

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió *author's final draft* d'un article publicat a la revista [*Electronic Notes in Discrete Mathematics*].

URL d'aquest document a UPCommons E-prints: http://hdl.handle.net/2117/102012

Article publicat / Published paper:

Brunat, J.M., Maureso, M. Extreme weights in Steinhaus triangles. "Electronic notes in discrete mathematics", 8 Setembre 2016, vol. 54, p. 349-354. Doi: 10.1016/j.endm.2016.09.060

Extreme Weights in Steinhaus Triangles

Josep M. Brunat ^{1,2} and Montserrat Maureso ^{a,1,3}

a Departement de Matemàtiques Universitat Politècnica de Catalunya Barcelona, Spain

Abstract

Let $\{0 = w_0 < w_1 < w_2 < \ldots < w_m\}$ be the set of weights of binary Steinhaus triangles of size n, and let W_i be the set of sequences in \mathbb{F}_2^n that generate triangles of weight w_i . In this paper we obtain the values of w_i and the corresponding sets W_i for $i \in \{2, 3, m\}$, and we conjecture the answer for i = m - 1.

Keywords: Steinhaus triangles, boolean Pascal triangles, balanced Steinhaus triangles, weights of triangles.

1 Introduction

Let \mathbb{F}_2 be the field of order 2 and $\mathbf{x} = (x_0, \ldots, x_{n-1}) \in \mathbb{F}_2^n$, that we will write $\mathbf{x} = x_0 x_1 \ldots x_n$. The *derivative* of \mathbf{x} is the sequence $\partial \mathbf{x} = (x_0 + x_1, x_1 + x_2, \ldots, x_{n-2} + x_{n-1})$. If $\mathbf{y} \in \mathbb{F}_2^{n-1}$, the sequence $\mathbf{x} \in \mathbb{F}_2^n$ such that $\partial \mathbf{x} = \mathbf{y}$ is called the *primitive* of \mathbf{y} .

We define $\partial^0 \mathbf{x} = \mathbf{x}$, $\partial^1 \mathbf{x} = \partial \mathbf{x}$ and $\partial^i \mathbf{x} = \partial \partial^{i-1} \mathbf{x}$, for $2 \leq i \leq n-1$. The *Steinhaus triangle* of the sequence \mathbf{x} is the sequence $T(\mathbf{x})$ formed by \mathbf{x}

¹ Supported by Gen. Cat. DGR 2014SGR46.

² Email: josep.m.brunat@upc.edu

³ Email: montserrat.maureso@upc.edu

and its derivatives: $T(\mathbf{x}) = (\mathbf{x}, \partial \mathbf{x}, \dots, \partial^{n-1} \mathbf{x})$. For $i \in \{0, \dots, n-1\}$, the component $\partial^i \mathbf{x}$ of $T(\mathbf{x})$ is the *i*-th row of the triangle. In Figure 1 we can see a graphical example of T(0001001).

Fig. 1. Steinhaus triangle $T(\mathbf{x})$ of the sequence $\mathbf{x} = 0001001$. The grey and white circles represent ones and zeros, respectively

In 1958, H. Steinhaus [8] asked for which sequences $\mathbf{x} \in \mathbb{F}_2^n$ the triangle $T(\mathbf{x})$ is balanced, that is, $T(\mathbf{x})$ has as many zeroes as ones. He observed that no sequence of length $n \equiv 1, 2 \pmod{4}$ produces a balanced triangle, so the problem was to decide if they exist for lengths $n \equiv 0, 3 \pmod{4}$. H. Harborth [6] answered the question in the affirmative by constructing examples of such sequences. S. Eliahou et al. studied binary sequences generating balanced triangles with some additional condition: sequences of length n, all of whose initial segments of length n-4t for $0 \le t \le n/4$ generate balanced triangles [3], symmetric and anti-symmetric sequences [4], and sequences with zero sum [5]. F.M. Malyshev and E.V. Kutyreva [7] estimated the number of Steinhaus triangles (which they call Boolean Pascal triangles) of sufficiently large size n containing a given number $n \le t$ kn n0 of ones. Steinhaus triangles appear also in the context of cellular automata, and there A. Barbé [1] has studied some properties related to symmetries. In [2] we characterized Steinhaus triangles with rotational and dihedral symmetry.

The weight of a sequence $\mathbf{x} = x_0 \dots x_{n-1}$ is the number $|\mathbf{x}|$ of ones the sequence contains. The weight $|T(\mathbf{x})|$ of the triangle $T(\mathbf{x})$ is $|\mathbf{x}| + |\partial \mathbf{x}| + \dots + |\partial^{n-1}\mathbf{x}|$, the sum of the weights of its rows.

The set S(n) of Steinhaus triangles of size n is an \mathbb{F}_2 -vector space and the mapping $T \colon \mathbb{F}_2^n \to S(n)$ defined by $\mathbf{x} \mapsto T(\mathbf{x})$ is an isomorphism. Then, the vector space S(n) can be seen as a linear code of length n(n+1)/2 and dimension n. In general, it is difficult to find the weight distribution of the words of a linear code; in particular, this seems to be the case for the code S(n). Here, we focus in the smallest and largest values of the weight distribution of S(n). To be precise, let $0 = w_0 < w_1 < w_2 < \ldots < w_{m-1} < w_m$ be all the weights of the triangles of S(n). For $i \in \{0, \ldots, m\}$, an i-sequence is a sequence \mathbf{x} such that $|T(\mathbf{x})| = w_i$. We denote by W_i the set of i-sequences. Obviously, it exists only one triangle with weight 0, generated by the sequence

Fig. 2. The sequences $r(\mathbf{x})$, $\ell(\mathbf{x})$ and $i(\mathbf{x})$ for $\mathbf{x} = 0001001$.

00...0. H. Harborth [6] observed that $w_1 = n$ and $w_m = \lceil n(n+1)/3 \rceil$, and gave sequences reaching these values. The other weights are not know. Our goal is to determine w_2 , w_3 and w_{m-1} , and the corresponding sets W_2 , W_3 and W_{m-1} . Moreover, we determine exactly the set W_m . In this moment we have only a conjecture about de values of w_{m-1} and the elements in W_{m-1} that we present at the end.

If we apply to the graphical representation of a Steinhaus triangle a rotation of 120 degrees, of 240 degrees or a symmetry respect to the height of the inferior vertex, we obtain a new triangles with the same weight. We denote by r, l and i these three movements, and they generate the dihedral group D_6 that acts on \mathbb{F}_2^n as follows (see Figure 2): given \mathbf{x} , $r(\mathbf{x})$ is the right-side sequence of the Steinhaus triangle $T(\mathbf{x})$, $l(\mathbf{x})$ is the left-side sequence of $T(\mathbf{x})$, and $i(\mathbf{x})$ is obtained reading \mathbf{x} from right to left.

In relation of the notation here, we shall use a dot to represent concatenation of two sequences, thus, $101 \cdot 01 = 10101$. The expression $\overline{x_1 x_2 \dots x_p}$ stands for the infinite sequence obtained by repeating $x_1 x_2 \dots x_p$, and $\overline{x_1 x_2 \dots x_p}[n]$ is the sequence formed by the first n entries of $\overline{x_1 x_2 \dots x_p}$.

In this paper we determine the values of w_i and sets W_i , for i = 1, 2, m, and we conjecture the case i = m-1. We state the results only for sufficiently large n. For the smaller values of n we have also the results but we omit them because of length restrictions. Most proofs are by induction, following different restrictions and tricks in each case.

2 2-sequences

To find the 2-sequences we considerer the primitives of the sequences of weight w_1 and we define

$$\mathbf{b}_1 = \overline{10}[n], \ \mathbf{b}_2 = 01 \cdot \overline{0}[n-2], \ \mathbf{b}_3 = \overline{0}[n-2] \cdot 11,$$
$$\mathbf{b}_4 = \overline{01}[n], \ \mathbf{b}_5 = 11 \cdot \overline{0}[n-2], \ \mathbf{b}_6 = \overline{0}[n-2] \cdot 10.$$

As we can see in Figure 3, there are one or two equivalence classes with respect to the action of D_6 on \mathbb{F}_2^n , depending on the parity of n.

Fig. 3. The sequences \mathbf{b}_i for n=8 in the top (case n even), and n=9 in the bottom (case n odd).

Theorem 2.1 Let $n \geq 8$. Then $w_2 = \lfloor 3n/2 \rfloor - 1$ and the set W_2 is the following.

- (i) If n is even, $W_2 = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4, \mathbf{b}_5, \mathbf{b}_6\}.$
- (ii) If n is odd, $W_2 = \{\mathbf{b}_2, \mathbf{b}_4, \mathbf{b}_6\}$.

3 3-sequences

From the results of the previous section we can solve easily the problem of determining w_3 and W_3 when n is odd.

Theorem 3.1 If
$$n \ge 7$$
 is odd, then $w_3 = \lfloor 3n/2 \rfloor$ and $W_3 = \{ \mathbf{b}_1, \, \mathbf{b}_3, \, \mathbf{b}_5 \}$.

From now on in this section we study the case when n is even. As in the other section, we consider the primitives of the sequences of weight w_2 in defining

$$\mathbf{c}_1 = \overline{0011}[n], \ \mathbf{c}_2 = 101 \cdot \overline{0}[n-3], \ \mathbf{c}_3 = \overline{0}[n-3] \cdot 100,$$

 $\mathbf{c}_4 = \overline{1100}[n], \ \mathbf{c}_5 = 001 \cdot \overline{0}[n-3], \ \mathbf{c}_6 = \overline{0}[n-3] \cdot 101.$

Theorem 3.2 Let $n \ge 10$ be an even integer.

- (i) If $n \equiv 0 \pmod{4}$, then $w_3 = 2n 3$ and $W_3 = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4, \mathbf{c}_5, \mathbf{c}_6\}$.
- (ii) If $n \equiv 2 \pmod{4}$, then $w_3 = 2n 4$ and $W_3 = \{\mathbf{c}_1, \mathbf{c}_3, \mathbf{c}_5\}$.

In order to prove the last theorem we need to calculate the value or some bound of the weight of the triangles generated by the canonical basis of \mathbb{F}_2^n .

Fig. 4. The sequences \mathbf{c}_i for $n = 8 \equiv 0 \pmod{4}$ and $n = 10 \equiv 2 \pmod{4}$.

Consider the vectors of the canonical basis of \mathbb{F}_2^n : $\mathbf{e}_0 = 1 \cdot \overline{0}[n-1]$; $\mathbf{e}_k = \overline{0}[k] \cdot 1 \cdot \overline{0}[n-k-1]$, $1 \le k \le (n-1)/2$.

Proposition 3.3 Let n be the length of the considered sequences.

- (i) $|T(\mathbf{e}_0)| = n$ and $|T(\mathbf{e}_1)| = |(3n-2)/2|$.
- (ii) If $n \equiv 2 \pmod{4}$, then $|T(\mathbf{e}_2)| = 2n 4$; otherwise the weight is 2n 3.
- (iii) If $n \equiv 3 \pmod{4}$, then $|T(\mathbf{e}_3)| = 9(n-3)/4$; otherwise the weight is |(9n-20)/4|.
- (iv) If $n \ge 9$ and $4 \le k \le (n-1)/2$, then $|T(\mathbf{e}_k^{(n)})| \ge 2n-3$.

4 m-sequences

For $n \geq 2$, define

$$\mathbf{z}_1 = \overline{110}[n], \quad \mathbf{z}_2 = \overline{011}[n], \quad \mathbf{z}_3 = \overline{101}[n].$$

Theorem 4.1 Let $n \ge 2$. The maximum weight of the Steinhaus triangles is $w_m = \lceil n(n+1)/3 \rceil$. Moreover,

- (i) if $n \equiv 0, 2 \pmod{3}$, then $W_m = \{\mathbf{z_1}, \mathbf{z_2}, \mathbf{z_3}\}$;
- (ii) if $n \equiv 1 \pmod{3}$, then $W_m = \{\mathbf{z_1}, \mathbf{z_3}\}$.

5 (m-1)-sequences

Theorem 5.1 Let $n \geq 5$ and $n \equiv 1 \pmod{3}$. Then $w_{m-1} = w_m - 1$ and $W_{m-1} = \{\mathbf{z}_2\}$.

In this moment we have not a proof for the cases $n \equiv 0, 2 \pmod{3}$. We

have some evidences about the result and we thing we are very close to prove it.

Conjecture 5.2 Let $n \ge 11$. Then $w_{m-1} = w_m - \lfloor n/3 \rfloor$.

- (i) If $n \equiv 2 \pmod{3}$ then W_{m-1} is the equivalence class of $\overline{100}[n]$ by the action of the dihedral group D_6 .
- (ii) If $n \equiv 0 \pmod{3}$, then W_{m-1} is union of the equivalence class of $\overline{100}[n]$ and $\overline{010}[n]$ by the action of the dihedral group D_6 .

References

- [1] A. Barbé. Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2. *Discrete Appl. Math.*, 105:1–38, 2000.
- [2] J. M. Brunat and M. Maureso. Symmetries in Steinhaus Triangles and in Generalized Pascal Triangles. *Integers*, 11(1):A1 26pp, 2011.
- [3] S. Eliahou and D. Hachez. On a problem of Steinhaus concerning binary sequences. *Experiment. Math.*, 13(2):215–229, 2004.
- [4] S. Eliahou and D. Hachez. On symmetric and antisymmetric balanced binary sequences. *Integers*, 5(1):A6 18 pp, 2005.
- [5] S. Eliahou, J. M. Marín, and M. P. Revuelta. Zero-sum balanced binary sequences. *Integers*, 7(2):A11, 14 pp, 2007.
- [6] H. Harborth. Solution of Steinhaus's problem with plus and minus signs. *J. Combinatorial Theory Ser. A*, 12:253–259, 1972.
- [7] F. M. Malyshev and E. V. Kutyreva. On the distribution of the number of ones in a Boolean Pascal's triangle. *Discrete Math. Appl.*, 16(3):271–279, 2006.
- [8] H. Steinhaus. One Hundred Problems in Elementary Mathematics. Pergamon, Elinsford, 1963. (Original in Polish, STO ZADAN, Warshau, 1958).