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Abstract

Let {0 = w0 < w1 < w2 < . . . < wm} be the set of weights of binary Steinhaus
triangles of size n, and let Wi be the set of sequences in F

n
2 that generate triangles

of weight wi. In this paper we obtain the values of wi and the corresponding sets
Wi for i ∈ {2, 3,m}, and we conjecture the answer for i = m− 1.
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1 Introduction

Let F2 be the field of order 2 and x = (x0, . . . , xn−1) ∈ F
n
2 , that we will write

x = x0x1 . . . xn. The derivative of x is the sequence ∂x = (x0 + x1, x1 +
x2, . . . , xn−2 + xn−1). If y ∈ F

n−1
2 , the sequence x ∈ F

n
2 such that ∂x = y is

called the primitive of y.

We define ∂0x = x, ∂1x = ∂x and ∂ix = ∂∂i−1x, for 2 ≤ i ≤ n − 1.
The Steinhaus triangle of the sequence x is the sequence T (x) formed by x
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and its derivatives: T (x) = (x, ∂x, . . . , ∂n−1x). For i ∈ {0, . . . , n − 1}, the
component ∂ix of T (x) is the i-th row of the triangle. In Figure 1 we can see
a graphical example of T (0001001).

Fig. 1. Steinhaus triangle T (x) of the sequence x = 0001001. The grey and white
circles represent ones and zeros, respectively

In 1958, H. Steinhaus [8] asked for which sequences x ∈ F
n
2 the triangle

T (x) is balanced, that is, T (x) has as many zeroes as ones. He observed that
no sequence of length n ≡ 1, 2 (mod 4) produces a balanced triangle, so the
problem was to decide if they exist for lengths n ≡ 0, 3 (mod 4). H. Har-
borth [6] answered the question in the affirmative by constructing examples
of such sequences. S. Eliahou et al. studied binary sequences generating bal-
anced triangles with some additional condition: sequences of length n, all of
whose initial segments of length n − 4t for 0 ≤ t ≤ n/4 generate balanced
triangles [3], symmetric and anti-symmetric sequences [4], and sequences with
zero sum [5]. F.M. Malyshev and E.V. Kutyreva [7] estimated the number of
Steinhaus triangles (which they call Boolean Pascal triangles) of sufficiently
large size n containing a given number ω ≤ kn (k > 0) of ones. Steinhaus tri-
angles appear also in the context of cellular automata, and there A. Barbé [1]
has studied some properties related to symmetries. In [2] we characterized
Steinhaus triangles with rotational and dihedral symmetry.

The weight of a sequence x = x0 . . . xn−1 is the number |x| of ones the
sequence contains. The weight |T (x)| of the triangle T (x) is |x|+ |∂x|+ . . .+
|∂n−1x|, the sum of the weights of its rows.

The set S(n) of Steinhaus triangles of size n is an F2-vector space and
the mapping T : Fn

2 → S(n) defined by x 7→ T (x) is an isomorphism. Then,
the vector space S(n) can be seen as a linear code of length n(n + 1)/2 and
dimension n. In general, it is difficult to find the weight distribution of the
words of a linear code; in particular, this seems to be the case for the code S(n).
Here, we focus in the smallest and largest values of the weight distribution
of S(n). To be precise, let 0 = w0 < w1 < w2 < . . . < wm−1 < wm be all
the weights of the triangles of S(n). For i ∈ {0, . . . , m}, an i-sequence is a
sequence x such that |T (x)| = wi. We denote by Wi the set of i-sequences.
Obviously, it exists only one triangle with weight 0, generated by the sequence



x

r(x)ℓ(x)

i(x)

r(i(x))ℓ(i(x))

Fig. 2. The sequences r(x), ℓ(x) and i(x) for x = 0001001.

00 . . . 0. H. Harborth [6] observed that w1 = n and wm = ⌈n(n + 1)/3⌉, and
gave sequences reaching these values. The other weights are not know. Our
goal is to determine w2, w3 and wm−1, and the corresponding sets W2, W3 and
Wm−1. Moreover, we determine exactly the set Wm. In this moment we have
only a conjecture about de values of wm−1 and the elements in Wm−1 that we
present at the end.

If we apply to the graphical representation of a Steinhaus triangle a rota-
tion of 120 degrees, of 240 degrees or a symmetry respect to the height of the
inferior vertex, we obtain a new triangles with the same weight. We denote
by r, l and i these three movements, and they generate the dihedral group
D6 that acts on F

n
2 as follows (see Figure 2): given x, r(x) is the right-side

sequence of the Steinhaus triangle T (x), l(x) is the left-side sequence of T (x),
and i(x) is obtained reading x from right to left.

In relation of the notation here, we shall use a dot to represent concatena-
tion of two sequences, thus, 101·01 = 10101. The expression x1x2 . . . xp stands
for the infinite sequence obtained by repeating x1x2 . . . xp, and x1x2 . . . xp[n]
is the sequence formed by the first n entries of x1x2 . . . xp.

In this paper we determine the values of wi and sets Wi, for i = 1, 2, m,
and we conjecture the case i = m−1. We state the results only for sufficiently
large n. For the smaller values of n we have also the results but we omit
them because of length restrictions. Most proofs are by induction, following
different restrictions and tricks in each case.

2 2-sequences

To find the 2-sequences we considerer the primitives of the sequences of weight
w1 and we define

b1 = 10[n], b2 = 01 · 0[n− 2], b3 = 0[n− 2] · 11,

b4 = 01[n], b5 = 11 · 0[n− 2], b6 = 0[n− 2] · 10.

As we can see in Figure 3, there are one or two equivalence classes with
respect to the action of D6 on F

n
2 , depending on the parity of n.



b1

r(b1) = b2ℓ(b1) = b3

b4 = i(b1)

r(b4) = b5ℓ(b4) = b6

b1

r(b1) = b5ℓ(b1) = b3

b4

r(b4) = b2ℓ(b4) = b6

Fig. 3. The sequences bi for n = 8 in the top (case n even), and n = 9 in the
bottom (case n odd).

Theorem 2.1 Let n ≥ 8. Then w2 = ⌊3n/2⌋ − 1 and the set W2 is the

following.

(i) If n is even, W2 = {b1, b2, b3, b4, b5, b6}.

(ii) If n is odd, W2 = {b2, b4, b6}.

3 3-sequences

From the results of the previous section we can solve easily the problem of
determining w3 and W3 when n is odd.

Theorem 3.1 If n ≥ 7 is odd, then w3 = ⌊3n/2⌋ and W3 = {b1, b3, b5}.

From now on in this section we study the case when n is even. As in
the other section, we consider the primitives of the sequences of weight w2 in
defining

c1 = 0011[n], c2 = 101 · 0[n− 3], c3 = 0[n− 3] · 100,

c4 = 1100[n], c5 = 001 · 0[n− 3], c6 = 0[n− 3] · 101.

Theorem 3.2 Let n ≥ 10 be an even integer.

(i) If n ≡ 0 (mod 4), then w3 = 2n− 3 and W3 = {c1, c2, c3, c4, c5, c6}.

(ii) If n ≡ 2 (mod 4), then w3 = 2n− 4 and W3 = {c1, c3, c5}.

In order to prove the last theorem we need to calculate the value or some
bound of the weight of the triangles generated by the canonical basis of Fn

2 .



c1

r(c1) = c2ℓ(c1) = c3

c4

r(c4) = c5ℓ(c4) = c6

c1

r(c1) = c5ℓ(c1) = c3

c4

r(c4) = c2ℓ(c4) = c6

Fig. 4. The sequences ci for n = 8 ≡ 0 (mod 4) and n = 10 ≡ 2 (mod 4).

Consider the vectors of the canonical basis of Fn
2 : e0 = 1 · 0[n − 1]; ek =

0[k] · 1 · 0[n− k − 1], 1 ≤ k ≤ (n− 1)/2.

Proposition 3.3 Let n be the length of the considered sequences.

(i) |T (e0)| = n and |T (e1)| = ⌊(3n− 2)/2⌋.

(ii) If n ≡ 2 (mod 4), then |T (e2)| = 2n− 4; otherwise the weight is 2n− 3.

(iii) If n ≡ 3 (mod 4), then |T (e3)| = 9(n − 3)/4; otherwise the weight is

⌊(9n− 20)/4⌋.

(iv) If n ≥ 9 and 4 ≤ k ≤ (n− 1)/2, then |T (e
(n)
k )| ≥ 2n− 3.

4 m-sequences

For n ≥ 2, define

z1 = 110[n], z2 = 011[n], z3 = 101[n].

Theorem 4.1 Let n ≥ 2. The maximum weight of the Steinhaus triangles is

wm = ⌈n(n + 1)/3⌉. Moreover,

(i) if n ≡ 0, 2 (mod 3), then Wm = {z1, z2, z3};

(ii) if n ≡ 1 (mod 3), then Wm = {z1, z3}.

5 (m− 1)-sequences

Theorem 5.1 Let n ≥ 5 and n ≡ 1 (mod 3). Then wm−1 = wm − 1 and

Wm−1 = {z2}.

In this moment we have not a proof for the cases n ≡ 0, 2 (mod 3). We



have some evidences about the result and we thing we are very close to prove
it.

Conjecture 5.2 Let n ≥ 11. Then wm−1 = wm − ⌊n/3⌋.

(i) If n ≡ 2 (mod 3) then Wm−1 is the equivalence class of 100[n] by the

action of the dihedral group D6.

(ii) If n ≡ 0 (mod 3), then Wm−1 is union of the equivalence class of 100[n]
and 010[n] by the action of the dihedral group D6.
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