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Abstract

This paper presents a class of hub network design problems with profit-
oriented objectives. Potential applications arise in the design of air and
ground transportation networks, where companies need to jointly deter-
mine the location of hub facilities as well as the design of the hub network.
For this, strategic network design decisions must be integrated within the
decision-making process. Such decisions may include the selection of the
origin/destination nodes that will be served as well as the activation of dif-
ferent types of edges. This class of problems considers the simultaneous
optimization of the collected profit, the setup cost of the hub network and
the transportation cost. Several alternative models that can be used in a
variety of situations are proposed and analyzed. For each model an integer
programming formulation is presented and computationally tested in terms
of both, the structure of its solution network and the difficulty for solving it
with a commercial solver.
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1. Introduction

Hub-and-spoke networks are frequently employed in transportation and
telecommunication systems to efficiently route commodities between many
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origins and destinations. One of the key features of these networks is that di-
rect connections between origin/destination (O/D) pairs can be replaced by
fewer, indirect but privileged connections by using transshipment, consolida-
tion, or sorting points, called hub facilities. This reduces the total setup cost
at the expense of increasing some individual transportation costs. Overall
transportation costs may also decrease due to the bundling or consolidating
of flows through inter-hub arcs.

Hub Location Problems (HLPs) deal with joint location and network de-
sign decisions so as to optimize a cost-based (or service-based) objective.
The location decision focuses on the selection of a set of nodes to place hub
facilities, whereas the network design decisions deal with the selection of the
links to connect origins and destinations, possibly via hubs, as well as the
routing of commodities through the network. Typically, HLPs assume that
hubs must be located at the nodes of a given network, distances satisfy the
triangle inequality, and there is a constant discount factor on the transporta-
tion costs of the arcs connecting hubs. In addition, classical HLPs impose
that all flows are routed via the selected hubs and ignore all arc setup costs.
Such problems have optimal solutions where an arc exists connecting each
pair of hubs, so optimal routing paths consist of at most three arcs, two arcs
connecting non-hub nodes and hub nodes, plus one intermediate arc con-
necting two hub nodes. This optimality condition implies that the network
design decisions are mainly determined by the allocation of non-hub nodes
to hubs (see, Contreras, 2015), and has been extensively exploited to develop
formulations and solution algorithms for solving these classical HLPs.

Hub Arc Location Problems (HALPs) no longer assume that the above
optimality condition holds, and incorporate explicit hub arc selection deci-
sions. HALPs, in which in which a cardinality constraint on the number of
opened hub arcs is considered, were introduced in Campbell et al. (2005).
HALPs that incorporate setup costs for the hub nodes and hubs arcs were
studied in Contreras and Fernández (2014) and Gelareh et al. (2015). Other
HALPs impose particular topological structures, such as tree-star (Contreras
et al., 2010), star-star (Labbé and Yaman, 2008), ring-star (Contreras et al.,
2016), and hub lines (Martins de Sá et al., 015a,b).

In most hub location applications arising in the design of distribution
and transportation systems, a profit is obtained for serving (i.e. routing)
the demand of a given commodity. Capturing such profit may incur not
only a routing cost but also additional setup costs, as the O/D nodes of the
commodity may require the a priori installation of transport infrastructure.



Classical HLPs and HALPs, however, ignore such profits and associated setup
costs, as reflected by the requirement that the demand of every commodity
must be served. Indeed, the overall profit obtained when all the commodities
must be served is constant, and it does not affect the optimization of the dis-
tribution system. Broadly speaking, this requirement expresses the implicit
hypothesis that the overall costs of solution networks will be compensated by
the overall profits. Of course, such hypothesis does not necessarily hold, and
incorporating decisions on the O/D nodes that should be served and their
associated commodities may have important implications in the strategic and
operational costs.

In this paper we study a new class of problems in hub location denoted as
Hub Network Design Problems with Profits (HNDPPs). HNLPPs integrate
within the decision-making process additional strategic decisions on the nodes
and the commodities that have to be served and consider a profit-oriented
objective which measures the tradeoff between the profit of the commodities
that are served and the overall network design and transportation costs.
Broadly speaking, HNDPPs focus on the following strategic decisions: i)
where to locate the hubs; ii) what edges to activate and of what type; and,
iii) what commodities to serve (this also dictates the nodes to activate).
As usual, the operational decisions determine how to route the commodities
that are selected to be served. HNDPPs generalize HLPs and HALPs as
they incorporate one additional level to the decision-making process. To the
best of our knowledge, hub location models incorporating explicit decisions
on the nodes to be served have not yet been addressed in the literature.

Potential transportation applications of HNDPPs arise in the airline and
ground transportation industries. As an example, in the case of airline com-
panies network planners have to design their transportation network when
they are first entering into the market, or may have to modify already estab-
lished hub-and-spoke networks through alliances, merges and acquisitions of
companies. The involved decisions are to determine the cities that will be
part of their network, i.e. what cities they will provide service to (served
nodes) and what O/D flights to activate (served commodities) in order to
offer air travel services to passengers (served demand) between city pairs.
Additional decisions focus on the location of their main airports (hub facil-
ities) and on the selection of the legs used for connecting regional airports
(served nodes) with hub airports and for connecting some hub airports be-
tween them. Finally, the transportation of passengers using one or more O/D
paths on their established network. The objective is to find an optimal hub



network structure that maximizes the total net profit for providing air travel
services to a set of O/D flights while taking into account the (re)design cost
of the network. Depending on the regulations or the company service policy,
passenger air travel services could be provided: i) only to city pairs that are
profitable, ii) between all city pairs that are served by the company, or iii)
to a percentage of them (private companies with service commitment or with
market penetration policies).

The main contribution of this paper is to introduce the foundations of
HNDPPs and to propose alternative models of increasing complexity, which
incorporate additional features. We start with a pure profit-driven model,
and progressively present variations which consider alternative constraints
and/or additional decisions, which, in turn, may imply additional costs. As
alternative constraints we consider the possibility of forcing to serve a com-
modity whenever its two end-nodes are activated. As for decisions we con-
sider the activation, with associated setup costs, of two additional types of
edges. Access edges allow non-hub nodes to be connected to a hub whereas
bridge edges allow connecting hub nodes without using a discount factor.
We finally consider two more general models that allow serving the existing
demand at different levels. The second of such models allows, in addition,
to activate at different levels the various elements of solution networks. This
results in a capacitated HNDPP of notable difficulty. A summary of the
proposed models and their main features is given in Table 1.

Mathematical programming formulations for these models are presented
and computationally tested in terms of: the structure of the solution networks
it produces, its sensitivity to the input parameters, its relation to the other
models, and its difficulty for being optimally solved with a commercial solver.
A companion paper (Alibeyg et al., 2016) presents an exact algorithm for the
pure profit-driven HNDPP and provides extensive results of computational
experiments and analyses.

The remainder of the paper is organized as follows. Section 2 reviews the
most relevant literature related to HNDPPs. Section 3 presents the formal
definition and modeling assumptions of a primary HNDPP. It also presents a
mathematical programming formulation for the problem and some variants
of it. Sections 4 and 5 provide more realisitc and complex extensions of
HNDPPs. Section 6 describes the computational experiments we have run.
The results produced by each model are presented and analyzed. The results
of the different models are compared among them. The paper ends in Section
7 with some comments and conclusions.



Main features PO1 PO2 PND POM1 POM2

Locational decisions
- Hub nodes

√ √ √ √ √

- Served nodes
√ √ √ √ √

- Multiple capacity/operational levels
√

Link activation decisions
- Hub edges

√ √ √ √ √

- Access edges
√

- Bridge edges
√

Operational decisions
- Single demand level

√ √ √

- Multiple demand levels
√ √

Demand service type
- Only to profitable pairs of served nodes

√ √ √ √

- Between all pairs of served nodes
√

Objective
- Pure profit-oriented

√ √ √ √

- Profit-oriented with service commitments
√

Table 1: Summary of considered HNDPPs.

2. Literature Review

HNDPPs are related to two families of HLPs: Maximal Hub Covering
Problems (MHCPs), and Competitive Hub Location Problems (CHLPs).
MHCPs impose that commodities between O/D pairs have to be delivered
within a time limit (service level). It is implicitly assumed that a commodity
is served whenever its O/D nodes are within a predefined radius of some hub
node. Because MHCPs restrict the length of the arcs of O/D paths to a
given coverage radius, applications of these problems frequently arise in the
design of telecommunication networks, where the signal deterioration must
be taken into account (Campbell and O’Kelly, 2012). Campbell (1994) in-
troduces different MHCPs, which have also been studied and extended by
other authors (see Alumur and Kara, 2008; Zanjirani Farahani et al., 2013).
More recently, Hwang and Lee (2012) study the uncapacitated single alloca-
tion p-hub maximal covering problem, which maximizes the overall demand
that can be covered by p facilities within a fixed coverage radius. Lowe and
Sim (2012) studies a MHCP that considers jointly hubs setup costs and flow
transportation costs, subject to covering constraints. Similarly to HNDPPs,



in MHCPs some commodities may remain unserved. However, in contrast to
HNDPPs, MHCPs implicitly assume that the setup cost for providing ser-
vice to O/D nodes is zero and thus, they do not incorporate decisions on the
nodes to be served.

While most HLPs are concerned with the design of the hub network of
a single firm, CHLPs consider an environment in which several firms exist
in a market and compete to provide service to customers. In CHLPs each
commodity chooses the competing firm that will serve its demand, based
on several criteria such as travel time or service cost. The usual objective in
CHLPs is to maximize the market share of some firm. Marianov et al. (1999)
introduce CHLPs with two competitors in which the follower looks for the
best location for a set of hubs so as to maximize the captured demand. The
first model assumes that a commodity demand will be fully captured if its
routing cost does not exceed the current competitor’s cost. A more realistic
model is also considered, in which the fraction of the commodity demand
that is captured is modeled using a stepwise linear function, which is used
for the comparison with the competitor’s routing costs. In both models, at
most one path can be used to route commodities between each O/D pair.
Eiselt and Marianov (2009) extend these models to allow using more than
one path to connect an O/D pair. The fraction of commodity demand that is
routed on a particular path is modeled with a gravity-like attraction function
that depends on both, the routing cost and the travel time.

Gelareh et al. (2010) present a model arising in liner shipping networks,
where a new liner service provider designs its network to maximize its mar-
ket share, using a stepwise attraction function, which depends on service
times and routing costs. Lüer-Villagra and Marianov (2013) study a com-
petitive model in which a new company wants to enter the market of an
existing company. The aim is to determine the prices to charge to served
commodities so as to maximize the profit of the entering company, rather
than its market share. Commodities preferences for the selected firm and
service route are modeled using a logit model. OKelly et al. (2015) present a
model with price-sensitive demands. It considers three different service lev-
els for routing commodities between O/D pairs that use either two-hub O/D
paths, one-hub O/D paths or direct connections. The model is formulated as
an economic equilibrium problem that maximizes a nonlinear concave utility
function minus the routing costs and the setup cost for the location of the
hubs.

CHLPs have also been studied under a game theoretic framework, such



as Stackelberg hub location models, cooperative game theoretic models with
alliances and mergers, and non-cooperative game theoretic models (see Adler
and Smilowitz, 2007; Lin and Lee, 2010; Asgari et al., 2013; Sasaki et al.,
2014; Contreras, 2015). We note that HNDPPs can be clearly differentiated
from CHLPs, as the focus of the former is to optimize the individual decision
related to one single firm rather than on competition aspects. To the best
of our knowledge, besides Sasaki et al. (2014) all CHLPs previously studied
focus on the location of hubs and do not explicitly consider hub arc selection
decisions. Moreover, none of them consider other relevant decisions such as
the activation of access/bridge arcs and servicing decisions for O/D nodes.

HNDPPs are also related to other network optimization problems, aiming
at maximizing the captured demand or optimizing some profit-oriented ob-
jective. Examples of the former are the maximal covering location (Church
and ReVelle, 1974) or the competitive facility location problem (Aboolian
et al., 2007). Examples of the latter are prize-collecting versions of problems
that do not consider locational decisions: traveling salesman (Feillet et al.,
2005), vehicle routing (Aras et al., 2011), rural postman (Aráoz et al., 2009),
and prize-collecting Steiner tree problems (Álvarez-Miranda et al., 2013).

The above mentioned prize-collecting problems share with HNDPPs a
distinguishing feature: they generalize their corresponding classical version
by incorporating one additional level to the strategic decision-making pro-
cess, so as to determine the demand customers to be served. In its turn, such
decisions induce additional network design decisions. Nevertheless, according
to the classification of Contreras and Fernández (2012), all mentioned prob-
lems are user-facility demand. That is, service demand relates users (nodes)
and service centers (facilities). Instead, HNDPPs are user-user demand, as
service demand relates pairs of users among them (O/D nodes of commodi-
ties). To the best of our knowledge this is the first time a prize-collecting
version of a user-user demand general network design problem is addressed.

3. Primary HNDPPs

In this section we first introduce a primary model where the core strate-
gical and operational decisions in HNDPPs are identified. In this model,
the main criterion that guides decisions is profit. It is applicable to private
companies where their ultimate goal is to maximize their net profit, inde-
pendently of any other consideration. Companies would only provide service
to O/D nodes that increase their profit and, among all commodities asso-



ciated with served O/D nodes, only the profitable ones would be actually
routed. We next describe possible variants in which: (i) external regulations
could force companies to provide transportation services to any commodity
where both its origin and destination nodes are served, even if this would
reduce their profit, and (ii) market penetration policies are applied to ensure
a predefined presence of a company in the market by forcing to serve a min-
imum number of customer demands, even if this is suboptimal from a profit
perspective.

3.1. Formal Definition and Modeling Assumptions

We can formally define a HNDPP as follows. Let G = (N,A) be a
complete directed graph, where N = {1, 2, . . . , n} represents the set of nodes
and A represents the set of arcs. Let H ⊂ N be the set of potential hub
locations. For each i ∈ N , ci ≥ 0 denotes the setup cost for serving node i
and for each i ∈ H, fi ≥ 0 is the fixed setup cost for opening a hub at node i.
If a node i ∈ H is selected to be a hub, it is assumed that it will be possible
to serve commodities originated (or with destination) at i without activating
node i as a servicing node. That is, there is no need to incur in the setup
cost ci for serving node i if it becomes a hub. Each node will thus be exactly
one of the following: a hub node, a served node, or an unserved node. For
(i, j) ∈ A, dij ≥ 0 denotes the distance or unit transportation cost between
nodes i and j, which we assume to be symmetric, i.e., dij = dji, and to satisfy
the triangle inequality. Let AH ⊂ A be the subset of arcs connecting two
potential hub nodes, i.e. AH = {(i, j) ∈ A | i, j ∈ H}, where it is possible
that the two hubs coincide, i.e., i = j. We also consider the following two
sets of undirected edges. The set of edges connecting two potential hubs,
denoted as EH = {{i, j} | i, j ∈ H}, and the set of edges where at least one
endnode is a potential hub, denoted by EB = {{i, j} | i ∈ N, j ∈ H, i 6= j}.
Since N and H are different sets, so are EH and EB. Any edge {i, j} ∈ EH
is indistinctively denoted as {j, i}. Instead, when we write {i, j} ∈ EB, we
assume that i ∈ N , j ∈ H. The elements of EH are called hub edges whereas
the elements of EB are either access or bridge edges and will be discussed
in detail later in this section. In the literature hub edges are often referred
to as hub arcs. Throughout this paper we prefer to maintain the distinction
between edges and arcs.

Edges in EH can be activated incurring setup costs. We denote by re ≥ 0
the setup cost of hub edge e ∈ EH . When edges in EH are activated, their
associated arcs can be used for sending flows in any of their two directions. A



hub edge e = {i, j} ∈ EH has a per unit flow cost αdij. The parameter α, (0 ≤
α ≤ 1) is used as a discount factor to provide reduced unit transportation
costs on hub edges to represent economies of scale. Similarly to other HALPs,
in this primary HNDPP variant edges in EB are activated without incurring
any setup cost. Also, no discount factor is applied to flows sent via edges in
EB. The per unit transportation cost of the two arcs associated with edge
e = {i, j} ∈ EB is dij.

Let K denote the set of commodities where each k ∈ K is defined as
(o(k), d(k),Wk), where o(k), d(k) ∈ N , respectively denote its origin and
its destination, also referred to as its O/D pair, and Wk denotes its service
demand, i.e., the amount of flow that must be routed from o(k) to d(k) if
commodity k is served. The effect of serving commodity k is threefold. On
the one hand it forces the activation of its O/D nodes o(k) and d(k). On
the other hand, it produces a per unit revenue Rk ≥ 0, which is independent
of the path used to send the commodity demand Wk through the solution
network. Finally, serving commodity k also incurs a transportation cost
which depends on Wk and on the path that is used to route it from o(k) to
d(k).

Similarly to most HLPs, we require that all O/D paths include at least
one hub node. That is, the solution network contains no direct connections
between two non-hub nodes. We assume that served nodes can be assigned
to more than one hub node, i.e. multiple assignments. Moreover, we re-
quire solution networks to contain at most three edges in each O/D path.
While this hypothesis is common in classical hub location models it may
seem restrictive as compared to general network design models. Note, how-
ever, that this hypothesis is consistent with the potential applications that
we mention, mainly air transportation where paths with three legs already
correspond to two intermediate transfers. On the other hand, our models are
profit-oriented so they include additional decisions on the commodities to be
served, increasing their difficulty with respect to cost-oriented models.

For a given commodity k let (o(k), i, j, d(k)) denote the path connecting
o(k) and d(k), which uses a collection edge between o(k) and hub i, a trans-
fer edge between hubs i and j, and a distribution edge between hub j and
d(k). When i 6= j, not only both i and j are hub nodes, but also the inter-
mediate leg, {i, j}, must be a hub edge. Note that O/D paths of the form
(o(k), o(k), d(k), d(k)), using just one hub edge, may arise only when both
o(k) and d(k) are hub nodes. O/D paths with i = j do not use any hub edge
and consist solely of the collection and distribution legs, i.e. (o(k), i, i, d(k))



(origin-hub-destination) with o(k) 6= i and d(k) 6= i.
Paths using at least two edges necessarily contain a collection or a distri-

bution leg, i.e. some edge from EB used with no discount factor. Such edges
are of one of the following two classes: access or bridge edges. The only
difference between an access and a bridge edge is that the former connects
a non-hub node to a hub node whereas the latter connects two hub nodes.
Even if a bridge edge connects two hub nodes, it differs from a hub edge in
its setup cost and its per unit (non-discounted) routing cost. In the primary
HNDPP we assume that no bridge edge will be used as intermediate transfer
edge in a three-leg O/D path. The reader is addressed to Campbell et al.
(2005) for further details and an extensive analysis on possibilities for O/D
paths in hub location.

Taking into account the above mentioned assumptions and requirements
on the structure of O/D paths, we define the per unit transportation cost for
routing commodity k on the path (o(k), i, j, d(k)) as Fijk = (χdo(k)i + αdij +
δdjd(k)), where the parameters χ and δ reflect weight factors for collection
and distribution, respectively.

The HNDPP consists of (i) selecting a set of O/D nodes to be served;
(ii) locating a set of hub facilities; (iii) activating a set of hub edges; (iv)
selecting a set of commodities to be served, both of whose O/D nodes have
been selected in (i); and, (v) determining the flows routing the selected com-
modities through the solution network, with the objective of maximizing
the difference between the total revenue obtained for routing the demand of
the served commodities minus the sum of the setup costs for the design of
the network and the transportation costs for routing the commodities. The
HNDPP is clearly NP-hard given that it has as a particular case the classical
uncapacitated hub location problem with multiple assignments (UHLPMA),
which is known to be NP-hard (Contreras and Fernández, 2014) Indeed, the
HNDPP reduces to the UHLPMA when ci = 0, for i ∈ N , re = 0, for e ∈ EH ,
and Rk =

∑
i∈N fi + max{Fijk : (i, j) ∈ AH}, for k ∈ K.

3.2. An Integer Programming Formulation

For i ∈ H, we introduce binary location variables zi equal to 1 if and
only if a hub is located at node i, and for i ∈ N we define binary variables si
equal to 1 if and only if node i is served (i.e. activated as a non-hub node).
For e ∈ EH , we define ye equal to 1 if and only if hub edge e is activated.
Finally, for k ∈ K, i, j ∈ H, we define routing variables xijk equal to 1 if
and only if commodity k is routed via arc (i, j) ∈ AH . When i = j, xiik = 1



indicates that commodity k is routed on the path (o(k), i, d(k)) visiting only
hub i and thus, it is not routed via a hub edge. Using these sets of variables,
the HNDPP can be formulated as follows:

(PO1) maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Rk − Fijk)xijk −
∑
i∈H

fizi −
∑
i∈N

cisi

−
∑
e∈EH

reye (1)

subject to
∑

(i,j)∈AH

xijk ≤ so(k) + zo(k) k ∈ K (2)

∑
(i,j)∈AH

xijk ≤ sd(k) + zd(k) k ∈ K (3)

∑
j∈H

xijk +
∑

j∈H:i 6=j

xjik ≤ zi k ∈ K, i ∈ H (4)

xijk + xjik ≤ ye k ∈ K, e = {i, j} ∈ EH (5)

xijk ≥ 0 (i, j) ∈ AH , k ∈ K (6)

zi ∈ {0, 1} i ∈ H (7)

si ∈ {0, 1} i ∈ N (8)

ye ∈ {0, 1} e ∈ EH (9)

The first term of the objective function represents the net profit for rout-
ing the commodities. The other terms represent the total setup costs of the
hubs that are chosen, the non-hub nodes that are selected to be served, and
the hub edges that are used. Constraints (2) and (3) impose that the O/D
nodes of each routed commodity are activated, either as hub or served nodes.
Constraints (4) prevent commodities from being routed via non-hub nodes,
whereas constraints (5) activate hub edges. Finally, constraints (6) to (9)
define the domain for the decision variables. As usual in uncapacitated hub
location models, the above formulation does not require to explicitly impose
the integrality of the routing variables x. Each commodity, if routed, will
use exactly one path of the solution network. Also, given that fi ≥ 0 and
ci ≥ 0, in any optimal solution to PO1 a hub node will not be activated also
as a served node, that is si + zi ≤ 1 for each i ∈ H.

The above formulation has a very large number of variables and con-
straints. However, we can exploit the following properties to reduce its size.



Property 1. There is an optimal solution to formulation (1)–(9) where
xijk = 0, for every k ∈ K and (i, j) ∈ AH , with Pk − Fijk ≤ 0.

Property 1 is a direct consequence of the modeling assumption that only
profitable commodities will be routed. According to it, for each commodity
k ∈ K all the routing variables whose cost is not strictly smaller that its
revenue Rk can be eliminated, as routing them will not increase the system
overall profit.

Property 2. Let Q = {(z, s, y, x) that satisfy (2) − (9)} be the domain of
feasible solutions to PO1. Then,

For every k ∈ K and e = {i, j} ∈ EH , ye ≤ zi and ye ≤ zj.

Property 2 is a direct consequence of the fact that points (z, s, y, x) that
satisfy constraints (4) and (5) ensure that ye = 1 if its endnodes are hubs.

3.3. HNDPPs with Service Commitments

Model PO1, is “flexible”, in the sense that, among all commodities con-
necting served O/D nodes, only those that are actually profitable will be
routed. In PO1 it is thus possible that a commodity is not routed even if
both its origin and destination are activated. It will only be served if routing
it produces an additional profit. As mentioned, such a model can be appli-
cable, for instance, in airline and ground transportation systems. Servicing a
city does not mean that connections between this city and any other servic-
ing city in a company’s network will be necessarily offered. Only connections
between such city and other cities that are profitable will be offered.

A more restrictive variant of PO1, denoted as PO2, arises in applications
where either service commitments or external regulations impose the decision
maker to serve any commodity whose O/D nodes are both activated, even if
this would reduce the total profit. An important consequence of this require-
ment is that the solution networks to PO2 will consist of a single connected
component with no isolated hub nodes. PO2 can be formulated by adding
to PO1 the following constraint:

so(k) + zo(k) + sd(k) + zd(k) ≤
∑

(i,j)∈AH

xijk + 1 k ∈ K. (10)

Constraints (10) force commodities to be routed if their O/D nodes are
both activated. We note that Property 1 no longer holds for PO2 because



of the addition of constraints (10). As it will be shown in Section 6, this
additional requirement considerably increases the complexity for optimally
solving PO2 with a general purpose solver.

Previous models can be easily adapted to deal with market penetration
policies that ensure a predefined presence of a company in the market by
servicing a minimum number of customers demands, even if this is suboptimal
from a profit perspective. This can be attained by imposing to serve fraction
of the total number of commodities or to route a fraction of the total demand,
for example.

A constraint that imposes that a minimum fraction 0 ≤ β1 ≤ 1 of the
total number of commodities are served is:∑

k∈K

∑
(i,j)∈AH

xijk ≥ β1|K|, (11)

Similarly, a constraint that imposes that the overall flow that is routed
through the network is at least a fraction 100β1 of the overall demand∑

k∈KWk is: ∑
k∈K

∑
(i,j)∈AH

Wkxijk ≥ β2
∑
k∈K

Wk. (12)

4. HNDPPs with Setup Costs on Access/Bridge Edges

We now introduce an extension of the primary HNDPPs presented in
the previous section that incorporates link activation decisions on access
and bridge edges. This makes more challenging not only the design of the
hub network, but also the routing of commodities, which in turn makes the
problem considerably more difficult to solve. We recall that EB denotes the
set of edges which can be activated as access or bridge edges. Let qe denote
the setup cost of edge e ∈ EB.

Contrary to previous models where bridge edges can only appear in a
three-leg O/D path as collection or distribution leg, in this new model, we
now consider that a bridge edge can also appear as a transfer (or interme-
diate) leg. Consequently, the transportation cost of commodities that are
routed through bridge arcs is different from the ones that use hub arcs since
there is no discount factor on the bridge arcs. We thus define the per unit
transportation cost for routing commodity k on the path (o(k), i, j, d(k))
(where arc (i, j) ∈ EB is a bridge arc) as F

′

ijk = (χdo(k)i + dij + δdjd(k)).



Given that now it is possible to route commodities between hub nodes with
a bridge edge on a three-leg O/D path, the model will have to select whether
to activate a link as a hub edge if enough flow is being routed, so as to
compensate the higher setup cost associated with a hub edge. Otherwise,
it may active the link only as a bridge edge to get a smaller profit out of a
set of commodities. Note that, because of the setup costs on bridge edges,
optimal solutions may concatenate two consecutive bridge arcs, despite of
the triangle inequality on routing costs.

We introduce two new sets of decision variables. For e ∈ EB, te equal to
1 if and only if edge e is activated as an access or bridge edge. The new set
of routing variables are used to differentiate the type of routing used for each
commodity. In particular, we define x

′

ijk equal to 1 if and only if commodity
k ∈ K is routed via bridge arc (i, j) ∈ AH . the HNDPPs with setup costs on
access/bridge edges can then be formulated as:

(PND) maximize
∑
k∈K

∑
(i,j)∈AH

Wk(Pk − Fijk)xijk +
∑
k∈K

∑
(i,j)∈AH

Wk(Pk − F
′

ijk)x
′

ijk

−
∑
i∈H

fizi −
∑
i∈N

cisi −
∑
e∈EH

reye −
∑
e∈EB

qete (13)

subject to (4)− (9)∑
(i,j)∈AH

(xijk + x
′

ijk) ≤ so(k) + zo(k) k ∈ K (14)

∑
(i,j)∈AH

(xijk + x
′

ijk) ≤ sd(k) + zd(k) k ∈ K (15)

∑
j∈H

x
′

ijk +
∑

j∈H:i 6=j

x
′

ijk ≤ zi k ∈ K, i ∈ H (16)

x
′

ijk + x
′

jik ≤ te k ∈ K, e = {i, j} ∈ EB (17)∑
(i,j)∈AH

(xijk + x
′

jik) ≤ 1 k ∈ K (18)

∑
j∈H

(xijk + x
′

jik) ≤ to(k)i k ∈ K, (o(k), i) ∈ EB (19)∑
i∈H

(xijk + x
′

jik) ≤ td(k)j k ∈ K, (d(k), j) ∈ EB (20)

x
′

jik ≥ 0 (i, j) ∈ AH , k ∈ K (21)

te ∈ {0, 1} e ∈ EB. (22)



The first term of the objective function represents the net profit of rout-
ing commodities through hub edges (with discount factor) while the second
term is the net profit of routing commodities through bridge edges (without
discount factor). The setup costs are the same as in PO1 with additional
setup costs of the access/bridge edges. Constraints (14), (15), and (16) are
equivalent to constraints (2), (3), and (4). Constraints (17) activate bridge
edges. Constraints (18) indicate that commodities can be routed using either
hub edges or bridge edges. Constraints (19) and (20) impose that collection
and distribution edges are activated (either as access or bridge edges).

5. HNDPPs with Multiple Demand Levels

In all previous models, it is assumed that if a commodity k ∈ K is served
then all its demand Wk will be routed and a revenue Rk will be received.
However, in practice, for a given O/D pair the amount of demand Wk that is
actually served can be related to the price set to provide such transportation
service. That is, the amount of demand that requires service associated with
a commodity k will depend on the per unit revenue Rk set by the company.
Therefore, an additional operational decision can be considered, which is
to select for each commodity k ∈ K the revenue level that will allow the
company to capture the optimal portion of the total demand Wk.

In this section we extend the primary model PO1 to the case with mul-
tiple demand levels, and consider profit-oriented models where the above
mentioned decisions are taken into account. The amount of price-dependent
demand that is captured for each commodity, is usually modeled with various
nonlinear continuous functions (see, for instance Lüer-Villagra and Marianov,
2013; OKelly et al., 2015). In this paper, to keep the model tractable while
maintaining the rest of the decisions already considered, we employ a discrete
approximation function that considers a set of possible values for commodi-
ties demands, each of them associated with a profit. We use L as the index
set of demand and revenue levels for the commodities. For each commodity
k ∈ K and level l ∈ L, let now W l

k denote the amount of demand that is
routed if commodity k is served at level l, and Rl

k the corresponding revenue.
All other data remains as in the previous models.

To formulate the first profit-oriented model with multiple demand levels,
denoted as POM1, for each l ∈ L, i, j ∈ H and k ∈ K, we substitute the
original set of routing variables x by an extended set of continuous routing
variables, xlijk, which denote the fraction of commodity k served at demand



level l that is routed via arc (i, j) ∈ AH . The remaining decision variables
are the same as in previous primary models, since we assume that they do
not depend on demand levels. The POM1 can be formulated as follows:

(POM1) maximize
∑
l∈L

∑
k∈K

∑
(i,j)∈AH

W l
k(P

l
k − Fijk)xlijk −

∑
i∈H

fizi

−
∑
i∈N

cisi −
∑
e∈EH

reye

subject to (6)− (9)∑
l∈L

∑
(i,j)∈AH

xlijk ≤ so(k) + zo(k) k ∈ K (23)

∑
l∈L

∑
(i,j)∈AH

xlijk ≤ sd(k) + zd(k) k ∈ K (24)

∑
l∈L

∑
j∈H

xlijk +
∑
l∈L

∑
j∈H:i 6=j

xljik ≤ zi k ∈ K, i ∈ H(25)

xlijk + xljik ≤ ye k ∈ K, e = {i, j} ∈ E, l ∈ L (26)

xlijk ≥ 0 (i, j) ∈ AH , k ∈ K, l ∈ L. (27)

The first term of the objective function represents the net profit for rout-
ing commodities at their different demand levels. The other terms are as in
previous models. Constraints (23)-(27) are the analog to (2)-(6) taking into
account the possible demand levels of the commodities.

Given that POM1 does not consider any capacity constraints on the hubs
or edges, it has a very useful property which can be exploited to considerably
reduce the size of the above formulation. In particular, it can be shown
that there is always an optimal solution to POM1 in which for each served
commodity, exactly one demand level and one path are selected. Moreover,
for each commodity k ∈ K, its optimal demand level can be identified a
priori. This observation is formalized in the following result.

Proposition 1. For each k ∈ K, let lk ∈ arg maxl∈L{W l
kP

l
k}. Then,

1. There is an optimal solution to POM1 where xlijk = 0, for l 6= lk,
(i, j) ∈ AH .

2. An optimal solution to POM1 can found by solving PO1 with Wk = W lk
k

and Rk = Rlk
k , for each k ∈ K.



Proposition 1 is a direct consequence of the fact that in POM1 we assume
that the demand levels of the commodities have no effect on of the setup costs
of the network design decisions, particularly, on the setup costs of the hubs
and served nodes.

Instead, in the model that we present next, denoted as POM2, we assume
that hubs and served nodes can be activated at different operation levels,
incurring setup costs, which depend on the amount of flow that is processed
at the nodes. That is, POM2 is a capacitated model which considers multiple
capacity levels to limit the maximum flow processed at a hub or served node.
To this end, we denote as T the index set of operation levels for the hubs and
for the served nodes (for ease of notation and without loss of generality we
assume they are the same). For each potential hub i ∈ H and operation level
t ∈ T , let f ti denote the setup cost for hub i with operation level t, which
allows serving a maximum amount of flow ϕti. Similarly, for each i ∈ N and
t ∈ T , let cti denote the setup cost for serving node i with operation level
t, which allows serving a maximum amount of flow ρti. We now extend the
set of decision variables for the hubs and served nodes to the following. For
each i ∈ H and t ∈ T , variable zti takes the value 1 if and only if a hub is
located at node i with operation level t. For i ∈ N and t ∈ T , variable sti is
equal to 1 if and only if node i is served with operation level t. POM2 can
be formulated as follows:

(POM2) maximize
∑
l∈L

∑
k∈K

∑
(i,j)∈AH

W l
k(P

l
k − Fijk)xlijk −

∑
i∈H

∑
t∈T

f ti z
t
i

−
∑
i∈N

∑
t∈T

ctis
t
i −

∑
e∈EH

reye

subject to (6)− (9), (26)− (27)∑
l∈L

∑
(i,j)∈AH

xlijk ≤
∑
t∈T

(sto(k) + zto(k)) k ∈ K (28)

∑
l∈L

∑
(i,j)∈AH

xlijk ≤
∑
t∈T

(
std(k) + ztd(k)

)
k ∈ K (29)

∑
l∈L

(∑
j∈H

xlijk +
∑

j∈H:i 6=j

xljik

)
≤
∑
t∈T

zti k ∈ K, i ∈ H (30)∑
t∈T

sti +
∑
t∈T

zti ≤ 1 i ∈ H (31)



∑
k∈K

∑
l∈L

W l
k

(∑
j∈H

xlijk +
∑
l∈L

∑
j∈H:i 6=j

xljik

)
≤∑

t∈T

ϕtiz
t
i i ∈ H (32)

∑
(i,j)∈A

∑
l∈L

 ∑
k∈K:o(k)=h

W l
kx

l
ijk +

∑
k∈K:d(k)=h

W l
kx

l
ijk

 ≤
∑
t∈T

ρths
t
h +M

∑
t∈T

zth h ∈ N (33)

zti , s
t
i ∈ {0, 1} i ∈ N, t ∈ T. (34)

The objective function and constraints (28)-(31) have a similar interpre-
tation to those of PO1. Constraints (32) guarantee that the service level at
which a hub is opened allows to serve all the incoming and outgoing flow
that is routed through it. Constraints (33) have a similar interpretation,
with respect to the served nodes. They state that the total incoming and
outgoing flow at a served node must not exceed its installed operational ca-
pacity. The last term M

∑
t∈T z

t
m on the right hand side of the constraints is

used to deactivate the constraint in case node h becomes a hub node, where
M stands for a sufficiently large constant.

Of course more general models could be considered where different op-
eration levels and associated setup costs are considered also for all edges.
This will indeed increase further the complexity of the models, although the
modeling techniques will be quite similar to the ones we have used so far.
We close this section by noting that Property 2 holds for all the considered
models.

6. Computational Experiments

In this section we describe the computational experiments we have run
in order to analyze the performance and various aspects of the HNDPPs we
have introduced in Sections 3 and 4. We give numerical results that allow
quantifying the quality of the formulations we have presented and compar-
ing the computational difficulty of the different HNDPPs models. We also
provide insight on the tradeoff of the decisions involved in our models by an-
alyzing their optimal network structures and by evaluating the effect of the



different parameters on the characteristics of the optimal solutions obtained
with each of the considered models.

This section is structured in several parts. First we describe the compu-
tational environment and the set of benchmark instances we have used. In
Sections 6.1 to 6.3 we respectively give numerical results to analyze the com-
putational performance and limitations of the formulations for the primary
models PO1 and PO2, model PND that incorporates decisions on bridge
arcs, and model POM2, which allows multiple service levels. Section 6.4
focuses on decision-making aspects and managerial insight by analyzing the
structure of the solution networks produced by the different models and their
sensitivity with respect to some of the parameters.

All experiments were run on an HP station with an Intel Xeon CPU
E3-1240V2 processor at 3.40 GHz and 24 GB of RAM under Windows 7
environment. All formulations were coded in C and solved using the callback
library of CPLEX 12.6.3. We use a traditional (deterministic) branch-and-
bound solution algorithm with all CPLEX parameters set to their default
values. In all experiments the maximum computing time was set to 86,000
seconds (one day).

The benchmark instances we have used for the experiments are the well-
known CAB data set of the US Civil Aeronautics Board, with additional data
that we generated for the missing information. These instances were obtained
from the website (http://www.researchgate.net/publication/269396247 cab100 mok).
The data in the CAB set refers to 100 cities in the US. It provides Euclidean
distances between cities, dij, and the values of the service demand between
each pair of cities, Wk, where o(k) 6= d(k). We have considered instances with
n ∈ {15, 20, 25, 30, 35, 40, 45, 50, 60, 70} and α ∈ {0.2, 0.5, 0.8}. The largest
70 nodes instances have only been used with the primary formulation PO1.
Since CAB instances do not provide the setup costs for opening facilities, we
use as the setup cost of opening hubs, i.e. fi, generated by de Camargo et al.
(2008). The setup costs ci, i ∈ N , for served nodes are ci = νfi, where ν = 0.1
unless otherwise stated. The setup costs re, e = {i, j} ∈ EH , for activating
hub edges are re = τ(fi + fj)/2, where τ ∈ {0.3, 0.6, 0.4} is a parameter used
to model the increase (decrease) in setup costs on the hub edges when consid-
ering smaller (larger) discount factors α. The setup costs qe, e = {i, j} ∈ HB,
for activating access/bridge edges are set to qe = σ(fi+fj)/2, where σ = 0.01
unless otherwise stated. The revenues Rk, k ∈ K, for routing commodities
are randomly generated as Rk = ϕ

∑
(i,j)∈AH

Fijk/|AH |, where ϕ is a continu-



ous random variable following a uniform distribution ϕ ∼ U [0.25, 0.35]. The
collection and distribution factors are χ = δ = 1.

6.1. Numerical Results for Primary HNDPPs

Our first series of experiments was oriented to study the computational
performance of the primary HNDPPs, represented by formulations PO1 and
PO2, whose numerical results are summarized in Tables 2 and 3.

Table 2 gives results on the computational effort needed to solve the
primary profit-oriented models with a set of 24 instances with up to 70 nodes
for PO1 and the subset with the 21 instances with up to 60 nodes in the
case of PO2. The first two columns give information on the instances: α,
the discount factor on hub edges, and n, the number of nodes. The first
of the two 4-columns blocks corresponds to PO1, whereas the second one
corresponds to PO2. Each column within each block gives information about
the performance of the solution algorithm and its associated bounds for the
corresponding model. % LP GAP show percentage gaps between the values
of the linear programming (LP) relaxations and optimal values, computed
as 100(vLP − v∗)/v∗, where v∗ and vLP denote the optimal and LP values,
respectively. Optimal value give optimal solution values (v∗), Time(sec) the
computing times (in seconds) needed to optimally solve each instance, and
Nodes the number of nodes explored by CPLEX in the enumeration tree.

The results of Table 2 show that CPLEX can solve to optimality all
considered PO1 instances with up to 70 nodes. The computing times largely
depend not only on the sizes of the instances but also on the discount factor
α. While for α = 0.8 all instances were solved in less than 5 minutes, the
largest 70 node instance required almost three hours of computing time for
the smallest discount factor α = 0.2, which still can be considered small for
an instance of that size. These small computing times are attributed to the
effectiveness of Property 1 for eliminating a large number of xijk variables
and constraints (5). In particular, for α = 0.25, α = 0.5 and α = 0.8,
respectively, the average percentage of eliminated variables is 94% , 97%
and 98%, whereas the average percentage of eliminated constraints (5) is
87%, 94%, and 96%. Note that all 24 considered instances were optimally
solved at the root node, as the solutions to their LP relaxations were already
optimal. From this point of view, PO1 has a performance similar to other
traditional hub location models without capacity constraints, that very often
have integer LP solutions (Hamacher et al., 2004).



PO1 PO2

α n
% LP Time

Nodes
Optimal % LP Time

Nodes
Optimal

gap (sec) value gap (sec) value

0.2

25 0.00 3.00 0 4940995.75 0.00 25.15 0 4794995.92

30 0.00 9.64 0 5475562.01 0.00 130.19 0 5286060.60

35 0.00 30.05 0 6219389.73 0.00 386.81 0 6007414.96

40 0.00 126.12 0 5992658.91 0.00 1162.89 0 5808861.17

45 0.00 249.46 0 6171839.75 0.00 2364.55 0 5963158.91

50 0.00 513.20 0 6471414.64 0.00 5557.70 0 6255892.56

60 0.00 2370.97 0 7416226.43 0.00 37065.80 0 7153438.48

70 0.00 10460.44 0 7795411.69

0.5

25 0.00 1.60 0 3315967.83 0.00 10.24 0 2926230.46

30 0.00 4.55 0 3624158.73 0.00 31.81 0 3201896.50

35 0.00 10.16 0 4048946.70 0.00 109.04 0 3488014.39

40 0.00 21.53 0 3909497.15 0.00 216.29 0 3405507.62

45 0.00 42.17 0 3894805.98 0.00 566.33 0 3316412.33

50 0.00 75.90 0 4219096.87 0.00 1364.90 0 3522264.30

60 0.00 309.06 0 4777497.83 0.00 8339.37 0 3990983.53

70 0.00 1006.20 0 5006776.75

0.8

25 0.00 1.36 0 2940862.05 0.00 7.06 0 2557728.67

30 0.00 3.62 0 3125465.17 0.00 17.87 0 2701547.65

35 0.00 7.89 0 3503413.58 0.00 42.68 0 2939186.01

40 0.00 15.42 0 3354761.27 0.00 88.42 0 2879733.41

45 0.00 27.38 0 3451620.79 0.00 160.15 0 2846768.07

50 0.00 44.93 0 3679333.83 0.00 305.75 0 2991043.52

60 0.00 121.70 0 4083218.91 0.00 805.18 0 3300799.91

70 0.00 293.20 0 4276872.10

Table 2: Computational experiments for PO1 and PO2.

The last four columns of Table 2, which summarize the results for model
PO2, allow us to quantify the effect of the constraints (10) on the difficulty
for solving the basic models. Recall that these constraints force commodities
to be routed if their O/D nodes are both activated. We can observe a notable
increase of the computing times relative to those of PO1, particularly for the
instances with the smallest discount factor α = 0.2 (observe the 10 hours
of computing time that were needed to solve the largest such instance with
n = 60). This is indeed due to the fact that Property 1 no longer holds



for PO2 so it is not possible to eliminate a priori variables and constraints.
Nevertheless, PO2 has shown to be a tight formulation, in the sense that,
similarly to PO1, the LP relaxation of all the considered instances was already
integer, so no additional enumeration was needed.

The information on the structure of optimal networks and on operational
aspects of solution networks for PO1 and PO2 is summarized in Table 3,
which contains one block with six columns for each formulation. Columns
Open n-H and Open H respectively show the number of nodes activated
as non-hub and as hubs, whereas Hub edges give the actual number of hub
edges relative to its maximum possible value. Recall that the number of hub
edges in a fully interconnected hub-level network is

∑
i∈H zi(

∑
i∈H zi − 1)/2.

The last three columns in each block help analyzing the operational impli-
cations of the obtained solutions: %Served nodes indicate the percentage of
nodes served (including both non-hub and hub nodes), % Served O/D show
the percentage of commodities served in the solution network, computed as
100

∑
k∈K

∑
i,j∈H xijk/|K|, and % Routed Flows give the percentage of all the

demand that is served, computed as 100
∑

k∈K
∑

i,j∈HWkxijk/
∑

k∈KWk.
All indicators point out the high influence of the discount factor α on the

design of optimal networks for both PO1 and PO2. As could be expected,
the value of α has an important effect on the number of hub edges in optimal
networks, but its effect is also noticeable on the number of hubs opened and
non-hub nodes activated. This indicates that, even if it is not explicit in
the formulations, large values of the discount factor for hub edges have a
discouraging effect on the number of nodes that are activated (as hubs or as
non-hubs) in optimal networks.

In particular, for PO1 the number of open hubs and activated non-hub
nodes range in the intervals [3, 8] and [16, 62], respectively. For n fixed,
both numbers decrease as α increases. For PO2, the effect of constraints
(10) on the number of activated non-hub nodes is evident for all values of α.
In contrast, the effect of constraints (10) on the number of hubs opened in
optimal networks is influenced by the value of α. For the smallest value α =
0.2, this number is quite similar to that of PO1, whereas when α increases,
PO2 produces optimal networks where the number of open hubs is smaller
than in the case of PO1.

For both models, the hub-level solution network is incomplete for all
instances. Again the effect of the discount factor is relevant, as the sparsity
of the hub-level solution networks clearly increases with the value of α. The
reduction on the number of open hubs of PO2 relative to PO1 produces, in



PO1 PO2

α n
Open Hub %Served %Served %Routed Open Hub %Served %Served %Routed

n-H H Edges Nodes O/D Flows n-H H Edges Nodes O/D Flows

0.2

25 19 6 10/15 100.00 75.67 91.87 17 6 9/15 92.00 84.33 91.43

30 24 6 9/15 100.00 78.51 91.48 19 5 6/10 80.00 63.45 78.91

35 28 7 11/21 100.00 83.61 92.91 27 7 11/21 97.14 94.29 95.59

40 33 7 11/21 100.00 80.64 91.77 31 8 12/28 97.50 95.00 95.86

45 37 8 11/28 100.00 75.61 91.17 36 8 12/28 97.78 95.56 95.77

50 42 8 12/28 100.00 78.12 93.00 40 8 12/28 96.00 92.08 94.92

60 52 8 13/28 100.00 75.14 92.42 49 8 12/28 95.00 90.17 94.22

70 62 8 13/28 100.00 75.61 92.10

0.5

25 16 5 4/10 84.00 34.50 58.81 12 4 5/6 64.00 40.00 57.48

30 21 5 4/10 86.67 36.21 59.30 15 4 5/6 63.33 39.31 56.94

35 24 6 4/15 85.71 38.07 60.91 18 4 5/6 62.86 38.82 56.38

40 28 6 4/15 85.00 37.24 59.05 21 4 5/6 62.50 38.46 56.35

45 30 5 3/10 77.78 32.02 51.71 21 3 3/3 53.33 27.88 44.25

50 34 6 4/15 80.00 32.94 57.79 26 4 4/6 60.00 35.51 54.04

60 44 7 6/21 85.00 39.83 63.42 33 5 6/10 63.33 39.72 56.95

70 50 7 5/21 81.43 35.76 61.20

0.8

25 16 3 1/3 76.00 26.83 48.57 12 2 1/1 56.00 30.33 45.28

30 20 4 1/6 80.00 30.80 50.28 14 3 1/3 56.67 31.26 45.52

35 23 5 1/10 80.00 32.69 52.03 17 3 1/3 57.14 31.93 45.69

40 27 5 1/10 80.00 32.95 50.49 20 3 1/3 57.50 32.44 45.33

45 29 5 1/10 75.56 28.84 49.41 21 3 1/3 53.33 27.88 43.43

50 31 5 1/10 72.00 26.04 48.42 22 3 1/3 50.00 24.49 42.12

60 36 5 1/10 68.33 24.35 48.66 26 3 1/3 48.33 22.94 41.59

70 41 5 1/10 65.71 22.42 47.91

Table 3: Structure of optimal networks for PO1 and PO2.

its turn, an increase on the sparsity of the hub-level solution networks of
PO2, particularly for the instances with the highest value of α = 0.8, whose
optimal solutions always have just one hub edge.

Focusing on the operational aspects of solution networks, for PO1 we
can observe that the percentage of served nodes and served O/D pairs range
between 65%-100% and 48%-98%, respectively. For instances of all sizes,
both percentages clearly decrease as the value of α increases, although the
decrease is more evident for the served O/D pairs, which for α = 0.8 is below



33%, than for the served nodes, which for the same value of α = 0.8 ranges in
65% − 80%. The percentage of overall demand routed in optimal networks,
ranges between 48%-93%, which clearly indicates that optimal networks tend
to serve commodities with higher demand. The effect of α on these values is
also clear and similar to that on the served nodes.

Despite the increase of the sparsity of the hub-level solution networks
of PO2, the effect of constraints (10) is not so evident on the operational
indicators of its solution networks. While there is a slight decrease with
respect to PO1 on the percentage of served nodes, which ranges between 48%-
98%, it is difficult to appreciate a decrease on the percentage of served O/D
pairs, which ranges between 23%-95%. The percentage of overall demand
routed in optimal networks, ranges in 41%-96%. While this percentage is
higher for PO2 than for PO1 when α = 0.2 (with the exception of the 30
nodes instance), it is smaller for PO2 than for PO1 when α = 0.8. Taking
into account that for each instance and value of α, the net profit obtained
with PO2 is always smaller than that of PO1 (see the optimal values in the
corresponding columns of Table 2), it seems clear that model PO1 should
be preferred to model PO2 for larger values of α. Nevertheless for smaller
values of α the comparison is not clear, as PO2 produces solutions in which
the percentage of served demand is higher than with PO1.

6.2. Numerical Results for HNDPPs with Setup Costs on Access/Bridge Edges

Next we discuss the results we have obtained with formulation PND,
which incorporates network design decisions on bridge and access arcs. For
these experiments we have considered the subset of 21 instances with up to 60
nodes and values of α ∈ {0.2, 0.5, 0.8}. The obtained results are summarized
in Table 4, where columns Access Edges and Bridge Edges give the number
of edges of each type in optimal solutions.

A first observation is that the computing times of PND are consider-
ably higher than those of the most time consuming primary formulation,
PO2, particularly as the number of nodes of the instances increase. This is
not surprising as PND has a larger number of both binary variables (those
associated with the activation of access and bridge edges) and continuous
variables (those associated to the flows routed via inter-hub bridge arcs). In
any case, for PND we can again observe the influence of the discount factor
α on the difficulty for solving the instances. For the largest value of α = 0.8
the computing time for the largest 60 nodes instance is moderate, as it can
be solved in less than 1.50 hours. Instead, the same instance becomes really



α n
% LP Time

Nodes
Optimal Open Access Bridge Hub Served %Served %Routed

gap (sec) value n-H H Edges Edges Edges Nodes O/D pairs Flows

0.2

25 2.09 15.77 0 4850184.96 19 6 28/114 1/15 10/15 100.00 74.67 91.32

30 2.08 87.97 0 5362669.76 22 5 29/110 1/10 7/10 90.00 61.84 79.81

35 2.01 325.68 0 6086281.06 28 7 41/196 1/21 11/21 100.00 76.89 91.02

40 3.31 1568.98 0 5831812.30 33 7 49/231 1/21 11/21 100.00 74.36 90.19

45 3.20 4127.66 0 5969894.50 38 7 55/266 1/21 11/21 100.00 70.30 88.52

50 2.86 9856.98 0 6239525.42 41 7 58/287 1/21 11/21 96.00 66.82 87.98

60 2.80 66650.76 3 7105816.66 51 8 88/408 5/28 13/28 98.33 70.85 91.22

0.5

25 9.62 12.48 0 3246177.24 16 5 22/80 1/10 4/10 84.00 34.33 58.61

30 8.14 54.49 0 3530787.94 21 5 29/105 0/10 4/10 86.67 35.75 58.66

35 9.64 158.94 4 3928183.15 24 6 37/144 1/15 4/15 85.71 37.23 60.21

40 9.73 421.83 0 3773879.34 26 6 42/156 2/15 4/15 80.00 34.04 56.92

45 10.69 951.06 6 3752423.62 28 5 46/140 1/10 3/10 73.33 30.00 50.24

50 8.85 1675.92 4 4051369.73 34 6 54/204 1/15 4/15 80.00 31.80 57.38

60 10.79 21927.88 13 4521280.50 39 6 62/234 2/15 5/15 75.00 31.16 59.15

0.8

25 14.91 6.94 0 2875551.32 16 3 23/48 0/3 1/3 76.00 26.83 48.57

30 15.87 39.66 7 3011761.00 20 4 33/80 1/6 1/6 80.00 30.57 49.91

35 16.73 154.96 26 3363665.77 23 5 41/115 2/10 1/10 80.00 32.27 51.72

40 17.03 244.24 2 3210437.26 25 5 46/125 2/10 1/10 75.00 30.00 48.53

45 17.02 413.09 7 3283658.34 27 5 51/135 2/10 1/10 71.11 26.57 47.67

50 15.78 624.69 2 3507899.84 30 5 54/150 2/10 1/10 70.00 24.16 47.54

60 15.50 4450.06 8 3864127.25 36 5 70/180 3/10 1/10 68.33 24.18 48.63

Table 4: Computational experiments for PND.

challenging when α = 0.2, as the computational effort needed to solve it rises
to more than 18 hours.

From a computational point of view, a clear difference of PND with
respect of PO1 and PO2 is that, for all instances and values of α, the LP
relaxation of PND produced non-integral solutions with strictly positive
percentage gaps. These gaps are quite small for α = 0.2 (smaller 3.5%),
and except for the largest instance with n = 60, they can be closed already
at the root node by the CPLEX cuts added by default. As α increases the
values of % LP gap get larger and range in 15%-17% for α = 0.8. Still, the
computational effort required to close such gaps is moderate.

Looking at the structure of optimal networks produced by PND we can
observe that, similarly to the previous formulations, the hub-level solution
networks are incomplete in all instances and their sparsity increases with
the value of α. Furthermore, we can appreciate that adding decisions on
access/bridge edges does not seem to have an important effect on the number
of hub nodes that are opened, which is quite similar to that of PO1. It can



be also observed that, for most of the instances, the number of hub edges
in optimal solutions is the same as in PO1 and decreases slightly in only
three instances. There is usually a small number of bridge edges, which
seems independent of the value of α. For the smaller value of α = 0.2 the
number of hub edges is always higher than that of bridge edges, although
this relation tends to change as α increases. The explanation is clear: hub
edges are activated only if the discount factor α produces enough reduction
in the routing costs since their setup cost is higher than that of bridge edges;
otherwise profitable commodities are routed via bridge edges.

When analyzing the operational indicators of solution networks, it can
be seen that the percentage of served nodes and served O/D pairs ranges in
68%-100% and 24%-75%, respectively. These values are very similar to those
of PO1, although some decreases can be appreciated, mainly in the instances
where the number of hub edges does not coincide. Something similar can be
observed with the percentage of routed flows, which ranges in 48%-92%, and
are always slightly smaller than those of PO1 except for the instances where
there is a reduction on the number of hub edges, where the decrease on the
flows that are routed may reach 11%. Similarly to the previous models, the
difference on the percentage of served O/D pairs and routed flows indicates
that optimal networks tend to serve commodities with higher demand.

6.3. Numerical Results for HNDPPs with Multiple Demand Levels

We have run a last series of computational experiments to evaluate the
more general model POM2, in which hubs and served nodes can be acti-
vated at different operation levels, incurring setup costs, which depend on
the amount of flow that is being processed at the nodes. Now we have only
considered the instances with up to 35 nodes as the computing times of larger
instances become prohibitive. Moreover, for larger instances, in most cases
no feasible integer solution was known at termination.

For these experiments we have adapted the CAB instances used in the
previous sections to incorporate demand and revenue levels for the commodi-
ties and multiple capacity levels for the hub facilities in the following way.
For each k ∈ K, we set W 1

k and P 1
k to Wk and Pk, respectively. Data for

the other levels are generated by decreasing demand and increasing revenue.
That is, we defined W l

k = 0.3W l−1
k and 1.2P l

k = P l−1
k for l = 2, . . . , |L|. In

addition, for each i ∈ H, we set f 1
i = fi and f ti = 0.9f t−1i , t = 2, ..., |T |. We

generated in the same way different levels of setup costs for served nodes.
That is, for each i ∈ N , c1i = ci and cti = 0.9 ct−1i , t = 2, ..., |T |. We have



also generated different levels of capacities for the hub and served nodes. For
each i ∈ H, we set ϕ1

i = λ
∑

i∈H Oi/
∑

i∈H z
∗
i , where λ is a continuous ran-

dom variable following a uniform distribution λ ∼ U [0.9, 1.1], and Oi is the
total flow passing through hub i at the optimal solution of POM1 (denoted
as z∗). For other capacity levels of hub nodes, ϕti = 0.7ϕt−1i , t = 2, ..., |T |.
Capacities of the served nodes are generated as a fraction of the capacities
for the hubs, i.e. ρti = γ ϕti, t = 1, ..., |T |, and γ = 0.5. Finally, we have
considered |L| = |T | = 5.

The obtained numerical results are summarized in Table 5, which high-
lights the computational difficulty of POM2. Since optimality of the best-
known solution could not be proven in all cases, column %gap end gives
the percentage optimality gap at termination and %LP gap the percentage
deviation of the LP bound with respect to the best-known solution at termi-
nation. The value of such solution is given in column Best-known value. A
value 0.01 in column %gap end indicates that such value corresponds to an
optimal solution.

α n
% LP % gap Time

Nodes
Best-known Best Open Hub %Served %Served %Routed

gap end (sec) value bound n-H H Edges Nodes O/D pairs Flows

0.2

25 3.82 0.00 17379.39 3306 3571879.69 3571537.82 16 9 4/36 100.00 96.83 68.11

30 4.45 2.90 86404.12 1435 3485278.93 3387018.15 19 11 3/55 100.00 97.47 65.13

35 6.49 5.52 86407.77 495 3372157.52 3195736.83 23 12 2/66 100.00 86.64 56.42

0.5

25 4.93 0.00 2367.17 1967 2947676.67 2947461.66 17 7 1/21 96.00 83.17 53.99

30 4.87 0.00 43392.63 13324 2893186.37 2892897.33 22 8 1/28 100.00 86.55 51.77

35 5.91 0.74 86410.32 3655 2964770.23 2943064.70 24 10 1/45 97.14 82.27 50.71

0.8

25 5.25 0.00 595.45 1981 2839814.46 2839554.07 18 6 0/15 96.00 81.17 48.84

30 5.50 0.00 2398.61 3489 2822441.80 2822176.98 22 7 0/21 96.67 80.34 49.55

35 5.87 0.00 21198.95 15736 2936660.82 2936367.74 25 9 0/36 97.14 80.76 50.01

Table 5: Computational experiments for POM2.

From the obtained results it can be seen that formulation POM2 is quite
tight, producing rather small % LP gaps at the root node, which do not
exceed 6.5%, even for the instances that could not be solved to optimality.
Unfortunately, these small gaps are very difficult to close, as indicated by the
high number of nodes that are explored in the search trees and by the high
computing times, which, for the small size instances, are affordable when
α = 0.8, but become prohibitive as α decreases or as the size of the instances
increases.

Anyway, Table 5 allows to appreciate that in the optimal/best-known
solution networks produced by POM2 the total number of activated nodes



is roughly the same as in all previous models for instances of the same size
and value of α, although the number of open hubs is slightly higher (so the
number of activated non-hubs is slightly lower). At the hub-level network,
however, we can observe very small values for the ratio of the number of hub
edges relative to the number of hub nodes, resulting in highly sparse hub-
level networks. As can be seen, only the instances with α = 0.2 produced
solution networks with more than one (but very few) hub edges, whereas the
hub-level networks for the α = 0.5 instances have just one hub edge, and no
hub edge is activated in the solution networks to the instances with α = 0.8.

In all cases, the percentages of served nodes are very high, and follow a
similar trend as in previous models, with full node service for instances with
α = 0.2 and decreasing slightly when α = 0.5, 0.8. Nevertheless, even for the
instances with a higher value of α = 0.8 this percentage is never below 96%
which is considerably higher than the percentage of nodes served with the
other models for the same value of α. Something similar happens with the
percentage of served O/D pairs, which is never below 80%, independently of
the value of α. On the contrary, the percentages of routed flows are noticeably
smaller than in previous models. This is indeed a sign of the selective nature
of POM2 where activated nodes and hubs can operate at different service
levels and demand flows partially routed. This can be better appreciated in
Table 6 that shows the service levels of the solution networks of POM2.

α n

Open Hubs Served Nodes Routed Flows

level l level l level l

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.2

25 7 0 1 0 1 2 2 5 1 6 224 75 97 95 105

30 8 1 1 0 1 1 4 6 3 5 331 127 159 160 94

35 9 1 0 0 2 2 4 8 1 8 348 141 143 176 250

0.5

25 3 2 1 0 1 2 2 4 3 6 170 61 72 78 126

30 5 1 1 0 1 3 2 5 4 8 242 119 103 117 188

35 7 1 0 1 1 3 3 7 6 5 344 119 137 161 242

0.8

25 2 2 1 0 1 1 4 4 3 6 154 68 64 86 127

30 4 2 0 0 1 3 2 6 3 8 228 89 99 117 184

35 7 0 1 0 1 3 4 7 5 6 327 138 139 161 229

Table 6: Service levels for solution networks to POM2.

As can be seen, most of the hub nodes are activated at the lowest service
level, and this trend is more evident for the lowest value α = 0.2. In contrast,
served nodes tend to be activated at higher service levels. In particular, the
percentage of served nodes activated at the highest service level ranges in



30% – 60%. Routed flows are served at all service levels, although higher
frequencies correspond either to the lowest or highest service levels.

6.4. Comparison and Tradeoff of Proposed Models

Since all the models we have proposed are profit-oriented, a natural ques-
tion that may arise is how they compare to traditional cost-oriented models.
The comparison we make below aims at appreciating the advantage of in-
tegrating within the decision-making process additional strategic decisions
on the nodes and the commodities that have to be served. In particular, in
Figure 1 we compare the optimal networks obtained with some of the profit-
oriented models we propose and with some classical cost-oriented counter-
parts for an instance with n = 25 and α = 0.6. The profit-oriented models we
have considered for this comparison are the primary HNDPP formulated via
PO1 and the HNDPP with setup costs on access/bridge edges, formulated
with PND. The cost-oriented counterparts have been modeled as a hub
arc location models that impose activating all demand nodes and routing all
commodities, and aim at minimizing the total setup cost for the hub nodes
and hub edges and the transportation cost for routing commodities (see,
for instance, Contreras and Fernández, 2014). In Figure 1 the corresponding
cost-oriented counterparts are denoted by PO1−HALP and PND−HALP ,
respectively.

To make the comparison as fair as possible, we first solve formulations
PO1 and PND with ci = 0, for i ∈ N , and Pk =

∑
i∈N fi +

∑
e∈EH

re +
max {Fijk : (i, j) ∈ AH}, for k ∈ K. For PND we also set qe = 0, for e ∈
E. The optimal PO1 and PND solutions obtained with this data consist,
in each case, of sets of served nodes, open hub nodes and hub edges, and
routed commodities. These solutions are compared to the solutions to the
PO1 −HALP and PND −HALP stated on the graphs induced by the set
of nodes served in the optimal solution to the corresponding profit-oriented
problem.

Figures 1a and 1c show the optimal networks of PO1 and PND, respec-
tively, whereas Figures 1b and 1d show the optimal networks PO1 −HALP
and PND−HALP , respectively. Triangles represent hubs, full circles served
nodes, and empty circles unserved nodes. Black lines represent hub edges
while gray lines represent access and bridge edges.

Given that cost-based hub models impose that all commodities are served,
they imply a larger number of hub nodes and hub edges. As can be seen,
in both cases the profit-oriented model which incorporates decisions on the



3

V

22

8

12

23

19

11

415 9 6

5

7

10
16 24 14

20
18

25
1

17

21
2

13

a) 𝑃𝑂1 −𝐻𝑁𝐷𝑃𝑃
𝑂𝑝𝑡 = 3110143.75
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c) PND−𝐻𝑁𝐷𝑃𝑃
𝑂𝑝𝑡 = 3048109.63

4 ℎ𝑢𝑏𝑠 𝑎𝑛𝑑 15 𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑜𝑑𝑒𝑠
49.67% 𝑟𝑜𝑢𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑠
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d) 𝑃𝑁𝐷 − 𝐻𝐴𝐿𝑃
𝑂𝑝𝑡 = −193890.71
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78.03% 𝑟𝑜𝑢𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑠

Figure 1: Optimal networks for PO1 and PND with n = 25 and α = 0.6.

nodes and demand that must be served produces a considerably better so-
lution than the one obtained with the cost-oriented counterpart. This is
particularly true in the case of the formulations that incorporate decisions
on access/bridge edges, which produces a negative total profit. This creates
an increase in the setup cost of the network and, as a result, solutions net-
works with a notable decrease in the total profits when compared to their
profit-oriented counterpart. Figure 1 also allows to compare the optimal net-
works produced by the profit-oriented formulations PO1 and PND, so we
can analyze the effect of incorporating decisions on the use of access/bridge
edges, inducing additional setup costs. As can be observed the difference on
the number of served nodes and served commodities is very small. Neverthe-



less, the total profit obtained with the solution produced by PO1 is about
2% higher than the one obtained with PND.

Taking into account that all our proposed models are profit-oriented ones,
a more systematic alternative to the comparison among them is to analyze
the profit each of them produces per O/D pair served and per unit of flow
routed. Below we analyze the tradeoff among the different models. For
this we use Figures 2 and 3, which respectively depict the profit per O/D
pair served and the profit per unit of flow routed for the primary models,
represented by formulations PO1, PO2, the model with access/bridge edge
decisions, represented by PND, and the capacitated multiple level model,
represented by POM2. For a better visualization, each figure is separated in
three parts, one for each tested value of α.
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Figure 2: Comparison of Models: Profit per served O/D pair.
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Figure 3: Comparison of Models: Profit per routed unit of flow.

Both figures clearly illustrate the superiority of the capacitated multiple
level model with respect to the other models when α = 0.5, 0.8 both in terms
of the profit per served O/D pair and per unit of routed flow. For these
values of α, the quality of the models, measured in terms of their ability of
producing solutions with a better tradeoff between their profit and the service
level attained, is proportional to their sophistication. Thus the multiple level
model is followed by the model with access/bridge edge decisions, which



outperforms the primary model that forces to serve any commodity whose
O/D nodes are both activated, which, in turn, outperforms the purely profit-
oriented primary HNDP. In contrast, the situation changes for the small
discount factor α = 0.2. On the one hand, Figure 3 shows that, in terms
of the profit obtained per unit of flow routed all models are very similar
(note that their lines nearly overlap). In contrast, in terms of the the profit
obtained per O/D pair served, the capacitated multiple service model is
outperformed by any of the other models, which are quite similar among
them. In our opinion, both figures could be very useful to help a decision
maker chose among the presented models, taking into account the potential
context and priorities.

6.5. Sensitivity Analysis

We conclude this section with a sensitivity analysis of the presented mod-
els with respect of some of their input data. Figure 4 compares the optimal
hub networks produced by primary formulation PO1 for the CAB instance
with n = 25 and α = 0.5 when setting ci as 0%, 15% and 40%, of the setup
cost fi.

a) ci= 0.00 fi 
𝑂𝑂𝑂: 8,811,009.83 

6 hubs and 15 served nodes 
54.38% routed flows 

b) ci= 0.15 fi 
𝑂𝑂𝑂: 7,388,362.45 

6 hubs and 10 served nodes 
43.57% routed flows 

c) ci= 0.40 fi 
𝑂𝑂𝑂: 5,636,245.08 

4 hubs and 8 served nodes 
38.80% routed flows 
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Figure 4: Optimal network for PO1 with different setup costs ci with n = 25 and α = 0.5.

Figure (4)a depicts the optimal solution network with no setup costs
for serviced nodes. It consists of two disconnected components with five
interconnected hubs, one isolated hub, and 15 served nodes. Even if there
are no setup costs for activating served nodes, four nodes remain unserved.
Figures 4b and 4c show that, as could be expected, increasing the setup
costs for serving nodes reduces the number of served nodes. In particular,



using setup costs ci = 0.15fi (Figure 4b), reduces to 10 the number of served
nodes. Moreover, the topology of the hub-level network also changes, even if
the number of hubs has not changed. The overall profit is reduced by 16.14%.
When setup costs are further increased to ci = 0.40fi (Figure 4c), the optimal
solution network consists of a single connected component with four fully
interconnected hubs. Now the number of served nodes has decreased to eight
and the total profit is reduced by 36.03% with respect to the case where
ci = 0.

Figure 5 allows to compare the effect of the discount factor α in solution
networks. It shows the optimal networks produced by the primary formu-
lation PO1 for the CAB instance with n = 25 and three different values of
the discount factor α. The optimal network for α = 0.2 (Figure 5a) consists
of a single connected component with six hubs, seven hub edges, and six
unserved nodes. When increasing the discount factor to α = 0.5 (Figure 5b),
the solution network consists of two disconnected components but one hub
node less and and nine unserved nodes. This causes a considerable reduction
in both the number of served O/D pairs and routed flows. Figure 5c shows
the solution network for the highest value α = 0.8. Now the number of hub
nodes has further decreased to three. Even if the number of served nodes
remains the same as with α = 0.5 there is a further decrease on the served
O/D pairs and the total routed flow.

c) 𝛼 = 0.80 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ∶ 2940862.05 

3 ℎ𝑢𝑏𝑠 𝑎𝑛𝑑 16 𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 
48.57% 𝑟𝑜𝑢𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑠 
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a) 𝛼 = 0.20 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ∶ 4940995.75 

6 ℎ𝑢𝑏𝑠 𝑎𝑛𝑑 19 𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 
91.87% 𝑟𝑜𝑢𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑠 

b) 𝛼 = 0.50 
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ∶ 3315967.83 

5 ℎ𝑢𝑏𝑠 𝑎𝑛𝑑 16 𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 
58.81% 𝑟𝑜𝑢𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑠 
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Figure 5: Optimal network for PO1 with different discount factors α with n = 25 and
ν = 0.1.



7. Conclusions

In this paper we introduced a class of hub network design problems with
a profit-oriented objective. These problems integrate several locational and
network design decisions such as the selection of origin/destination nodes, a
set of commodities to serve, and a set of access, bridge and hub edges. They
consider the simultaneous optimization of the collected profit, the setup costs
of the hub network and the total transportation cost. We introduced the
foundations of such problems and proposed alternative models of increas-
ing complexity. We first studied a primary model which considers a purely
profit-driven objective and discussed possible extensions to incorporate ser-
vice commitments. We then introduced models where additional link activa-
tion decisions on access and bridge edges were considered. The last two of the
considered models allowed serving demand at different levels. Each model
was analyzed and a mathematical programming formulation was computa-
tionally tested using a general purpose solver. Given the inherent difficulty
of the considered models, CPLEX was only able to solve small to medium-
size problems. The companion paper of Alibeyg et al. (2016) presents and
exact solution algorithm that is capable of solving more realistic, large-scale
instances for the primary model. We are currently working on more chal-
lenging extensions of these problems in which O/D paths can use several hub
and bridge arcs.
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