter 25 mm). The gap between the two plates was fixed to 1 mm. Strain sweep 177 

measurements were performed on each material to determine the maximum strain, 178 

at which the resin still behave like a structured fluid (solid-like). A strain value lower 179 

then this maximum strain was chosen individually for each composite. Therefore, the 180 
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complex viscosity (η*) of the different composites achieved from frequency sweeps 181 

(0.1 rad/s, 1 rad/s, 10 rad/s and 100 rad/s) are comparable. 182 

Additionally, stress relaxation tests were used to investigate the flow behavior of the 183 

resin composites after instantaneous shear strain. To mimic the conditions during the 184 

preparation of the samples a pre-shear rate of 10 s-1 was used for 5 s before applying 185 

a strain of 10 %. The resulting shear modulus was measured as a function of time. 186 

 187 

Contact angle measurements on the dental composites 188 

It is well known from literature [2734,29] that the bacterial adhesion to a surface is 189 

affected by its wettability. Therefore, water contact angle measurements were carried 190 

out to determine the wettability of the micro-structured composites and the un-191 

structured control samples. The static contact angle was determined with the sessile 192 

drop method using a Drop Shape Analysis System DSA 10 (Krüss GmbH, Hamburg, 193 

Germany). For statistical analysis, ten measurements with deionized water were 194 

carried out on respectively 3 samples and averaged. 195 

 196 

Microbial adhesion and biofilm formation test 197 

Microbial adhesion and biofilm formation as function of the dental composites 198 

surface micro structures was investigated using oral microorganisms originated from 199 

a test person (age 25) with a DMF-T-index (decayed-missed-filled-teeth) of 0. Plaque 200 

was sampled from the test person from each quadrant using sterile paper tips and 201 

incubated anaerobically in Schaedler nutrient solution (OXOID Deutschland GmbH, 202 

Wesel, Germany) for 24 h to induce microbial growth. Afterwards, the microbial 203 

suspension was adjusted with fresh nutrient solution to an optical density (OD570nm) 204 

of 0.5 using a UV-VIS photospectrometer (Eppendorf PCP 6121, Eppendorf AG, 205 

Hamburg, Germany). Simultaneously, the composite specimens were, first, 206 

incubated in deionized water for 7d at 37 °C to remove free radicals left from the 207 
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polymerization reaction. Afterwards, for pre-conditioning of the micro structured 208 

composite surfaces, saliva was collected from the test person after tooth brushing in 209 

the morning, centrifuged (Eppendorf 5415D, Eppendorf AG) for 5 min at 13000 rpm 210 

(16110 g) and the composite specimens were incubated for 1 h at 37 °C each in 500 211 

µL of the supernatant. The pre-conditioned composite samples were rinsed twice in 212 

phosphate buffered saline (PBS) and incubated for 4 h with the microbial suspension 213 

while gently mixing using a plate shaker (Titramax 100m, Heidolph North America, 214 

USA) at 150 rpm to reduce the effect of sedimentation of the microbial cells on 215 

adhesion. 216 

To investigate the specific influence of the composite surface micro structures on 217 

bacterial adhesion and biofilm formation and to exclude an influence of specific 218 

chemical surface properties of the different dental composite materials, adhesion and 219 

biofilm tests were performed only on the specimens prepared from the GF 220 

composite. 221 

 222 

Biofilm analysis 223 

The established biofilms were quantitatively characterized by estimation of the 224 

colony forming units (CFU) and scanning electron microscopy. Before analysis, all 225 

samples were carefully rinsed with PBS, to remove non-adherent microorganisms. 226 

For estimating the CFU numbers, composite specimens were placed each in 1 mL 227 

of PBS and microorganisms adherent on the samples` surfaces were removed using 228 

a vortexer. 20 µL of each microbial suspension was, as the first step, diluted 1:10 in 229 

physiological saline solution. Afterwards, a dilution series was prepared with the 230 

highest dilution of 10-6. Each dilution step was incubated under anaerobic conditions 231 

for 48 h at 37 °C on agar plates prepared with Schaedler nutrient solution. The CFU 232 

were estimated by counting. 233 
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For SEM, composite samples with adherent microorganisms were incubated in 234 

glutardialdehyde solution (2 %) for 30 min at room temperature followed by an 235 

incubation step with cacodylate buffer (0.1 M) for 10 min. After fixation, samples were 236 

washed for 10 min in PBS buffer solution and twice in deionized water. Samples 237 

were, then, dehydrated using an ascending ethanol series from 30 % to 96 %. 238 

Dehydrated samples were air dried for 24 h and sputter coated with gold (S150B, 239 

Edwards Ltd, Crawley, UK). For imaging, the AURIGA 60 SEM was operated at 3.5 240 

kV and a working distance of about 3 mm. 241 

Next to CFU counting, the numbers of adherent microbial cells were additionally 242 

estimated based on the SEM images by direct counting, as well. 243 

 244 

Statistical analysis 245 

The data were analyzed for statistically significant differences among groups using 246 

a one-way ANOVA (analysis of variance) based on a Tukey post-hoc comparison 247 

(Sigmaplot 12.0, Systat Software Inc., Chicago, USA). The level of significance was p 248 

≤ 0.05. All data are given as means ± standard deviations.  249 
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Results 250 

The SEM micrographs (Fig 2a-f) of the initial stamp assisted surface micro 251 

structuring experiment of the composites presented in Tab. 1 reveal the successful 252 

pattern creation for GF (Fig. 2b) with a good surface pattern definition of the cubes. 253 

Although a cube surface structure was also partially accomplished with the CMP 254 

composite (Fig. 2a), the surface pattern definition is clearly poorer compared to the 255 

GF surfaces. In some surface areas of the CMP samples the structures (cubes) are 256 

completely absent (e. g. the upper right corner of Fig. 2a), in others they are poorly 257 

reproduced (e. g. the center of Fig. 2a). 258 

The surfaces of the other four composites (Fig. 2c-f) show no cubic surface 259 

patterns, but rather rough surfaces which are dominated to different extends by the 260 

filler particles. This is most clearly visible for the VD composite which surface shows 261 

the filler particles most distinctively (Fig. 2e). 262 

The complex viscosity (η*) of the different composites shown in Table 1 obtained  263 

from frequency sweeps (0.1 rad/s, 1 rad/s, 10 rad/s and 100 rad/s) increased in the 264 

following order: XF, GF, P, VD, TEF (Fig. 3a). For all composites, the complex 265 

viscosity decreases with increasing frequency. 266 

The stress relaxation was the fastest for the composite GF, followed by XF, VD, P 267 

and TEF (Fig. 3b). Due to a low interfacial adhesion between the dental composite 268 

CMP and the plates of the rheometer and the composite’s consistency and texture, 269 

no strain could be transferred to the composite. Therefore, no data could be obtained 270 

about the rheometric behavior of this dental composite. 271 

Since GF was the only composite with a sufficient surface structurability, this 272 

composite was used for further patterning tests and microbial adhesion tests. 273 

Fig. 4 shows the flat, respectively, patterned Si masters (Fig. 4a,c,e,g) compared to 274 

the structured GF composite surfaces (Fig. 4b,d,f,h) using the respective Si masters. 275 
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For preparation of the control samples, a flat Si master (control master) (Fig. 4a) was 276 

used. While the composite cured against the flat Si maters is completely flat (Fig. 4b), 277 

the surface structures (patterns) cubes (Fig. 4d), linear trapezoid structures (Fig. 4e) 278 

and flat pyramids (Fig. 4h) have been reproduced well on the GF surfaces. All faces 279 

of the original Si maters, i. e. flat ones, the cubes, faces of the linear trapezoid 280 

structures and flat pyramids, respectively, have been reproduced with a good pattern 281 

quality at the GF composite surfaces. 282 

On each of the three different structured surfaces of the composite, the composites’ 283 

filler particles are clearly visible (Fig. 4d,f,h). On the composite surface structured 284 

with cubes (Fig. 4d), the filler particle are most dominant but are also clearly present 285 

on the other two structured composite surfaces (Fig. 4f,h). The filler particles to some 286 

extent disturb the qualitative pattern fidelity at the composite surface as can be seen 287 

for example by individual filler particles protruding from the side faces of the linear 288 

trapezoid structures in Fig. 4f. 289 

The water contact angles of the GF surfaces increased after structuring (Fig. 5). 290 

The water contact angels were 80.3  2.6 on the flat composite surfaces (control), 291 

99.7  2.6 on the cube patterned surfaces, 101.8  4.3 on the linear trapezoid 292 

patterned surfaces and reached its highest value on the composite surfaces 293 

patterned with the flat pyramids with 129.5  2.5. 294 

After 4h of incubation, on the flat control samples only few microbial colonies each 295 

consisting of approximately 2 to 40 microbes have been observed (Fig. 6a). The 296 

number of these colonies and microbes within the colonies increased on the 297 

structured composites surfaces (Fig. 6b-d). A statistically significant difference in 298 

CFUs was observed between the flat control sample and the linear trapezoid 299 

patterned surfaces. The cube structured composite surfaces showed the lowest 300 

number of microbes (determined by SEM and image analysis) among the structured 301 
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composite surfaces (Fig. 6b), whereas the linear trapezoid patterned surfaces 302 

showed the highest number of microbes (statistically significantly different compared 303 

to the 3 other surfaces; Fig. 7b) and the largest size of microbial colonies (Fig. 6c). 304 

On all samples, the shape of the microbes was identified as spherical and the 305 

microbes were frequently arranged in strands. On the structured composite surfaces, 306 

several of the microbial strands were aligned along surface topographic features. 307 

Some strands are aligned parallel to rows of cubes (Fig. 6b). On the linear trapezoid 308 

patterned surfaces, the majority of the microbes were located at or near to the side 309 

walls of the linear trapezoid structures and the strands were aligned along or 310 

perpendicular to the long axes if the linear trapezoid structures (Fig. 6c). Most of the 311 

microbes that adhered on the flat pyramid structured surfaces were found at the base 312 

edges of the pyramids and the alignment of some microbial strands was parallel to 313 

the base edge direction as can be seen in Figure 6d. The filler particles prominent at 314 

the surface of the structured composites seem to not noticeably affect the microbial 315 

adhesion since there was neither an increased number nor a reduced number of 316 

microbes found at or nearby the particles.  317 

  318 
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Discussion 319 

Structure and properties of dental composites surfaces depend on their composition 320 

and the finishing procedures (i.e. polishing) applied to the composite, which in turn 321 

may affect microbial adhesion properties. In the current study, we developed a novel 322 

approach to create different composite surface structures and affected through this 323 

microbial adhesion properties of the composites. 324 

More microbes adhere and accumulate to dental composite than to other restorative 325 

dental materials in vitro [915,30,31] and in vivo [32,33] due to their lack of 326 

antibacterial activity, e.g., compared to amalgam. Adjacent to the restoration margins 327 

of the dental composite, this may lead to secondary caries in vivo and, thus, shorten 328 

the life of composite restoration [34]. 329 

Effective antimicrobial dental composites are needed to prevent or reduce problems 330 

associated with the adhesion of microbes to dental materials surfaces including 331 

plaque accumulation i. e. biofilm formation, (secondary) caries, discoloration, 332 

gingivitis and others. Nevertheless, current commercially available or experimental 333 

dental composites do not or only partially solve these problems. 334 

Reduction of biofilm formation on dental materials and the development of 335 

antimicrobial dental materials are timely research areas [1319]. While for the former, 336 

polishing approaches seem to be effective [1016] addition of antimicrobial particles or 337 

agents [1622,1723,1824,1925,2026,2127,2228,2329,Error! Bookmark not 338 

defined.30] to composites have been used in the latter. 339 

It has been reported in recent years that biomaterials surfaces in general with 340 

specific micro or nano surface topographies including specific structures 341 

[2431,2532,2633] or nanoroughnesses [2734,2835] may reduce microbial adhesion 342 

compared to surfaces on which these features are absent. This approach has not 343 

been applied and investigated for dental composites so far and was addressed in the 344 
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current study, to the best of our knowledge, for the first time. Therefore, the aims of 345 

this study were i) to test if microstructures may be created to dental composite 346 

surfaces by a method potentially suitable for clinical application and ii) if the created 347 

patterns affect the microbial adhesion on these surfaces. 348 

When choosing suitable materials for our study, several factors had to be 349 

considered. Stamp assisted surface micro structuring requires the material to adapt 350 

well to the stamp, i.e. that it is sufficiently flowing into the fine surface structures of 351 

the stamp. Therefore, flowable composites were chosen in the current study. 352 

It has been shown previously, that surface structures of a size of 1 nm to a few m 353 

affect microbial adhesion on materials surfaces, depending on for example the type 354 

of microbes and materials, with a general tendency of smaller structures having a 355 

more pronounced reducing effect on microbial adhesion [35,36,37,38]. On the other 356 

hand, as can be seen from Fig. 2a-f, an important limiting factor of stamp-assisted 357 

surface structuring of composites is the maximal size of the filler particles which in 358 

the case of composites used ranged from 550 nm to 30 m (Tab. 1), with four of the 359 

six composites having maximal particles sizes of  1.6 m. A stamp feature size of 360 

approximately 1 m  1 m  1 m was, therefore, chosen for the initial experiments. 361 

Two of the composites (GF and CMP) showed a general structurability (Fig. 2) with 362 

GF showing the best pattern fidelity. Both have a maximum particle size of 1 m and 363 

1.5 m, respectively. Therefore, their maximum particle sizes approximately fit to the 364 

stamp pattern size and does not disrupt the reproduction of the pattern. Since CMP, 365 

however, has a slightly larger maximum particles size than the pattern size, its 366 

pattern reproduction was overall poorer compared to GF. The two other composites 367 

with a maximum particle size of  1.6 m TEF and XF have not shown well 368 

reproduced structures at their surfaces which mean that the particles size is not the 369 
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only factor influencing structurability. VD and P have maximal particles sizes of 20 370 

m and 30 m, respectively, which are well above the stamp structure size and, 371 

hence, may at least partially explain their poor structurability. If the filler particles size 372 

exceeds the pattern size, the stiff, high modulus ceramic particles cannot adapt to the 373 

small structures. 374 

In addition to the particle size of the composite discussed above, the rheological 375 

properties seem of critical importance for the structurability of the dental composites. 376 

XF and GF showed the lowest complex viscosity of the tested dental composites as 377 

well as the fastest stress relaxation (see Fig. 3). These results agree with data from 378 

other studies [39,40]. In general, composites with lower complex viscosity have a 379 

better ability to flow into the structures of the PDMS stamps as well as in small 380 

cavities and fissures of teeth. The stress relaxation curves characterize the 381 

resistance against deformation over time. A slow stress relaxation indicates a strong 382 

elasticity and, thus, a solid-like behavior. In contrast, a fast stress relaxation indicates 383 

a more fluid-like behavior, favorable for structuring by the presented stamp assisted 384 

method. 385 

Since GF was the only composite with a sufficient surface structurability with the 386 

three different patterns (Fig. 4), this composite was used for further investigations 387 

and microbial adhesion tests. Interestingly, the surface of the patterned GF shows 388 

some particles that are larger than 1 m. Their typical shape and the fact that they 389 

are embedded into the composite surface identifies them as composite filler particles. 390 

It can be assumed that the large majority of the filler particles of this composite 391 

exhibit a size up to 1 m as stated by the manufacturer, but few larger particles 392 

(outliers) are present in this composite as well. These larger particles disturb the 393 

qualitative pattern fidelity slightly as they cannot adapt to the pattern in the stamp. 394 
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The water contact angle on the GF samples increased after structuring from 80.3° ± 395 

2.6° (un-structured control sample) up to 129.5° ± 2.5° (flat pyramids; Fig. 5). Thus, 396 

the dental composite becomes more hydrophobic after structuring. It is well known 397 

from literature that microstructures play an important role on producing more 398 

hydrophobic surfaces [41,42,43]. This can be explained by the model of Cassie and 399 

Baxter [4146]. Cassie and Baxter proposed that a rough surface traps air within the 400 

microstructures. Thus, the fraction of the solid-liquid interface decreases. The more 401 

air is trapped, the larger the contact angle will be. This may explain the large 402 

difference in the contact angle between the GF samples structured with flat pyramids 403 

(129.5° ± 2.5°) and with linear trapezoid patterned surfaces (101.8  4.3). In case of 404 

the flat pyramids, the crosslines may hinder the air to be displaced by water. In 405 

contrast, this can happen easily for the linear trapezoid patterned surfaces, since this 406 

structure is more “open”, i.e. it allows the air the be displaced by water in the 407 

direction parallel to the faces of the linear trapezoid pattern. 408 

The use of dental composite materials for restoration purposes increases the risk 409 

for the development of secondary caries, since microorganisms adhere stronger to 410 

composites compared to other dental biomaterials [511,44]. In the current study, 411 

microbial adhesion on the structured composite surfaces was investigated using 412 

human saliva. The main contributor in tooth decay is Streptococcus mutans [45]. 413 

SEM images of the composite samples incubated with the saliva showed coccoid 414 

cells arranged in strands which were consistent in size and shape with that of S. 415 

mutans (Fig. 6).  416 

Avoiding initial adhesion, aggregation and biofilm (plaque) formation of the 417 

microorganisms or even reducing this process might be the most important approach 418 

to reduce the risk for secondary caries [46], e. g. by modifying the dental composites` 419 

surface properties. In our study we found that microbial adhesion was reduced on 420 
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composite surfaces structured with cubes (structure size approximately 1 µm) and 421 

flat pyramids (structure size approximately 10 µm) compared to composite surfaces 422 

structured with linear trapezoid structures (structure size of 20 µm; Fig. 6 and 7). In 423 

the literature, this physical effect of structure size on microbial adhesion is discussed 424 

to be due to the total contact area between the microbial cell and the material`s 425 

surface, which is significantly determined by the surface structures and correlated 426 

with the total adhesion energy [47,48]. Moreover, it is assumed that microbes 427 

adherent on surfaces with structures in the micrometer range bigger than the size of 428 

the microbial cells are protected against abrasion from shear stress [49,50]. These 429 

effects might have led overall to the highest microbial adhesion on the dental 430 

composite surfaces structured with the linear trapezoid structures. 431 

The alignment of the microbial cells to the composites` surface structure is 432 

consistent with results reported by a study of Diaz et al. [2431] using a different 433 

biomaterial system. The authors found that on gold surfaces with a linear pattern the 434 

microbial cells were nearly perfectly aligned to these structures. They assumed that 435 

the microbes can in that way actively maximize their contact with the material`s 436 

surface. 437 

In addition to the physical effect of the composite surface structures on microbial 438 

adhesion, also the wettability of surfaces can influence microbial adhesion [51,52]. 439 

As discussed above, the contact angle of the composite surfaces increased due to 440 

the surface structuring. In this current study, however, no correlation between the 441 

composites surface contact angle and microbial adhesion was found. Thus, the 442 

observed differences in microbial adhesion between the differentially structured 443 

surfaces can be attributed to the influence of the structures and not to the changed 444 

contact angle. 445 
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For adequate determination of the number of adherent cells on the composite 446 

surfaces, next to CFU counting the microbes were also counted directly based on 447 

SEM images. For CFU determination, the microbial cells are detached from the 448 

surfaces by shaking, vortexing or in the ultrasonic bath. This method is accompanied 449 

by the disadvantage that the cells in the colonies formed on the surfaces are most 450 

often not sufficient separated to each other and colonies grown on the agar plates 451 

might have been formed by more than one cell. Moreover, especially for strand-452 

forming microbial species, as for example Streptococcus mutans the most dominant 453 

species in human saliva, CFU counting is only limited suitable and has, thus, to be 454 

supported by other methods e. g. image analysis as in the current study. The results 455 

of both applied methods are in good agreement with each other showing the 456 

statistically significantly highest microbial adhesion on the linear trapezoid structures. 457 

The direct counting, however, revealed more precise data showing more detailed 458 

statistical differences since it considered also the strand formation of the microbes.  459 

As shown above, stamp assistant surface micro structuring of flowable dental 460 

composites requires only a stamp and a suitable dental composite. By applying a 461 

gentle pressure to the stamp patterns can be created in dental composites. Mylar 462 

strips are frequently used in clinical dentistry as matrix strips, contour tool and/or to 463 

control the surface roughness of composite restorations [53]. It appears to be 464 

feasible to apply patterned polymer stamps clinically in a similar way to dental 465 

composite as a Mylar strip if patterned polymer strips to be created in future are 466 

used. Based on this and the results reported above the hypotheses that (i) different 467 

surface micro structures can be created on composites by and straightforward 468 

approach potentially suitable for clinical application is accepted. 469 
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As discussed above the surface structures have a statistically significant effect on 470 

microbial adhesion properties when compared with flat control samples of the same 471 

composite. Therefore the second hypotheses we tested is accepted. 472 

  473 
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Conclusion 474 

We introduced a straightforward and innovative approach to create different 475 

microstructures on dental composite surfaces. The surface structured composites did 476 

differ in their microbial adhesion properties from flat control surfaces, an important 477 

factor in this being the geometry of the patterns. With this we opened a new route of 478 

composite surface structuring that may lead to a new range of properties of dental 479 

composite surfaces. Factors limiting the surface structurability of dental composites 480 

have been found to be the filler particle size and rheological properties of the 481 

composite. Based on the simplicity this approach may be a basis and has potential to 482 

be used in clinical situations if further developed. Future research along this direction 483 

may use smaller composite microstructures that may lead to a strongly reduced 484 

microbial adhesion compared to conventionally treated dental composites, to which 485 

the first step has been taken through this current study. 486 

 487 

  488 
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Figures 495 

 496 
Figure 1: The different steps of the PDMS-stamp assisted micro structuring of the 497 
dental composites: (a) Initial silicon (Si) master pattern; (b) transfer of the structures 498 
to polydimethylsiloxane (PDMS) stamps; (c) PDMS stamp with negative structure; (d) 499 
deposition of the flowable composite on a glass slide; (e) covering of the flowable 500 
composite with the structured PDMS stamp, applying of a slight pressure by hand; (f) 501 
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polymerization of the composite by a light-emitting diode (LED) light curing unit for 30 502 
s; (g) polymerized and micro-structured composite. 503 
 504 

 505 
Figure 2: Results of the initial stamp assisted surface micro-structuring experiment of 506 
the different composites presented in Tab. 1: (a) CLEARFIL MAJESTY Posterior; (b) 507 
Grandio Flow; (c) Premise; (d) Tetric EvoFlow; (e) Venus Diamond; (f) XFlow. 508 
  509 
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 510 

Figure 3: Rheological data of the different composites presented in Tab. 1: (a) 511 
comple viscosity; (b) stress relaxation characterized by the shear modulus as a 512 
function of time. Due to a low interfacial adhesion between the dental composite 513 
CLEARFILL MAJESTY Posterior and the plates of the rheometer no strain could be 514 
transferred to the composite, thus no data could be collected for this composite. 515 

  516 
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 517 

Figure 4: Comparison between the flat, respectively, patterned silicon (Si) master 518 
pattern and the structured Grandio Flow composite surface: (a), (b) flat control 519 
sample; (c), (d) cube structure; (e), (f) linear trapezoid structure; (g), (h) flat pyramids. 520 

  521 
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 522 

Figure 5: Water contact angle of the differently structured Grandio Flow composite 523 
surface. * p ≤ 0.05 vs. control; # p ≤ 0.05 vs. cubes; § p ≤ 0.05 vs. linear trapezoid 524 
structures. 525 

 526 

 527 

Figure 6: Microbial colonization on the flat and structured dental composite Grandio 528 
Flow: (a) flat control sample; (b) cube structure; (c) linear trapezoid structure; (d) flat 529 
pyramids. 530 

  531 
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 532 

Figure 7: Quantification of the microbial colonization on the flat and structured dental 533 
composite Grandio Flow: (a) Colony forming units (CFU); (b) number of microbes 534 
(determined by SEM and image analysis). * p ≤ 0.05 vs. control; # p ≤ 0.05 vs. cubes; 535 
§ p ≤ 0.05 vs. linear trapezoid structures. 536 

  537 
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Tables 538 

Table 1: Properties of the six composites tested for their structurability (data obtained 539 
from manufacturers data sheets). 540 

Composite Company 
Filler 

content 
Filler size Filler material 

CLEARFIL 
MAJESTY 
Posterior 
(CMP) 

Kuraray 
Europe 
GmbH 

92 % 
(w/w) 

82 % (v/v) 

20 nm – 1.5 
µm 

Aluminum oxide, glass 

Grandio Flow 
(GF) 

Voco GmbH 

80 % 
(w/w) 

65.6 % 
(v/v) 

40 nm – 1 µm Glass, SiO2 

Premise (P) 
Kerr 

Corporation 

84 % 
(w/w) 

70 % (v/v) 

20 nm/0.4 
µm/30 µm 

Prepolymerized fillers, 
glass, SiO2 

Tetric 
EvoFlow 

(TEF) 

Ivoclar 
Vivadent 

AG 

61.5 % 
(w/w) 

550 nm 

Glass, ytterbium 
trifluoride, 

prepolymerized fillers, 
mixed oxides 

Venus 
Diamond 

(VD) 

Heraeus 
Kulzer 
GmbH 

80-82 % 
(w/w) 

63.5-65.1 
% (v/v) 

5 nm – 20 µm Glass, SiO2 

XFlow (XF) 
Dentsply 

International 
60 % 
(w/w) 

1.6 µm Glass, SiO2 

 541 
Supplementary data 542 

 543 

Supplementary 1: Dimensions of the different structures on the initial silicon (Si) 544 
master pattern: left: cube structure; middle: linear trapezoid structure; right: flat 545 
pyramids. 546 

  547 
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