Manuscript Draft

Manuscript Number: ALGAL-D-16-00493R2

Title: Mechanistic model for design, analysis, operation and control of

microalgae cultures: calibration and application to tubular

photobioreactors

Article Type: Full Length Article

Section/Category: Algal Biotechnology

Keywords: Photobioreactor design; Modelling; Microalgae; Oxygen

inhibition; Irradiance; Photorespiration factor.

Corresponding Author: Professor Joan Garcia, PhD

Corresponding Author's Institution: Technical University of Catalonia

First Author: Alessandro Solimeno

Order of Authors: Alessandro Solimeno; Francisco G Acíen Fernández; Joan

Garcia, PhD

Abstract: Closed photobioreactors (PBRs) are usually used for the production of high-value microalgae biomass at higher productivities than in open ponds. A large variety of different PBRs have been developed to optimize the biomass productivity and photosynthesis efficiency. At the same time mathematical models for PBRs are also increasing in popularity for design of new systems and for improving understanding of the complex processes occurring inside. The aim of the present study is to calibrate of the new mechanistic model for microalgae growth using experimental data from two different tubular photobioreactors. Hydrodynamic and light attenuation through the medium were added in the model to obtain a realistic representation of photobioreactor. Furthermore, the model was able to predict microalgae production under different climatic conditions and the oxygen accumulation throughout the photobioreactor.

Cover Letter

GEMMA. GROUP OF ENVIRONMENTAL ENGINEERING AND MICROBIOLOGY

Dear Editor,

We have received the comments from the Editor and Reviewers, and we have modified the manuscript accordingly. Comments suggested were considered, the manuscript and the captions of the figures have been carefully modified in order to meet the suggestions.

Furthermore, the manuscript has been edited by a native English speaking Lauren Parker from the California Polytechnic State University of San Luis Obispo.

We hope that the revised manuscript fully complies with comments and suggestions addressed by Reviewers.

Yours sincerely,

Joan García Serrano

Corresponding author

*Detailed Response to Reviewers

Answers to reviewer's comments

(Comments in black and answers in red)

Reviewer #1:

Re reviewer has accepted the revisions, a few minor comments below. During my last read of the manuscript I noted a number of minor corrections and areas that need further clarification directly on the PDF of the document, which you can download from the EES system. Also, the manuscript should be edited by a native english speaking colleague. Please provide a final revision that appropriately addresses these suggestions for final approval.

Reviewer #1: Most of the proposed corrections were adequately addressed, I can recommend this MS for publication now.

Well done. Regards!

L315 extent instead of extend

We have modified the manuscript accordingly. Comments suggested were considered, the manuscript and the captions of the figures have been carefully modified in order to meet the suggestions.

Furthermore, the manuscript has been edited by a native English speaking Lauren Parker from the California Polytechnic State University of San Luis Obispo.

1. Introduction

Microalgae biomass production is an industrial sector that continues growing each year. Products made from microalgae are nowadays presented by industry as a natural and green solution to the energy, food, economic and climate challenges facing the Earth [1, 20]. Although still there are some technical challenges (e.g. cost efficient production and harvesting systems), in general it is believed that microalgae fuels, feeds, plastics and other chemicals will be price competitive within the next years. Some are price competitive already [15, 31].

Another potential market application of microalgae is their use in the context of wastewater treatment. Although this is not a new application, the feasibility of microalgae cultures for wastewater treatment and at the same time encouraging resource recovery and feedstock production has revived the interest on this technology [13]. Microalgae treatment systems are currently viewed as a future alternative to conventional activated sludge treatment plants, where produced biomass can be valorised in the form of biofuels or bioproducts therefore optimising treatment costs [25, 29].

In practice, industrial Industrial production of microalgae can be accomplished in open or closed photobioreactors. Open systems are made up by shallow channels in the shape of race tracks (raceway reactors) which and have been extensively studied in the past [9, 15]. Though open photobioreactors represent an efficient economic solution in front of closed photobioreactors, they can be morecan be easily contaminated by other microorganisms different from those of the culture, and are more difficult to control. These disadvantages make closed photobioreactors more suitable when high-value products are the target of the culture. These eClosed systems allow a strictstrictly control of chemical, physical and biological factors and can better match idealimprove conditions for microalgae growth by optimizing light absorption due to turbulent conditions in the culture [9, 11, 3330, 3431].

Closed photobioreactors (as well as open raceways) are sensitive to carbon limitations and pH variations that could limit photosynthesis and therefore biomass production [16]. This is usually Carbon and pH limitations can be can be corrected by supplying carbon dioxide (CO₂) in order to maintain high photosynthesis rates and pH control. However the two most critical issues of closed photobioreactors are the risk of overheating and their potential for oxygen accumulation and subsequent growth inhibition [2120]. Therefore To prevent overheating, closed photobioreactors often require cooling as well as degasser systems [3532]. Concentrations of dissolved oxygen (DO) in the culture above 250% of air saturation value can dangerously inhibit microalgae activity [12].

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

In the Over the last few decades, mathematical models have proven to be useful tools for the design, analysis, operation and control in multiple engineering problems [5]. Nowadays, models have become essential tools for understanding complex processes, such as those occurring in photobioreactors. In the case of microalgae cultures, models are still in their infancy in comparisonless developed than those seen in to other fields, ... and are not in common practice because most of them When models contain too are based in few parameters, and are not able to capture thethey risk the capability of not capturing the complexity of microalgae cultures in long-term scenarios, and therefore can be unreliable. Having this in mind, Solimeno et al. (2015) [2927] developed a rather complete mechanistic mathematical model that includes crucial physical and biokinetic processes for thethat description describe of microalgae growth in different types of cultures, and in particularly in wastewater (where growth is controlled by carbon and nitrogen limitations for growth can be significant). This model was calibrated with data from a complete stirred culture fed with simulated treated wastewater using a 0D domain [2927]. A global sensitivity analysis was carried out using the same data setset of data [3028]. In the present paper we intend to go beyond our previous works, calibrating the model with data from more complex systems

Formatted: Superscript

consisting of two different pilot scale tubular closed photobioreactors fed with different types of medium culture. In this present case, a 2D domain, which is used to represents the hydrodynamics of the system (i.e., transport of diluted species and mass transfer phenomena), is coupled with the previous mechanistic model [2927]. The resulting model has been implemented into the COMSOL MultiphysicsTM software, which solves equations using the finite elements method (FEM).

The aim of the present study is therefore theto calibration calibrate of the new and more complex mechanistic model of Solimeno et al. (2015) [2927] using experimental data from two different tubular photobioreactors. Furthermore, tThe potential of the model is demonstrated by means of practical study cases in which we simulate oxygen concentrations (the most critical growth inhibition factor of closed photobioreactors) and predict microalgae production as a function of temperature and light intensity. Simulations show the potential of photobioreactor configurations to optimize microalgae production. The overall objective of this model is to become a reference to simulate physical, chemical and biokinetic microalgae processes in different types of photobioreactors fed with different types of medium cultures.

2. Methods

2.1 Pilot closed photobioreactors and experimental data

Both photobioreactors were located in Spain, one in "Estación Experimental Las Palmerillas", property of Fundación CAJAMAR in Almeria, and the other in "Agropolis", property of Universitat Politècnica de Catalunya-BarcelonaTech in Barcelona (Fig. 1). The vertical tubular photobioreactor (PBR) in Almeria includes a loop solar receiver made of transparent plastic tubes of 0.09 m diameter with a total horizontal length of 400 m, and a 0.4 m diameter bubble column with 3.5 m of height, and has a total working volume of 3,000 L. The PBR unit is used to produce the

microalgae Scenedesmus almeriensis, which is characterized by a high growth rate, supporting and tolerance temperatures up to 45 °C and tolerance to pH values up to 10 [1, 2725]. The culture-PBR works by creating continuoussly flow of cultures between the loop and bubble column by means of a centrifuge pump located at the bottom of the column. The pump provides a constant flow velocity of 0.8 m s⁻¹ inside the loop. The pH of the culture is controlled by on demand injection of pure CO₂ at 5 L min⁻¹. In the bubble column, excess dissolved oxygen DO in excess is removed by a constant airflow rate of 140 L min⁻¹. Furthermore, T-the culture temperature is controlled maintained through an internal heat exchanger located at the bubble column by passing cooling water at 1500 L h⁻¹ through an internal heat exchanger located inside the bubble columnfor cooling. When fresh culture medium is poured into the system, The the culture is harvested of the culture is reaped through an overflow at the located on top of the column. when fresh culture medium is poured into the system. Temperature, pH and dissolved oxygenDO are measured at several locations along the tube using Crison probes (Crison Instruments, Spain) connected to a control-transmitter unit MM44 (Crison Instrument, Spain);). liquid Liquid and gas flow rates are measured using digital flowmeters (PF2W540 and PF2A510, from SMC, Japan). All of these measures monitoring systems are in turn connected to a control computer through a data acquisition device NI Compact FieldPoint (National Instruments, USA) [15]. Data for the present study were were obtained at the end of an a two month experiment of 2 months in which the photobioreactor was operated in continuous mode, at a medium flow rate of 1020 L d⁻¹, and under controlled pH (7.8) and temperature (lower than 35 °C). As a result, the amount of microalgae biomass amount was kept fairly constant. Culture medium used was Mann&Myers, prepared using agricultural fertilizers. Data Collected data used werewere retrieved in batch mode by switching off the feeding only for 24 hours (at the end of the 2-two months). Dissolved oxygen and pH data were recorded every 30 minutes, while temperature and irradiance were measured every hour.

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

The horizontal tubular photobioreactor in Barcelona is composed of 2 open-air tanks made of polypropylene with a size of and is 1.8 x 1 x 0.4 m (L x W x H) in size. These tanks include paddlewheels that provide enough head pressure to move the culture through 12 (6 per each flow direction) transparent 0.125 m diameter polyethylene tubes (each 50 m in length each one). Culture flows from one tank to the other at a constant velocity of 0.125 m s⁻¹. Tanks also allow release of exceeding oxygen accumulated along tubes. The PBR has an effective volume of 8.5 m³. Note that in this PBR there is no CO₂ injection or pH control. Data used for the present work were retrieved from a 3 day's batch experiment and measured in each tank. For this experiment the PBR was filled with 8 m³ of agricultural runoff from a nearby agriculture canal which were inoculated with 0.5 m³ of inoculum with microalgae from a previous experiment (Table 1). The PBR contained different microalgae species belonging to the genus *Pediastrum sp.*, *Chlorella sp.* and *Scenedesmus sp.*

The horizontal PBR has dissolved oxygen and pH online sensors in each tank that record data every hour, and temperature and irradiance online sensors that record data every 2-3 hours. Gathered data are stored via-using a Programmable Logic Controller (PLC) that is connected to a computer with a-supervisory control and a data management system (Green web manager 2.0). During the 3-three days of experiments, offline samples were taken every 2-3two-three hours and analyzed in the laboratory for nitrates and alkalinity. Analysis of nitratThe ion chromatography analysis of nitrates—was accomplished using Alealinity Alkalinity was analysed using conventional titrimetric procedures indicated in the-Standard Methods [3]. Note that bicarbonate was calculated from-using alkalinity measurements, pH, and equilibrium constants of carbon species (Eq. 1).

Alkalinity =
$$50 * \left[\frac{S_{HCO3}}{12} + 2 * \frac{S_{CO3}}{12} + S_{OH} - S_{H} \right]$$
 (1)

2.2 Conceptual model

The new mechanistic model presented by Solimeno et al. (2015) [2927] considers crucial physical, chemical and biokinetic processes for the description of microalgae growth in different types of cultures, and most particularly in wastewaters. The main relevant feature of the model, respect to any previous model for microalgae production [4, 6, 2423], consists in the inclusion of a carbon limitation on the growth of microalgae, as well as a dynamic model for photosynthesis, photolimitation, and light attenuation, and the description of the effect of photorespiration. In the model, microalgae grow with light, consume nutrients (i.e., carbon and nitrogen), and release oxygen (Fig. 2).

Note that other nutrients (e.g., phosphorus) and micronutrients are not considered to be limiting factors because are usually highly available in wastewaters (which is the type of culture that mainly addresses by the model) [19]. Dependency of microalgae growth on phosphorus could be easily be implemented in the model through by creating a limiting Monod function, similar how the other like the other nutrients (i.e., carbon and nitrogen) were represented. In the model, as a result of microalgal activity in the presence of light, hydroxide ions concentration and pH increase. Such increases in pH displace the equilibrium of the carbon species towards the formation of carbonates (which are not bioavailable for growth). Note that this model assumes that carbon dioxide as well as bicarbonate are bioavailable for growth. In darkness, endogenous respiration of microalgae release carbon dioxide, the concentration of hydrogen ions increase and the pH decreases. By—With decreasing pH, the carbon equilibrium shifts and carbonate turns into bicarbonate, which can be used as substrate again in the presence of light [3330]. A detailed description of the model, their includings components, and processes can be found in Solimeno et al. (2015) [2927]. A

list of the processes included in the model, the equations describing their rates and the matrix of stoichiometric parameters are shown in Supplementary Tables (4-5).

2.3 Model domain

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

The Pphotobioreactor's configuration was assumed to have a 2D geometry. The domain was divided into two sub-domains (D1 and D2) corresponding to the loop configuration and the bubble column for the vertical system in Almeria, and to the open-air tanks and the tubes for the horizontal system in Barcelona (Fig. 3). In the case of the vertical system, D1 was 400 m long in the longitudinal direction and 0.09 m in diameter, while in the horizontal system it was 50 m long and 0.125 m in diameter. D2 domains were designed allocating the volume of the bubble column (vertical system) and open-air tank (horizontal system) along a surface interface area through whichwhere gases can be were transferred to the atmosphere, fixing the corresponding D1 diameter. Thus, the bubble column is defined with 3.3 m length long and 0.09 m widthdeep, while the tank is 5.76 m long and 0.125 m widthdeep. These simplifications allow to to simulate of the hydrodynamics of within the systems. Note that in the present model it was necessary to divide the domain into two sub-domains due to the different domain conditions. Transfer of gases to the atmosphere takes took place exclusively in the bubble column and open-air tanks. A periodic condition was applied at boundaries 1 and 2 to reproduce the continuous culture flow from domain 2 to 1 (degasser to loop and tank to tube).

2.4 Hydrodynamics of the system, light attenuation and temperature

In our previous work [2927], the calibration of the model was conducted in a complete mixed reactor represented by a 0D domain in order to simplify hydrodynamic's complexity. In the present work, as a result of the motion of the culture through the tubes and bubble column or open-air tank, a 2D domain was needed, which

including hydraulic and transport equations. On the other hand, in the previous work [2826], it was assumed that microalgae cells captured photons at all depths (light attenuation was neglected due to 0D domain). In the The present work incorporates light attenuation due to the presence of is added, including light limitations related to scattering and mutual shading effects of microalgae.

In the model microalgae processes are influenced by temperature [2927]. It is known that the growth rate of microalgae is highly dependent on increases when temperature; it increases when goes up to an optimum temperature is reached and decrease drastically decreases when with optimum temperature over the optise exceeded imum [14]. In the present study, microalgae production was simulated in a study case at different temperatures, showing the dependence of microalgae growth on temperature.

Hydrodynamics of system was modelled through the COMSOL MultiphysicsTM software, previously used for the calibration of the microalgae model in a complete completly stirred experiment, which solves differential equations using the finite elements method (FEM).

2.4.1 Hydraulic Considerations

In the PBR used in this work the culture is set in motion by an external pump (vertical system) or by paddlewheels (horizontal system), and enters the model domain with a certain velocity. To predict the flow regime without starting a simulation, the Reynolds number was firstly calculated. The Reynolds number quantifies the ratio of inertia to viscous forces, characterizing the flow regime (Eq. 2):

$$Re = \frac{\rho * v * d}{\mu} \tag{2}$$

where ρ is the culture density (it is assumed to have the same density as water, 1000 kg m⁻³), ν is the culture velocity (m s⁻¹), d is the tube diameter (0.09 m and 0.125 m for

vertical and horizontal systems, respectively), and μ is the dynamic viscosity of the culture (assumed to be the same as water 0.003 kg m⁻¹s⁻¹). The Reynolds number was calculated to be approximately 27,000 for the vertical system and 5,000 for the horizontal. Note that in tubes with a flow with a Reynolds number above 4,000 is already considered turbulent [3229], and in these conditions transversal variations of culture properties (temperature, dissolved oxygen, biomass concentration, etc.) may be neglected and Navier-Stokes equations can be solved directly. At these With such high Reynolds number's temperature does not significantly influence the motion; because viscous forces (μ) are very small when compared to the inertial forces (ν), and temperature does not influence significantly the motion.

For turbulent flow, Comsol MultiphysicsTM solves the Navier-Stokes as well as continuity equations. Turbulent effects are modeled using "Turbulent Mixing" interfaces for "Transport of Diluted Species" physics. In "Turbulent Mixing" models the additional mixing caused by turbulence is estimated by adding turbulent diffusivity to the molecular diffusivity considering:

$$D_{T} = v_{T} / Sc_{T}$$
 (3)

- where, D_T is the turbulent diffusion, v_T is the turbulent kinematic viscosity at 20 °C (1.004E-06 m² s⁻¹) and Sc_T is the turbulent Schmidt number (0.7).
- 229 2.4.2 Transport of dissolved and particulate components

Transport of diluted and particulate components with a concentration S_i [g m⁻³] by convection and diffusion is given by:

$$\frac{\delta \text{Si}}{\delta t} + (-D_T \cdot S_i) + \mathbf{u} \cdot c_i = r_i$$
 (4)

$$r_{i} = \sum_{j} v_{j,i} * \rho_{j}$$
 (5)

Formatted: Font: Not Bold

where i= 1,2...m are the different components considered (Table 2), and j is the number of processes shown in Supplementary Table (4); \mathbf{u} [m s⁻¹] is the vector of velocity, \mathbf{r}_i [g m⁻³s⁻¹] is the reaction rate, ρ [g m⁻³s⁻¹] is the process rate corresponding to the biokinetic and chemical j processes described in Solimeno et al. (2015) [2927] and $\mathbf{v}_{j,i}$ is the stoichiometric coefficient. Mathematical expressions of the stoichiometric coefficient and values of biokinetic, physical and chemical parameters are shown in Supplementary Tables (6-9).

2.4.3 Light attenuation

In the present study light intensity decay was described using Lambert-Beer's Law, which dictates that intensity decreases exponentially as it penetrates into a perfectly homogeneous section of the culture with a short penetration pathway [2725], as it is the case of both PBR. In this case light is attenuated by the presence of microalgae inside the reactors. The average light intensity (I_{av} , [μ mol m⁻²s⁻¹]) at any point within the culture is therefore calculated as [17]:

$$I_{av} = I_o \cdot \psi (1 - exp (k_i \cdot X_{ALG} \cdot d) / k_i \cdot X_{ALG} \cdot d$$
 (6)

where, I_0 [µmol m⁻²s⁻¹] is the incident light intensity, k_i is the extinction coefficient for microalgae biomass [0.1 m² g⁻¹] [8], X_{ALG} is the concentration of microalgae, ψ – ψ is the solar irradiance fraction available in the reactor and d [m] is the diameter of tube.

2.4.4 Temperature

In our model, the influence of temperature on microalgae activity was implemented by the thermic photosynthetic factor $(f_{T,FS})$, that which takes into account the effects of temperature on microalgae growth, and also on endogenous respiration and inactivation processes (1a, 1b, 2 and 3 in Supplementary Table 4, respectively).

Formatted: English (United Kingdom)

Water temperature varies on both on hourly and daily scales, affecting both microalgal photosynthesis and respiration rates. The thermic photosynthetic factor is represented in the model following the work of Dauta et al. (1990) [14]:

$$f_{T,FS}(T) = e^{-\left(\frac{T-Topt}{s}\right)^2}$$
 (7)

where T_{opt} (optimum temperature) was assumed equal to <u>be</u> 25 °C [14] and s equal to 13 [14] (it is a parameter value for empirical fitting).

2.5 Calibration procedure

259

260

261

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

Model outputs results are very highly sensitivity sensitive to the maximum specific growth rate of microalgae (μ_{ALG}), and the mass transfer coefficient for oxygen $(K_{a,O2})_{\underline{a}}$ and carbon dioxide $(K_{a,CO2})$. Especially the The mass transfer coefficients depend on the extension of the surface interface and photobioreactor design [2927]. Therefore, these parameters were calibrated in the two different tubular photobioreactors. The model was first calibrated using experimental data obtained from the vertical photobioreactor located in Almeria (Spain). Dissolved oxygen, pH, temperature and irradiance were monitored for 24 hours on 28th of February 28th, 2012. Afterwards, the model was calibrated with experimental data from the horizontal photobioreactor located in Barcelona (Spain). Data used for this calibration were retrieved from a 3three days's batch experiment from April 16th, 2012 to April 19th, 2012. of April. Available data used for the calibration procedure are shown in Supplementary Tables (1-2). The initial concentrations of components in the vertical and horizontal photobioreactors at the beginning of the experiments are shown in Table 3. In the horizontal PBR the concentrations of NH₄[±] and NH₃ were lower than the analytical method's detection limit of the analytical method and therefore are

considered to be zero for the this model as 0. Note that the difference in initial

Formatted: Superscript

concentrations of microalgae (X_{ALG}) is different in between the two PBRs due to their different operating conditions

2.6 Study cases

Practical study cases have been done to evaluate the influence of both temperature and irradiance on microalgae production, and the effect of oxygen concentration in the loop. The vertical photobioreactor of Almeria (Spain) was selected as reference for these studies.

Starting from the initial concentrations used for the calibration of the model in the vertical photobioreactor, average daily microalgae production was simulated using daily temperature and irradiance variations of from the 17th day of each month of year. Two scenarios were evaluated. In the first set of simulations the vertical photobioreactor was under controlled temperature by passing cooling water at 1500 L/h through an internal heat exchanger located in the bubble column of the photobioreactor. In a second set of simulations, temperature was obtained from meteorological annals of Almeria (Spain). An estimation of the total annual production for these These two scenarios were compared and an estimation of the total annual production using monthly irradiance variations was calculated. Irradiance, expressed as photosynthetically active radiation (PAR), was estimated for Almeria (Spain) from the mathematical equations presented in Supplementary Table 10 [2].

Moreover, keeping the reactor under controlled temperature, oxygen concentration throughout the 400 m length of the vertical photobioreactor was evaluated while maintaining the reactor under controlled temperature. Dissolved oxygen profile in the loop configuration was simulated at noon in the months of July and January, when it was recorded the highest and lowest temperature, respectively, were recorded and irradiance, respectively.

3. Results

In this work simulations for two different photobioreactors were studied. First we present the results of the model calibration for the vertical photobioreactor. Fig. 4 shows that the model was able to <u>accurately</u> match <u>dissolved oxygenDO and pH</u> trends <u>over the course of one day</u> inside the system, <u>with decreasing and how pH decreases</u> during the day due to CO₂ injection (which displaces the equilibrium of carbon species). As can be seen the model is able to accurately capture pH variations.

Fig. 5 shows the results of the calibration in the horizontal photobioreactor. Experimental and simulated dissolved oxygen and pH values inside the open-air tanks of the horizontal photobioreactor are presented. As can be seen, the wavelike trend of pH varied with a general wavelike trend due to microalgae activity, which is quite well simulated by the model. Moreover, Fig. 6 shows the experimental and simulated nitrate (N_NO₃) and bicarbonate (C_HCO₃) concentrations in the horizontal system. The model was able to reproduce quite well the trend of experimental data. In absence of ammonia species, only nitrates are used as nitrogen substrates for microalgae growth. The low concentration of nitrate in the culture medium limited the activity of microalgae. As can be seen, microalgae consumed quickly nitrate concentrations quickly in the first hours of experiment (Fig. 6). Likewise, Fig. 6 shows that bicarbonate concentrations decreased faster in the first hours due to intense microalgae activity. After 22 hours, in absence of nitrate, daily variations of bicarbonate are related to changes in equilibrium species of carbon.

Note that, in general, simulations of the vertical PBR were more accurate than those of the horizontal due to the fact that in in the horizontal system there was some growth of other microorganisms different from microalgae (e.g., bacteria and protozoa),

1. This was to be expected as the culture water for culture was from an irrigation channel. The activity of these microorganisms affected affected simulated factors

thought it is not known to which what extendextent, because unfortunately we haven't numbers do not have values for this these organisms.

Table 4 presents the values of the parameters that were calibrated in each photobioreactor. Note that maximum specific growth rate (μ_{ALG}) and the transfer of gases to the atmosphere ($K_{a,O2}$ and $K_{a,CO2}$) were also calibrated in our previous works [2927, 3028]. In this previous works the -model output results are demonstrated to be very sensitive to these parameters [2927, 3028], and therefore should be calibrated with great accuracy. Furthermore, especially gas transfer parameters depend on the extension of the surface interface. Due to different PBRs design of the PBR, modifications of these parameters were considered worthwhile.

4. Discussion

4.1 New features of the model

In comparison to our previous work [2927], where a 0D domain was applied, here in the present work a 2D domain was used to represent the two tubular photobioreactors. The domain was divided in two sub-domains (D1 and D2), where different conditions from the tubes (D1) to the open body (D2) of the photobioreactors were applied. According to the function of bubble column in the vertical system and the open-air tank in the horizontal system, the transfer of gases to the atmosphere was only applied to the D2 domain that corresponded corresponds to the total volume of these specific parts.

A periodic condition was applied at boundaries 1 and 2 to reproduce the recirculation of flow from the loop configuration to the bubble column in the vertical system, and from the tubes to the open-tank in the horizontal system. Simulation results demonstrated that these simplifications were adequate to describe the specific parts of different tubular photobioreactors. Moreover, fluid flow and transport equations were

added in the current model to obtain a realistic representation of the hydrodynamic \underline{s} in the photobioreactors.

Respect from In addition to the previous by mechanistic model presented by Solimeno et al. (2015) [2927] light attenuation through the medium was implemented. Light intensity decays exponentially due to microalgae biomass accumulated accumulation inside the reactors. Assuming a perfect mixing of medium, due to turbulent flow regime, an irradiance average I_{av} was used to represent any point of the within the reactor.

4.2 Calibration of the model

Results of the sensitivity analysis, reported in our previous work [$\frac{3028}{2}$], had indicated that the maximum specific growth rate of microalgae (μ_{ALG}) and the mass transfer coefficient for oxygen ($K_{a,O2}$) and carbon dioxide ($K_{a,CO2}$) were the parameters with the greatest impact on simulation outputs. Therefore, calibration of these parameters have to be calibrated must be occur in each particular case.

The calibrated maximum specific growth rate of microalgae ($\mu_{ALG}=1.7~[d^{-1}]$) in the vertical photobioreactor fits well within literature range [0.4-2.0 d⁻¹]. Also, the mass transfer coefficient in the bubble column for oxygen which was $K_{a,O2}=2.9E\text{-}03~\text{s}^{-1}$ fits into the range values for vertical photobioreactors [1.2E-03 to 7.7E-03 s⁻¹] [18]. The mass transfer coefficient for carbon dioxide ($K_{a,CO2}=2.8E\text{-}03~\text{s}^{-1}$) was consistent with range values [1.1E-03-7.0E-03 s⁻¹] for bubble column systems [18]. These same parameters were calibrated with experimental data over 3-three days from the horizontal photobioreactor located in Barcelona (Spain). Likewise the previouslyas in the previous calibration, the values generated for the maximum growth rate of microalgae ($\mu_{ALG}=1.7~[d^{-1}]$) and, the mass transfer of oxygen ($K_{a,O2}=9.2E\text{-}03~[s^{-1}]$) and carbon dioxide

 $(K_{a,CO2} = 9.0E-03 [s^{-1}])$ were <u>all</u> in agreement with literature ranges for tubular photobioreactors [9].

Mass transfer coefficients depend on the temperature, the mixing and especially most importantly, the extension of the surface interface. Thus, variable values of mass transfer coefficients from vertical and horizontal photobioreactors are due to different design and scale-up of bubble column and open-tanks, respectively.

Also the culture medium influences the mass transfer coefficients and the maximum growth rate of microalgae. In this work the horizontal photobioreactor was filled with agricultural runoff in which could be present cointein few concentrations of bacteria and other microorganisms. The activity of these microorganisms could influence dissolved oxygen and carbon dioxide concentrations in the medium culture, and therefore could slightly affect the values of the calibrated parameters. However, single microscopic observations during the experiment indicated that their concentration was irrelevant in comparison to microalgae (as usual in this type of PBR), and thus their influence is considered very low or almost negligible. Calibrating the model in two different photobioreactors (e.g., horizontal and vertical) and using with different types of media has allowed to determinate proved the robustness and resilience of the mathematical model to operate under variables conditions. of the mathematical model, which can operate under variables conditions.

4.3 Study case: microalgae production as a function of temperature and irradiance

Irradiance and temperature play an important role in microalgae production. These physical factors influence biokinetic and chemical processes related to microalgae growth. Irradiance is strictly correlated to photosynthesis rate. At high level of irradiance, microalgae become 'light saturated' because photosynthesis cannot process more photons. As result, the rate of photosynthesis starts to progressively starts

to stabilize [9, 13]. Temperature influences the equilibrium of chemical species (carbon and nitrogen), the uptake of nutrients, and transfer of gases to the atmosphere, but and especially the microalgae growth rates. The optimal temperature for microalgae growth ranges between 15°C and 25°C, depending on the species [5, 19]. Temperature above or below this range negatively affects negatively biomass yields.

Thanks to the model, previously calibrated with daily experimental data, has been possible to make predictions of microalgae production over long-term knowing with different environmental factors, such as temperature and irradiance. Simulations of the average daily microalgae production at a monthly scale in the vertical photobioreactor are presented in Fig 7. As can be observed simulations indicate that production is generally higher under daily temperature variations due to a more favourable temperature range (Supplementary Table 3). Table 5 presents the annual microalgae production comparing the two scenarios studied: under controlled temperature and with daily temperature variations. Although the growth of microalgae decreases by with high temperature and irradiance during the months of June, July and August (when the highest temperatures of the year occur), total annual production of microalgae exposed to daily temperature variations is higher than the reactor under controlled temperature. To optimize production, it might be considered to only use cooling water might be only used during the hottest months (June, July and August). Moreover, simulations results show that during the summer the production is also inhibited due to high dissolved oxygen concentrations throughoutthorought loop configuration up to 250% of air saturation (see next section).

436 437

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

4.4 Study case: oxygen concentration

439

440

441

438

Fig. 8 shows the simulations of the dissolved oxygen profile throughout the 400 m length of the vertical photobioreactor at noon (when the highest temperature occurs)

in the months of January and July. These two months were selected as they represent the minimum and maximum microalgae activity in a monthly basis time scale. As can be seen, the lower light intensity and temperature in January gives as a result lower dissolved oxygen concentrations in contrast to July. Also it can be observed in both months how dissolved oxygen concentration increases throughout the loop and decreases in the bubble column. In July, transfer of excess of dissolved oxygen to the atmosphere throughout the airlift permits to re-establish, at the beginning of loop configuration, the oxygen level under the maximum concentration of oxygen dissolved in water (32 gO₂ m⁻³) equal 350% of saturation (9.07 gO₂ m⁻³) [1, 8]. This property of the photobioreactor design is especially important in warm months (such as July), when a high photosynthetic activity could cause inhibition due to oxygen accumulation.

The model presented in this work allows to simulate and study microalgae growth inhibition due to high dissolved oxygen concentrations thanks to the inclusion of a photorespiration factor $f_{PR}(S_{O2})$ [2927]. The function $(f_{PR}(S_{O2}))$ in Fig. 9 describes that for dissolved oxygen concentrations lower than the 250% S_{O2}^{SAT} (22.67 gO₂ m⁻³) the photosynthesis rate is reduced of by 10%. Above this value, the photosynthesis rate decrease more quickly with a vertical asymptote and is equal at zero when dissolved oxygen reaches the 350% saturation limit ($\tau S_{O2}^{SAT} = 32 \text{ gO}_2 \text{ m}^{-3}$).

In process design, the current model can be used to study which could be find the maximum photobioreactor length to avoid oxygen inhibition. Here, as For example, we present for the month of July, simulations were conducted using half the previous which we analyse what is the effect of reducing the bubble column volume to the half (from 0.44 m³ to 0.22 m³) in the vertical photobioreactors loops of (400 m and 250 m). As seen in Fig. 10, shows simulation results, and as can be seen reducing the volume of the bubble column and keeping keeping the original loop configuration length (400 m), the simulation results show that the DO dissolved oxygen exceeds the saturation limit and will inhibiting microalgae growth. The volume of bubble column is not enough to

transfer the excess of dissolved oxygen to the atmosphere. On the contrary, simulations indicate that a 250 m length, photobioreactor greatly reduces the oxygen accumulation.

5. Conclusion

In this paper the a_new mechanistic model to simulate microalgae growth was calibrated in two different tubular photobioreactors. Fluid flow, transport equations and light attenuation were included in the model described in our previous work and implemented in COMSOL Multiphysics TM software. Uncertainty parameters from previously sensibility sensitivity analysis were calibrated in each particular photobioreactor. The results of calibration indicate that the mass transfer of gases and the maximum specific growth rate of microalgae fit well within literature ranges. Moreover, the developed model demonstrates potential prediction of oxygen accumulation throughout the loop configuration and daily microalgae production as a function of temperature and irradiance. The model proves to be an efficient tool for photobioreactor design and production production optimization.

References

- 487 [1] Acién Fernández F.G., Fernández Sevilla, J.M., Molina Grima, E. 2013
- 488 Photobioreactors for the production of microalgae. Reviews in Environmental Science
- and Bio/Technology, Volume 12, Issue 2, pp 131-151.
- 490 [2] Al-Rawahi, N.Z., Zurigat, Y.H., Al-Azri N.A. 2011. Prediction of Hourly Solar
- 491 Radiation on Horizontal and Inclined Surfaces for Muscat/Oma. The Journal of
- 492 Engineering Research, Vol 8, No 2, 19-31.

- 494 [3] APHA-AWWA-WPCF, 2001. APHA-AWWA-WPCF Standard Methods for the
- 495 Examination of Water and Wastewater, twentieth ed. American Public Health
- 496 association, Washington DC.

497

- 498 [4] Bernard, O., Masci, P., Sciandra, A., 2009. A photobioreactor model in nitrogen
- 499 limited conditions. In: Proceedings of the sixth conference on mathematical model-ling,
- 500 Vienna.
- 501 [5] Bitog, J.P., Lee, I.-B., Lee, C.-G., Kim, K.-S., Hwang, H.-S., Hong, S.-W., Seo, I.-
- 502 H., Kwon, K.-S., Mostafa, E. 2011. Application of computational fluid dynamics for
- 503 modelling and designing photobioreactors for microalgae production: A review.
- 504 Computers and Electronics in Agriculture, 76(2), 131–147.
- 505 [6]. Bonachela, J.A., Raghib, M., Levin, S.A. 2011. Dynamic model of flexibile
- 506 phytoplankton nutrient uptake. Proc. Natl. Acad. Sci. U.S.A. 108, 20633-200638.
- 507 [7] Boussiba, S. Shadler, T., Karamanos, T.Y., Mollion, J., Morva, H., Verdus, M.C.,
- 508 Christiaen, D. 1986 Anabaena azollae as a nitrogen biofertilizer. Algal biotechnology,
- 509 169-178.
- 510 [8] Camacho Rubio F., García Camacho F., Fernández Sevilla J.M., Chisti Y., Molina
- 511 Grima E., 2003. A mechanistic model of photosynthesis in microalgae. Biotechnol
- 512 Bioeng. 81(4): 459–73.
- 513 [9] Camacho Rubio F., Acién Fernández F.G., García Camacho F., Sánchez Pérez J.A.,
- 514 Molina Grima E., 1999. Prediction of dissolved oxygen and carbon dioxide
- 515 concentration profiles in tubular photo- bioreactors for microalgal culture.
- 516 Biotechnology and bioengineering 62, 71–86.

- 517 [10] Carvalho, L. B., Souza, M. C., Bianco, M. S., Bianco, S. 2011. Estimativa da área
- 518 foliar de plantas daninhas de ambiente aquático: Pistia stratiotes. Planta daninha, v. 29,
- 519 n. 1, p. 65-68, 2011.
- 520 [11] Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances 25, 294-
- 521 306.
- 522 [12] Costache T. A, Acién Fernández F.G., Morales M., Fernández Sevilla J.M.,
- 523 Stamatin, I., Molina, E., 2013 Comprehensive model of microalgae photosynthesis rate.
- 524 Appl Microbiol Biotechnol., 17:7627-37
- 525 [13] Craggs, R.J., Heubeck, S., Lundquist, T.J., Benemann, J.R. 2011. Algae biofuel
- from wastewater treatment high rate algal ponds. Water Sci. Technol. 63(4), 660-665.
- 527 [14] Dauta, A., Devaux, J., Piquemal, F., Boumnich, L. 1990. Growth rate of four
- freshwater algae in relation to light and temperatura. Hydrobiologia 207, 221-226.
- 529 [15] Fernández, I. Acién, F.G., Berenguel, M., Guzmán J.L., Andrade, G.A., Pagano,
- 530 D.J. 2014. A Lumped parameter chemical-physical model for tubular photobioreactors.
- 531 Chemical Engineering Science 112, 116-129.
- [16] Fernández, I., Acién, F.G., Fernández, J.M., Guzmán, J.L., Magán, J.J., Berenguel,
- 533 M. 2012. Dynamic model of microalgal production in tubular photobioreactor.
- 534 Biosource Technology 126, 172-181.
- 535 [17] Hase, R., Oikawa, H., Sasao, C., Morita, M., Watanabe, Y., 2000. Photosynthetic
- production of microalgal biomass in a raceway system under greenhouse conditions in
- 537 Sendai city. J. Biosci. Bioeng. 89 (2), 157–163.
- 538 [18] Hulatt, C.J., Thomas, D.N., 2011. Productivity, carbon dioxide uptake and net
- energy return of microalgal bubble column photobioreactors. Biosour. Technol. 102,
- 540 5775-5787.

Formatted: English (United Kingdom)

Formatted: English (United Kingdom)

- 541 [19] Larsdotter, K., 2006. Wastewater treatment with microalgae-a literature review.
- 542 Vatten, 31–38.
- 543 [20] Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel
- 544 production and other applications: a review. Renev. Sustain. Energy Rev. 14, 217-232.
- 545 [2120] Molina Grima, E., Fernández, J., Acién Fernández, G., Chisti, Y., 2001. Tubular
- photobioreactor design for algae cultures. Journal of biotechnology 92, 113–131.
- 547 [2221] Molina Grima, E., 1999. Mass culture methods. In: Flickinger, M.C., Drew,
- 548 S.W. (Eds.), Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and
- 549 Bioseparation, vol. 3. Wiley, pp. 1753–1769.
- 550 [2322] Novak, J.T., Brune, D.E. 1985. Inorganic carbon limited growth kinetics of some
- freshwater algae. Water Res. 19, 215-225.
- 552 [2423] Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M. 2011. Growth and
- 553 neutral lipid synthesis in green microalgae: a mathematical model. Bioresour Technol;
- 554 102:111–7.
- 555 [25] Park, J.B.K., Craggs, R.J., Shilton, A.N., 2011a. Wastewater treatment high rate
- 556 algal ponds for biofuel production. Bioresource Technology, 102(1), 35-42.
- 557 [2624] Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L.,
- 558 Vanrolleghem, P., 2001. River Water Quality Model no. 1 (RWQM1): II. Biochemical
- 559 process equations. Water science and technology: a journal of the International
- Association on Water Pollution Research 43(5), 11–30.
- 561 [2725] Sanchez, J.F., Fernández-Sevilla, J.M., Acíen, F.G., Ceron, M.C., Perez-Parra, J.
- 562 & Molina-Grima, E., 2008. Biomass and lutein productivity of Scenedesmus
- almeriensis: influence of irradiance, dilution rate and temperature. Appl. Microbiol.
- 564 Biotechnol., 79, 719–729.

Formatted: Spanish (Spain, International Sort)

- 565 [2826] Silva, H.J., Pirt, J. 1984. Carbon dioxide inhibition of photosynthetic growth of
- 566 chlorella. Journal of General Microbiology, 130, 2833-2838.
- 567 [2927] Solimeno, A., Samsó, R., Uggetti, E., Sialve, B., Steyer, J.P., Gabarró, A.,
- García, J. 2015. New mechanistic model to simulate microalgae growth. Algal Research
- 569 12, 350-358.
- 570 [3028] Solimeno. A., Samsó, R., García, J. 2016. Parameter sensitivity analysis of a
- mechanistic model to simulate microalgae growth. Algal Research 15, 217-223.
- 572 [31] Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Commercial
- 573 Applications of Microalgae. Journal of bioscience and bioengineering, 101, 87–96.
- 574 [3229] Stokes, G. 1851. On the Effect of the Internal Friction of Fluids on the Motion of
- Pendulums. Transactions of the Cambridge Philosophical Society 9: 8–106.
- 576 [3330] Ugwu, C.U., H. Aoyagi and H. Uchiyama, 2008. Photobioreactors for mass
- 577 cultivation of algae. Bioresour. Technol., 99: 4021-4028.
- 578 [3431] Wang, B., Lan, Q., Horsman, M., 2012. Closed photobioreactors for production
- of microalgal biomasses. Biotechnology Advances 30 904–912.
- 580 [3532] Weissmand, J.C., Goebel, R.P., 1987. Design and Analysis of Microalgal Open
- Pond Systems for the Purpose of Producing Fuels. SERI/STR-231-2840.
- 582 [3633] Wu, X., Merchuk, J., 2001. A model integrating fluid dynamics in
- 583 photosynthesis and photoinhibition processes. Chemical Engineering Science 56, 3527–
- 584 3538.

Formatted: English (United Kingdom)

*Acknowledgments

Acknowledgements

We thank Lauren Parker for manuscript review. This research was supported by the Spanish Ministry of Economy and Competitiveness through the projects DIPROBIO (CTM2012-37860), FOTOBIOGAS (CTQ2014-57293-C3-3-R) and EDARSOL (CTQ2014-57293-C3-1-R). This research has also received funding from the European's Union HORIZON 2020 research and Innovation programme through the INCOVER project (GA-689242). Alessandro Solimeno also acknowledges the FPU-AP2012-6062 scholarship provided by the Spanish Ministry of Education and Science and the Project DPI2014-55932-C2-1-R (Spanish Ministry of Economy and Competitiveness and FEDER funds) and Cajamar Foundation for the experimental data provided.

Table 1. Agricultural runoff characteristics during batch experiment in the tubular horizontal photobioreactor located in Barcelona (Spain).

Parameter	Agricultural runoff
pН	8.4
Dissolved oxygen (g m ⁻³)	6.6
NO ₃ ⁻ -N (g m ⁻³)	0.6
Alkalinity (g CaCO ₃ m ⁻³)	223

Table 2. Dissolved and particulate components considered in the model.

Component	Description	ription Units		
Dissolved Comp	Dissolved Components			
$S_{ m NH4}$	Ammonium nitrogen	gN-NH ₄ m ⁻³		
$S_{ m NH3}$	Ammonia nitrogen	gN-NH ₃ m ⁻³		
S_{NO3}	Nitrate nitrogen	$gN-NO_3 m^{-3}$		
$S_{\rm CO2}$	Carbon dioxide	gC-CO ₂ m ⁻³		
S_{HCO3}	Bicarbonate	gC-HCO ₃ m ⁻³		
S_{CO3}	Carbonate	gC-CO ₃ m ⁻³		
S_{O2}	Dissolved oxygen	$gO_2 m^{-3}$		
S_{H}	Hydrogen ions	gH m ⁻³		
S _{OH}	Hydroxide ions	gH-OH m ⁻³		
Particulate Component				
X _{ALG}	Microalgae biomass	gTSS m ⁻³		

Table 3. Initial concentrations of the components in the vertical photobioreactor of Almeria (Spain) and horizontal photobioreactor of Barcelona (Spain).

	Concentrations		
Components	Vertical	Horizontal	Units
	PBR	PBR	
X _{ALG}	774.14	251	gTSS m ⁻³
$S_{ m NH4}$	14	-	gN-NH ₄ m ⁻³
$S_{ m NH3}$	0.684	-	gN-NH ₃ m ⁻³
S_{NO3}	4.2	0.6	gN-NO ₃ m ⁻³
S _{CO2}	1.59	0.068	gC-CO ₂ m ⁻³
S_{HCO3}	100	7.59	gC-HCO ₃ m ⁻³
S_{CO3}	0.62	0.085	gC-CO ₃ m ⁻³
S _{O2}	7.2	6.64	$gO_2 m^{-3}$
S _H	6.31E-6	3.55E-6	gH m ⁻³

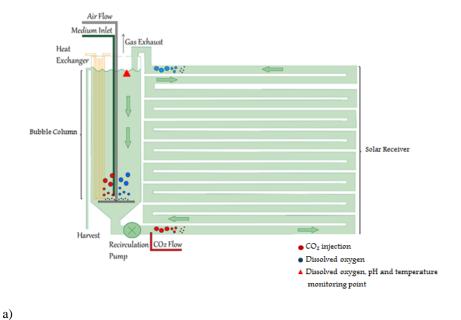

S _{OH}	1.58E-3	2.82E-3	gH-OH m ⁻³

 Table 4. Values of calibrated parameters in the vertical and horizontal photobioreactors.

		Value	
Parameter	Description	Vertical	Horizontal
		PBR	PBR
μ_{ALG}	Maximum specific growth rate of microalgae	1.7 d ⁻¹	1.7 d ⁻¹
K _a , _{O2}	Mass transfer coefficient for oxygen	2.9E-03 s ⁻¹	9.2E-03 s ⁻¹
K _a , _{CO2}	Mass transfer coefficient for carbon dioxide	2.8E-03 s ⁻¹	9.0E-03 s ⁻¹

Table 5. Comparing total annual production under controlled temperature and daily temperature variations versus optimizing system using cooling water during summer.

Total annual production	Value
Optimizing system	1796.86 gTSS m ⁻³
Daily temperature variations	1714.53 gTSS m ⁻³
Under controlled temperature	1604.48 gTSS m ⁻³

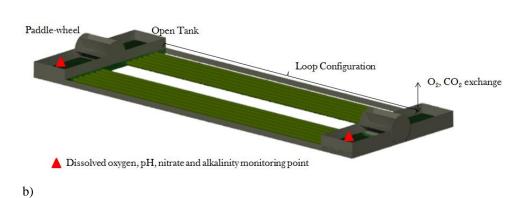


Fig. 1. a) Tubular vertical photobioreactor located in Almeria (Spain) with details of the solar receiver (a continuous tubular loop) and a mixing unit (a bubble column). The culture is continuously recirculating from one to the other part using airlift and mechanical pumps. [16], b) Tubular horizontal photobioreactor located in Barcelona (Spain) with details of the two open-air tanks and the loop configurations (6 tubes per each flow direction). Mechanical paddlewheels promote the recirculation of the culture through the system.

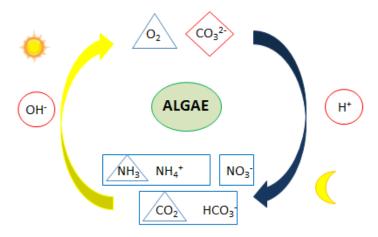
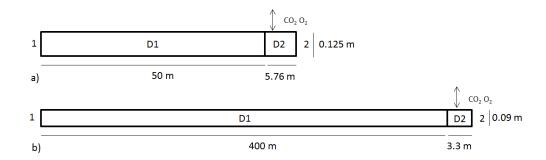
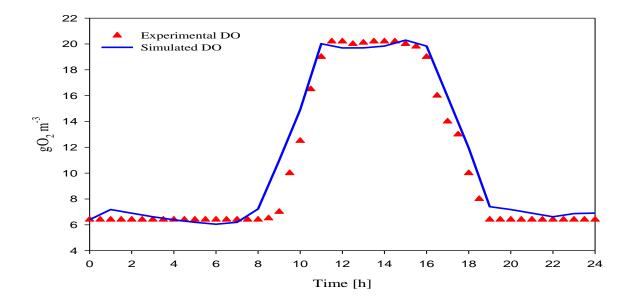
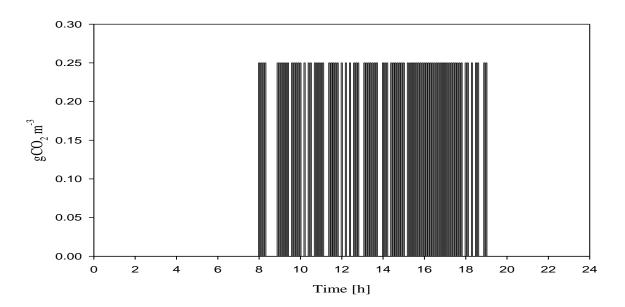
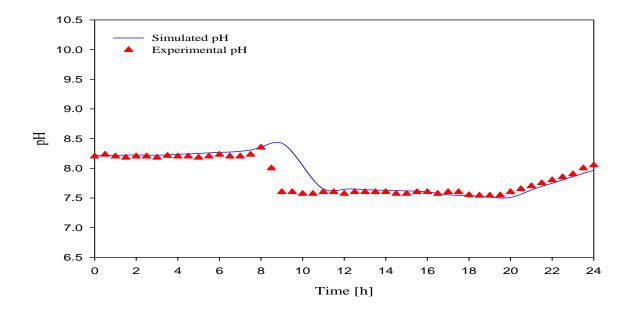
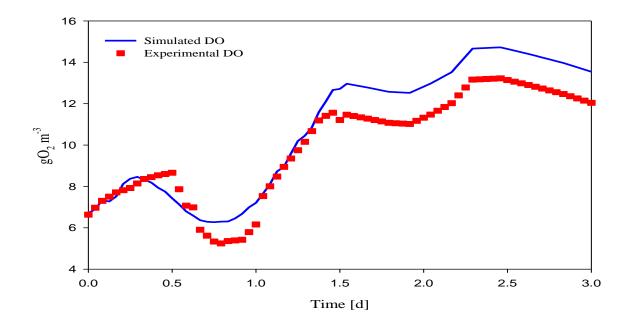


Fig. 2. General schematic representation of the conceptual model by Solimeno et al. (2015) [27]. Microalgae (green ellipse), substrates (rectangles), gaseous species (triangles) and species depending on algal activity which are neither substrates nor gases (diamonds and circles). Other nutrients (e.g. phosphorus) and micronutrients are not limiting factors.

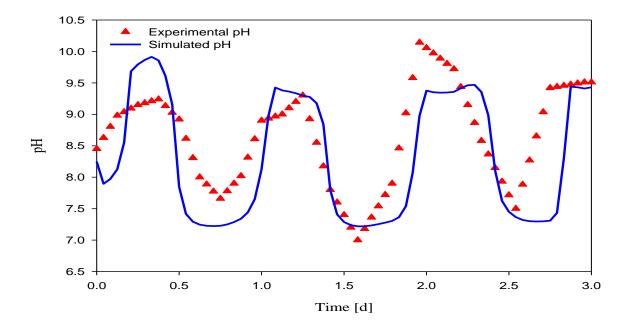





Fig. 3. Schematic representation of the model domain, a) simplification of the horizontal photobioreactor located in Barcelona (Spain), b) simplification of the vertical photobioreactor in Almeria (Spain). D1 represents the loop configuration of both PBRs and D2 is the total volume of open-air tank (a) and bubble column (b) respectively for horizontal and vertical photobioreactor. A periodic condition was applied at boundaries 1 and 2 to reproduce the continuous culture flow.

a)

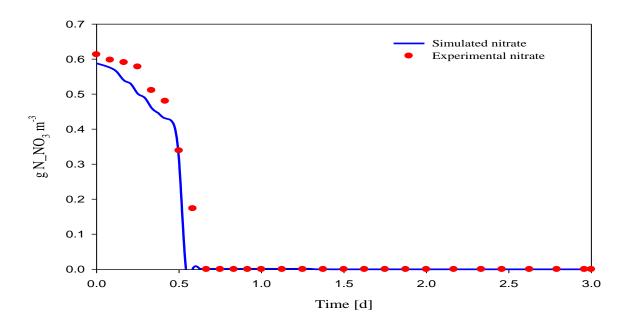


b)

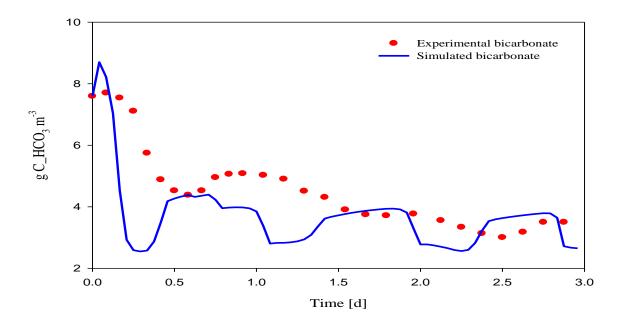


c)

Fig. 4. Experimental (red triangles) and simulated (blue line) (a) dissolved oxygen (DO) and (c) pH values as a function of CO₂ injection (b) over the 24 hours in the vertical photobioreactor in Almeria (Spain).



a)



b)

Fig. 5. Experimental (red triangles) and simulated (blue line) (a) dissolved oxygen (DO) and (b) pH values over the three days in the horizontal photobioreactor in Barcelona (Spain).

a)

b)

Fig. 6. Experimental (red dots) and simulated (blue line) (a) nitrate and (b) bicarbonate concentrations over the three days in the horizontal photobioreactor in Barcelona (Spain).

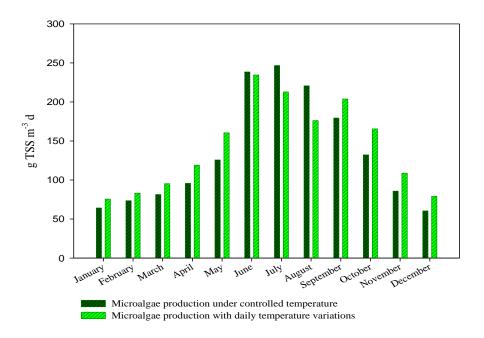


Fig. 7. Average daily microalgae production for each month of the year under controlled temperature and with daily temperature variations.

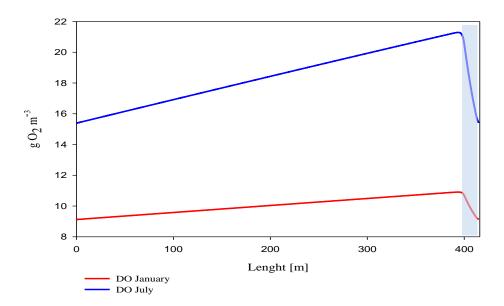


Fig. 8. Simulations of dissolved oxygen (DO) concentration profile throughout the vertical photobioreactor in Almeria (Spain) in the months of January and July. Bubble column position is represented by blue region.

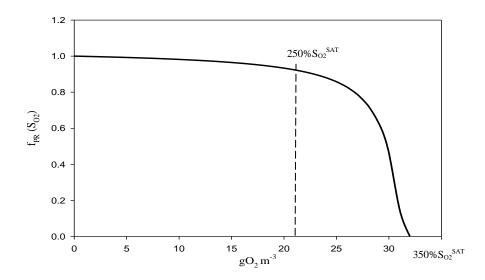


Fig. 9. Profile of photorespiration factor function for value of dissolved oxygen concentrations below the saturation limit (τS_{O2}^{SAT}) .

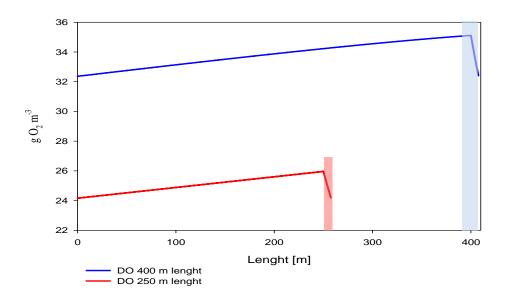
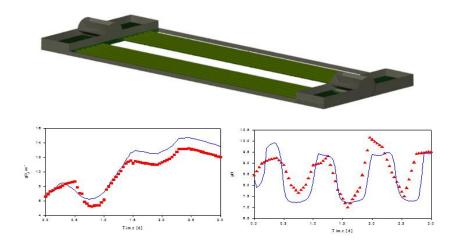



Fig. 10. Simulations of dissolved oxygen (DO) concentration profile throughout 400 m and 250 m length of the vertical photobioreactor in Almeria (Spain) in the months of July. Bubble column position is represented by blue and red rectangle, for 400 m and 250 m length of vertical photobioreactor, respectively.

Supplementary Material
Click here to download Supplementary Material: Supplementary Tables - review.docx

Graphical Abstract

Graphical abstract

Highlights

- New mechanistic model for microalgae production in closed photobioreactors is developed.
- The model integrates the biological and engineering aspects of the systems.
- The accuracy of the model has been validated using real pH and dissolved oxygen values.
- The model has been verified in two different closed photobioreactors.

1. Introduction

Industrial production of microalgae can be accomplished in open or closed photobioreactors. Open systems are shallow channels in the shape of race tracks (raceway reactors) and have been extensively studied in the past [9, 15]. Though open photobioreactors represent an efficient economic solution in front of closed photobioreactors, they can be easily contaminated by microorganisms and difficult to control. These disadvantages make closed photobioreactors more suitable when high-value products are the target of the culture. Closed systems strictly control chemical, physical and biological factors and can improve conditions for microalgae growth by optimizing light absorption due to turbulent conditions in the culture [9, 11, 30, 31].

Closed photobioreactors (as well as open raceways) are sensitive to carbon limitations and pH variations that could limit photosynthesis and therefore biomass production [16]. Carbon and pH limitations can be corrected by supplying carbon dioxide (CO₂⁻) in order to maintain high photosynthesis rates and pH control. However the two most critical issues of closed photobioreactors are the risk of overheating and their potential for oxygen accumulation and subsequent growth inhibition [20]. To prevent overheating, closed photobioreactors often require cooling as well as degasser systems [32]. Concentrations of dissolved oxygen (DO) in the culture above 250% air saturation can dangerously inhibit microalgae activity [12].

Over the last few decades, mathematical models have proven to be useful tools for the design, analysis, operation and control in multiple engineering problems [5]. Nowadays, models have become essential tools for understanding complex processes, such as those occurring in photobioreactors. In the case of microalgae cultures, models are less developed than those seen in other fields. When models contain too few parameters, they risk the capability of not capturing the complexity of microalgae cultures in long-term scenarios, and therefore can be unreliable. Having this in mind, Solimeno et al. (2015) [27] developed a complete mechanistic mathematical model that

includes crucial physical and biokinetic processes that describe microalgae growth in different types of cultures, particularly in wastewater (where growth is controlled by carbon and nitrogen limitations). This model was calibrated with data from a complete stirred culture fed with simulated treated wastewater using a 0D domain [27]. A global sensitivity analysis was carried out using the same set of data [28]. In the present paper we intend to go beyond our previous work, calibrating the model with data from two different pilot scale tubular closed photobioreactors fed with different types of medium culture. In this present case, a 2D domain, which represents the hydrodynamics of the system (i.e., transport of diluted species and mass transfer phenomena), is coupled with the previous mechanistic model [27]. The resulting model has been implemented into the COMSOL MultiphysicsTM software, which solves equations using the finite elements method (FEM).

The aim of the present study is to calibrate the new and more complex mechanistic model of Solimeno et al. (2015) [27] using experimental data from two different tubular photobioreactors. The potential of the model is demonstrated by means of practical study cases in which we simulate oxygen concentrations (the most critical growth inhibition factor of closed photobioreactors) and predict microalgae production as a function of temperature and light intensity. Simulations show the potential of photobioreactor configurations to optimize microalgae production. The overall objective of this model is to become a reference to simulate physical, chemical and biokinetic microalgae processes in different types of photobioreactors fed with different types of medium cultures.

2. Methods

Both photobioreactors were located in Spain, one in "Estación Experimental Las Palmerillas", property of Fundación CAJAMAR in Almeria, and the other in "Agropolis", property of Universitat Politècnica de Catalunya-BarcelonaTech in Barcelona (Fig. 1). The vertical tubular photobioreactor (PBR) in Almeria includes a loop solar receiver made of transparent plastic tubes of 0.09 m diameter with a total horizontal length of 400 m, and a 0.4 m diameter bubble column with 3.5 m of height, and has a total working volume of 3,000 L. The PBR unit is used to produce the microalgae Scenedesmus almeriensis, which is characterized by a high growth rate and tolerance temperatures up to 45 °C and pH values up to 10 [1, 25]. The PBR works by creating continuous flow of culture between loop and bubble column by means of a centrifuge pump located at the bottom of the column. The pump provides a constant flow velocity of 0.8 m s⁻¹ inside the loop. The pH of the culture is controlled by injection of pure CO₂ at 5 L min⁻¹. In the bubble column, excess DO is removed by a constant airflow rate of 140 L min⁻¹. The culture temperature is maintained by passing cooling water at 1,500 L h-1 through an internal heat exchanger located inside the bubble column. When fresh culture medium is poured into the system, the culture is harvested through an overflow located on top of the column. Temperature, pH and DO are measured at several locations along the tube using Crison probes (Crison Instruments, Spain) connected to a control-transmitter unit MM44 (Crison Instrument, Spain). Liquid and gas flow rates are measured using digital flowmeters (PF2W540 and PF2A510, from SMC, Japan). All of these monitoring systems are in turn connected to a control computer through a data acquisition device NI Compact FieldPoint (National Instruments, USA) [15]. Data for the present study were obtained at the end of a two month experiment in which the photobioreactor was operated in continuous mode, medium flow rate of 1,020 L d⁻¹, and under controlled pH (7.8) and temperature (lower than 35 °C). As a result, the amount of microalgae biomass was kept fairly constant. Culture medium used was Mann&Myers, prepared using agricultural fertilizers.

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

Collected data were retrieved in batch mode by switching off the feeding for 24 hours (at the end of the two months). Dissolved oxygen and pH data were recorded every 30 minutes, while temperature and irradiance were measured every hour.

The horizontal tubular photobioreactor in Barcelona is composed of two openair tanks made of polypropylene and is 1.8 x 1 x 0.4 m (L x W x H) in size. These tanks include paddlewheels that provide enough head pressure to move the culture through 12 (6 per each flow direction) transparent 0.125 m diameter polyethylene tubes (each 50 m length). Culture flows from one tank to the other at a constant velocity of 0.125 m s⁻¹. Tanks also allow release of exceeding oxygen accumulated along tubes. The PBR has an effective volume of 8.5 m³. Note that in this PBR there is no CO₂ injection or pH control. Data used for the present work were retrieved from a three days batch experiment and measured in each tank. For this experiment the PBR was filled with 8 m³ of agricultural runoff from a nearby agriculture canal which were inoculated with 0.5 m³ of inoculum with microalgae from a previous experiment (Table 1). The PBR contained different microalgae species belonging to the genus *Pediastrum sp.*, *Chlorella sp.* and *Scenedesmus sp.*

The horizontal PBR has dissolved oxygen and pH online sensors in each tank that record data every hour, and temperature and irradiance online sensors that record data every two to three3 hours. Gathered data are stored using a Programmable Logic Controller (PLC) that is connected to a computer with supervisory control and a data management system (Green web manager 2.0). During the three days of experiments, offline samples were taken every two-three hours and analyzed in the laboratory for nitrates and alkalinity. Analysis of nitrate ion chromatography was accomplished using a Thermo Finnigan chromatograph with a metallic detector TCD (thermal conductivity detector). Alkalinity was analysed using conventional titrimetric procedures indicated in Standard Methods [3]. Note that bicarbonate was calculated using alkalinity measurements, pH, and equilibrium constants of carbon species (Eq. 1).

2.2 Conceptual model

The new mechanistic model presented by Solimeno et al. (2015) [27] considers crucial physical, chemical and biokinetic processes for the description of microalgae growth in different types of cultures, particularly in wastewaters. The main relevant feature of the model, respect to any previous model for microalgae production [4, 6, 23], consists in the inclusion of a carbon limitation on the growth of microalgae, as well as a dynamic model for photosynthesis, photolimitation, light attenuation, and photorespiration. In the model, microalgae grow with light, consume nutrients (i.e., carbon and nitrogen), and release oxygen (Fig. 2).

Note that other nutrients (e.g., phosphorus) and micronutrients are not considered to be limiting factors because are usually highly available in wastewaters (which is the type of culture mainly addresses by the model) [19]. Dependency of microalgae growth on phosphorus could easily be implemented in the model by creating a limiting Monod function, similar how the other nutrients (i.e., carbon and nitrogen) were represented. In the model, as a result of microalgal activity in the presence of light, hydroxide ions concentration and pH increase. Increases in pH displace the equilibrium of the carbon species towards the formation of carbonates (which are not bioavailable for growth). Note that this model assumes that carbon dioxide as well as bicarbonate are bioavailable for growth. In darkness, endogenous respiration of microalgae release carbon dioxide, the concentration of hydrogen ions increase and the pH decreases. With decreasing pH, the carbon equilibrium shifts and carbonate turns into bicarbonate, which can be used as substrate again in the presence of light [30]. A detailed description of the model, including components, and processes can be found in Solimeno et al.

(2015) [27]. A list of the processes included in the model, the equations describing their rates and the matrix of stoichiometric parameters are shown in Supplementary Tables (4-5).

2.3 Model domain

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

The photobioreactor's configuration was assumed to have a 2D geometry. The domain was divided into two sub-domains (D1 and D2) corresponding to the loop configuration and the bubble column for the vertical system in Almeria, and to the open-air tanks and the tubes for the horizontal system in Barcelona (Fig. 3). In the case of the vertical system, D1 was 400 m long in the longitudinal direction and 0.09 m in diameter, while in the horizontal system it was 50 m long and 0.125 m in diameter. D2 domains were designed allocating the volume of the bubble column (vertical system) and open-air tank (horizontal system) along a surface interface area where gases were transferred to the atmosphere, fixing the corresponding D1 diameter. Thus, the bubble column is 3.3 m long and 0.09 m deep, while the tank is 5.76 m long and 0.125 m deep. These simplifications allow to simulate of hydrodynamics within the system. Note that in the present model it was necessary to divide the domain into two sub-domains due to the different domain conditions. Transfer of gases to the atmosphere took place exclusively in the bubble column and open-air tanks. A periodic condition was applied at boundaries 1 and 2 to reproduce the continuous culture flow from domain 2 to 1 (degasser to loop and tank to tube).

2.4 Hydrodynamics of the system, light attenuation and temperature

In our previous work [27], the calibration of the model was conducted in a complete mixed reactor represented by a 0D domain in order to simplify hydrodynamic's complexity. In the present work, as a result of the motion of the culture through the tubes and bubble column or open-air tank, a 2D domain was needed, which

include hydraulic and transport equations. On the other hand, in the previous work [26], it was assumed that microalgae cells captured photons at all depths (light attenuation was neglected due to 0D domain). The present work incorporates light attenuation due to the presence of microalgae.

In the model microalgae processes are influenced by temperature [27]. It is known that the growth rate of microalgae is highly dependent on temperature; it increases when optimum temperature is reached and drastically decreases when optimum temperature is exceeded [14]. In the present study, microalgae production was simulated in a study case at different temperatures, showing the dependence of microalgae growth on temperature.

Hydrodynamics of system was modelled through the COMSOL MultiphysicsTM software, previously used for the calibration of the microalgae model in a completely stirred experiment, which solves differential equations using the finite elements method (FEM).

2.4.1 Hydraulic Considerations

In the PBR used in this work the culture is set in motion by an external pump (vertical system) or by paddlewheels (horizontal system), and enters the model domain with a certain velocity. To predict the flow regime without starting a simulation, the Reynolds number was firstly calculated. The Reynolds number quantifies the ratio of inertia to viscous forces, characterizing the flow regime (Eq. 2):

$$Re = \frac{\rho * v * d}{\mu} \tag{2}$$

where ρ is the culture density (assumed to have the same density as water, 1000 kg m⁻³), ν is the culture velocity (m s⁻¹), d is the tube diameter (0.09 m and 0.125 m for vertical and horizontal systems, respectively), and μ is the dynamic viscosity of the culture (assumed to be the same as water 0.003 kg m⁻¹s⁻¹). The Reynolds number was

calculated to be approximately 27,000 for the vertical system and 5,000 for the horizontal. Note that in tubes with a flow with a Reynolds number above 4,000 is already considered turbulent [29], and in these conditions transversal variations of culture properties (temperature, dissolved oxygen, biomass concentration, etc.) may be neglected and Navier-Stokes equations can be solved directly. With such high Reynolds number's temperature does not significantly influence the motion because viscous forces (μ) are very small when compared to inertial forces (ν).

For turbulent flow, COMSOL MultiphysicsTM solves the Navier-Stokes as well as continuity equations. Turbulent effects are modeled using "Turbulent Mixing" interfaces for "Transport of Diluted Species" physics. In "Turbulent Mixing" models the additional mixing caused by turbulence is estimated by adding turbulent diffusivity to the molecular diffusivity considering:

$$D_{T} = v_{T} / Sc_{T}$$
 (3)

where D_T is the turbulent diffusion, v_T is the turbulent kinematic viscosity at 20 °C (1.004E-06 m² s⁻¹) and Sc_T is the turbulent Schmidt number (0.7).

2.4.2 Transport of dissolved and particulate components

Transport of diluted and particulate components with a concentration S_i [g m⁻³] by convection and diffusion is given by:

$$\frac{\delta Si}{\delta t} + (-D_T \cdot S_i) + \mathbf{u} \cdot c_i = r_i$$
 (4)

$$r_i = \sum_j v_{j,i} * \rho_i \tag{5}$$

where i = 1, 2...m are the different components considered (Table 2), and j is the number of processes shown in Supplementary Table (4); u [m s⁻¹] is the vector of velocity, r_i [g m⁻³s⁻¹] is the reaction rate, ρ [g m⁻³s⁻¹] is the process rate corresponding to the biokinetic and chemical j processes described in Solimeno et al. (2015) [27] and $v_{j,i}$

is the stoichiometric coefficient. Mathematical expressions of the stoichiometric coefficient and values of biokinetic, physical and chemical parameters are shown in Supplementary Tables (6-9).

2.4.3 Light attenuation

In the present study light intensity decay was described using Lambert-Beer's Law, which dictates that intensity decreases exponentially as it penetrates into a perfectly homogeneous section of culture with a short penetration pathway [25], as it is the case of both PBR. In this case light is attenuated by the presence of microalgae inside the reactors. The average light intensity (I_{av} , [μ mol m⁻²s⁻¹]) at any point within the culture is therefore calculated as [17]:

218
$$I_{av} = I_o \cdot \psi \left(1 - \exp \left(k_i \cdot X_{ALG} \cdot d \right) / k_i \cdot X_{ALG} \cdot d \right)$$
 (6)

where I_o [μ mol m⁻²s⁻¹] is the incident light intensity, k_i is the extinction coefficient for microalgae biomass [0.1 m² g⁻¹] [8], X_{ALG} is the concentration of microalgae, ψ is the solar irradiance fraction available in the reactor and d [m] is the diameter of tube.

2.4.4 Temperature

In our model, the influence of temperature on microalgae activity was implemented by the thermic photosynthetic factor ($f_{T,FS}$), which takes into account the effects of temperature on microalgae growth, endogenous respiration and inactivation processes (1a, 1b, 2 and 3 in Supplementary Table 4, respectively). Water temperature varies both on hourly and daily scales, affecting microalgal photosynthesis and respiration rates. The thermic photosynthetic factor is represented in the model following the work of Dauta et al. (1990) [14]:

$$f_{T,FS}(T) = e^{-\left(\frac{T-\text{Topt}}{s}\right)^2}$$
 (7)

where T_{opt} (optimum temperature) was assumed to be 25 °C [14] and s equal to 13 [14] (it is a parameter value for empirical fitting).

2.5 Calibration procedure

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

Model output results are highly sensitive to the maximum specific growth rate of microalgae (μ_{ALG}), mass transfer coefficient for oxygen ($K_{a,O2}$), and carbon dioxide (K_{a,CO2}). The mass transfer coefficients depend on the extension of the surface interface and photobioreactor design [27]. Therefore, these parameters were calibrated in the two different tubular photobioreactors. The model was first calibrated using experimental data obtained from the vertical photobioreactor located in Almeria (Spain). Dissolved oxygen, pH, temperature and irradiance were monitored for 24 hours on February 28th, 2012. Afterwards, the model was calibrated with experimental data from the horizontal photobioreactor located in Barcelona (Spain). Data used for this calibration were retrieved from three days batch experiment from April 16th, 2012 to April 19th, 2012. Available data used for the calibration procedure are shown in Supplementary Tables (1-2). The initial concentrations of components in the vertical and horizontal photobioreactors at the beginning of the experiments are shown in Table 3. In the horizontal PBR the concentrations of NH₄⁺ and NH₃ were lower than the analytical method's detection limit and therefore considered to be zero for this model. Note the difference in initial concentrations of microalgae (X_{ALG}) between the two PBRs due to their different operating conditions

2.6 Study cases

Practical study cases have been done to evaluate the influence of both temperature and irradiance on microalgae production, and the effect of oxygen

concentration in the loop. The vertical photobioreactor of Almeria (Spain) was selected as reference for these studies.

Starting from the initial concentrations used for calibration of the model in the vertical photobioreactor, average daily microalgae production was simulated using daily temperature and irradiance variations from 17th day of each month of year. Two scenarios were evaluated. In the first set of simulations the vertical photobioreactor was under controlled temperature by passing cooling water at 1500 L/h through an internal heat exchanger located in the bubble column of the photobioreactor. In a second set of simulations, temperature was obtained from meteorological annals of Almeria (Spain). These two scenarios were compared and an estimation of the total annual production using monthly irradiance variations was calculated. Irradiance, expressed as photosynthetically active radiation (PAR), was estimated for Almeria (Spain) from the mathematical equations presented in Supplementary Table 10 [2].

Moreover, oxygen concentration throughout the 400 m of vertical photobioreactor was evaluated while maintaining the reactor under controlled temperature, Dissolved oxygen profile in the loop configuration was simulated at noon in the months of July and January, when the highest and lowest temperature, respectively, were recorded.

3. Results

In this work simulations for two different photobioreactors were studied. First we present the results of the model calibration for the vertical photobioreactor. Fig. 4 shows that the model was able to accurately match DO and pH trends over the course of one day inside the system, with decreasing pH due to CO₂ injection (which displaces the equilibrium of carbon species).

Fig. 5 shows the results of the calibration in the horizontal photobioreactor. Experimental and simulated dissolved oxygen and pH values inside the open-air tanks of the horizontal photobioreactor are presented. As can be seen, the wavelike trend of pH varied due to microalgae activity, which is quite well simulated by the model. Moreover, Fig. 6 shows the experimental and simulated nitrate (N_NO₃) and bicarbonate (C_HCO₃) concentrations in the horizontal system. The model was able to reproduce quite well the trend of experimental data. In absence of ammonia species, only nitrates are used as nitrogen substrates for microalgae growth. The low concentration of nitrate in the culture medium limited the activity of microalgae. As can be seen, microalgae consumed nitrate concentrations quickly in the first hours of experiment (Fig. 6). Likewise, Fig. 6 shows that bicarbonate concentrations decreased faster in the first hours due to intense microalgae activity. After 22 hours, in absence of nitrate, daily variations of bicarbonate are related to changes in equilibrium species of carbon.

Note that, in general, simulations of the vertical PBR were more accurate than those of the horizontal due to in the horizontal system there was some growth of other microorganisms different from microalgae (e.g., bacteria and protozoa). This was to be expected as the culture water was from an irrigation channel. The activity of these microorganisms affected simulated factors though it is not known to what extent, because unfortunately we do not have values for these organisms.

Table 4 presents the values of the parameters that were calibrated in each photobioreactor. Note that maximum specific growth rate (μ_{ALG}) and the transfer of gases to the atmosphere ($K_{a,O2}$ and $K_{a,CO2}$) were also calibrated in our previous works [27, 28]. In this previous work the model output results are very sensitive to these parameters [27, 28], and therefore should be calibrated with great accuracy. Furthermore, gas transfer parameters depend on the extension of the surface interface.

Due to different PBRs design, modifications of these parameters were considered worthwhile.

4. Discussion

4.1 New features of the model

In comparison to our previous work [27], where a 0D domain was applied, here 2D domain was used to represent the two tubular photobioreactors. The domain was divided in two sub-domains (D1 and D2), where different conditions from the tubes (D1) to the open body (D2) of the photobioreactors were applied. According to the function of bubble column in the vertical system and the open-air tank in the horizontal system, the transfer of gases to the atmosphere was only applied to the D2 domain that corresponds to the total volume of these specific parts.

A periodic condition was applied at boundaries 1 and 2 to reproduce the recirculation of flow from the loop configuration to the bubble column in the vertical system, and from the tubes to the open-tank in the horizontal system. Simulation results demonstrated that these simplifications were adequate to describe the specific parts of different tubular photobioreactors. Moreover, fluid flow and transport equations were added in the current model to obtain a realistic representation of the hydrodynamics in the photobioreactors.

In addition to the previous mechanistic model presented by Solimeno et al. (2015) [27] light attenuation through the medium was implemented. Light intensity decays exponentially due to microalgae biomass accumulation inside the reactors. Assuming a perfect mixing of medium, due to turbulent flow regime, an irradiance average $I_{\rm av}$ was used to represent any point within the reactor.

4.2 Calibration of the model

Results of the sensitivity analysis, reported in our previous work [28], had indicated that the maximum specific growth rate of microalgae (μ_{ALG}) and the mass transfer coefficient for oxygen ($K_{a,O2}$) and carbon dioxide ($K_{a,CO2}$) were the parameters with the greatest impact on simulation outputs. Therefore, calibration of these parameters must occur in each particular case.

The calibrated maximum specific growth rate of microalgae ($\mu_{ALG}=1.7~[d^{-1}]$) in the vertical photobioreactor fits well within literature range [0.4-2.0 d⁻¹]. Also, the mass transfer coefficient in the bubble column for oxygen which was $K_{a,O2}=2.9E\text{-}03~\text{s}^{-1}$ fits into the range values for vertical photobioreactors [1.2E-03 to 7.7E-03 s⁻¹] [18]. The mass transfer coefficient for carbon dioxide ($K_{a,CO2}=2.8E\text{-}03~\text{s}^{-1}$) was consistent with range values [1.1E-03-7.0E-03 s⁻¹] for bubble column systems [18]. These same parameters were calibrated with experimental data over three days from the horizontal photobioreactor located in Barcelona (Spain). Likewise as in the previous calibration, the values generated for the maximum growth rate of microalgae ($\mu_{ALG}=1.7~[d^{-1}]$), the mass transfer of oxygen ($K_{a,O2}=9.2E\text{-}03~[\text{s}^{-1}]$) and carbon dioxide ($K_{a,CO2}=9.0E\text{-}03~[\text{s}^{-1}]$) were all in agreement with literature ranges for tubular photobioreactors [9].

Mass transfer coefficients depend on, temperature, mixing and most importantly, the extension of the surface interface. Thus, variable values of mass transfer coefficients from vertical and horizontal photobioreactors are due to different design and scale-up of bubble column and open-tanks, respectively.

Also the culture medium influences the mass transfer coefficients and the maximum growth rate of microalgae. In this work the horizontal photobioreactor was filled with agricultural runoff which could be contain few concentrations of bacteria and other microorganisms. The activity of these microorganisms could influence dissolved oxygen and carbon dioxide concentrations in the medium culture, and therefore could slightly affect the values of the calibrated parameters. However, single microscopic observations during the experiment indicated that their concentration was irrelevant in

comparison to microalgae (as usual in this type of PBR), and thus their influence is considered very low or almost negligible. Calibrating the model in two different photobioreactors (e.g., horizontal and vertical) with different types of media has proved the robustness and resilience of the mathematical model to operate under variables conditions.

4.3 Study case: microalgae production as a function of temperature and irradiance

Irradiance and temperature play an important role in microalgae production. These physical factors influence biokinetic and chemical processes related to microalgae growth. Irradiance is strictly correlated to photosynthesis rate. At high level of irradiance, microalgae become 'light saturated' because photosynthesis cannot process more photons. As result, the rate of photosynthesis progressively starts to stabilize [9, 13]. Temperature influences the equilibrium of chemical species (carbon and nitrogen), uptake of nutrients, transfer of gases to the atmosphere, and especially the microalgae growth rates. The optimal temperature for microalgae growth ranges between 15°C and 25°C, depending on the species [5, 19]. Temperature above or below this range negatively affects biomass yield.

Thanks to the model, previously calibrated with daily experimental data, has been possible to make predictions of microalgae production over long-term with different environmental factors, such as temperature and irradiance. Simulations of the average daily microalgae production at a monthly scale in the vertical photobioreactor are presented in Fig 7. As can be observed simulations indicate that production is generally higher under daily temperature variations due to a more favorable temperature range (Supplementary Table 3). Table 5 presents the annual microalgae production comparing the two scenarios studied: under controlled temperature and with daily temperature variations. Although the growth of microalgae decreases with high temperature and irradiance during the months of June, July and August (when the

highest temperatures of the year occur), total annual production of microalgae exposed to daily temperature variations is higher than the reactor under controlled temperature. To optimize production, it might be considered to only use cooling water during the hottest months (June, July and August). Moreover, simulations results show that during the summer the production is also inhibited due to high dissolved oxygen concentrations throughout loop configuration up to 250% of air saturation (see next section).

4.4 Study case: oxygen concentration

Fig. 8 shows the simulations of the dissolved oxygen profile throughout the 400 m length of the vertical photobioreactor at noon (when the highest temperature occurs) in the months of January and July. These two months were selected as they represent the minimum and maximum microalgae activity in a monthly basis time scale. As can be seen, the lower light intensity and temperature in January gives as a result lower dissolved oxygen concentrations in contrast to July. Also it can be observed in both months how dissolved oxygen concentration increases throughout the loop and decreases in the bubble column. In July, transfer of excess of dissolved oxygen to the atmosphere throughout the airlift permits to re-establish, at the beginning of loop configuration, the oxygen level under the maximum concentration of oxygen dissolved in water (32 gO₂ m⁻³) equal 350% of saturation (9.07 gO₂ m⁻³) [1, 8]. This property of the photobioreactor design is especially important in warm months (such as July), when a high photosynthetic activity could cause inhibition due to oxygen accumulation.

The model presented in this work allows to simulate and study microalgae growth inhibition due to high dissolved oxygen concentrations thanks to the inclusion of a photorespiration factor $f_{PR}(S_{O2})$ [27]. The function $(f_{PR}(S_{O2}))$ in Fig. 9 describes that for dissolved oxygen concentrations lower than the $250\%S_{O2}^{SAT}$ (22.67 gO₂ m⁻³) the photosynthesis rate is reduced by 10%. Above this value, the photosynthesis rate

decrease more quickly with a vertical asymptote and is equal at zero when dissolved oxygen reaches the 350% saturation limit ($\tau S_{O2}^{SAT} = 32 \text{ gO}_2 \text{ m}^{-3}$).

In process design, the current model can be used to find the maximum photobioreactor length to avoid oxygen inhibition. For example, for the month of July, simulations were conducted using half the previous bubble column volume (from 0.44 m³ to 0.22 m³) in the vertical photobioreactors loops (400 m and 250 m). As seen in Fig. 10, reducing the volume of the bubble column and keeping the original loop configuration length (400 m), the simulation results show that the DO exceeds the saturation limit 1 inhibiting microalgae growth. The volume of bubble column is not enough to transfer the excess of dissolved oxygen to the atmosphere. On the contrary, simulations indicate that a 250 m length, photobioreactor greatly reduces the oxygen accumulation.

5. Conclusion

In this paper a new mechanistic model to simulate microalgae growth was calibrated in two different tubular photobioreactors. Fluid flow, transport equations and light attenuation were included in the model described in our previous work and implemented in COMSOL MultiphysicsTM software. Uncertainty parameters from previous sensitivity analysis were calibrated in each photobioreactor. The results of calibration indicate that the mass transfer of gases and the maximum specific growth rate of microalgae fit well within literature ranges. Moreover, the developed model demonstrates potential prediction of oxygen accumulation throughout the loop configuration and daily microalgae production as a function of temperature and irradiance. The model proves to be an efficient tool for photobioreactor design and production optimization.

- 437 [1] Acién Fernández F.G., Fernández Sevilla, J.M., Molina Grima, E. 2013. Photobioreactors
- 438 for the production of microalgae. Reviews in Environmental Science and Bio/Technology,
- 439 Volume 12, Issue 2, pp 131-151.
- 440 [2] Al-Rawahi, N.Z., Zurigat, Y.H., Al-Azri N.A. 2011. Prediction of Hourly Solar Radiation on
- 441 Horizontal and Inclined Surfaces for Muscat/Oma. The Journal of Engineering Research, Vol 8,
- 442 No 2, 19-31.

443

- 444 [3] APHA-AWWA-WPCF, 2001. APHA-AWWA-WPCF Standard Methods for the
- Examination of Water and Wastewater, twentieth ed. American Public Health association,
- 446 Washington DC.

447

- 448 [4] Bernard, O., Masci, P., Sciandra, A., 2009. A photobioreactor model in nitrogen limited
- conditions. In: Proceedings of the sixth conference on mathematical model- ling, Vienna.
- 450 [5] Bitog, J.P., Lee, I.-B., Lee, C.-G., Kim, K.-S., Hwang, H.-S., Hong, S.-W., Seo, I.-H.,
- Kwon, K.-S., Mostafa, E. 2011. Application of computational fluid dynamics for modelling and
- designing photobioreactors for microalgae production: A review. Computers and Electronics in
- 453 Agriculture, 76(2), 131–147.
- 454 [6]. Bonachela, J.A., Raghib, M., Levin, S.A. 2011. Dynamic model of flexibile phytoplankton
- 455 nutrient uptake. Proc. Natl. Acad. Sci. U.S.A. 108, 20633-200638.
- 456 [7] Boussiba, S. Shadler, T., Karamanos, T.Y., Mollion, J., Morva, H., Verdus, M.C.,
- 457 Christiaen, D. 1986 Anabaena azollae as a nitrogen biofertilizer. Algal biotechnology, 169-178.
- 458 [8] Camacho Rubio F., García Camacho F., Fernández Sevilla J.M., Chisti Y., Molina Grima E.,
- 459 2003. A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng. 81(4): 459–73.
- 460 [9] Camacho Rubio F., Acién Fernández F.G., García Camacho F., Sánchez Pérez J.A., Molina
- 461 Grima E., 1999. Prediction of dissolved oxygen and carbon dioxide concentration profiles in
- tubular photo- bioreactors for microalgal culture. Biotechnology and bioengineering 62, 71–86.

- 463 [10] Carvalho, L. B., Souza, M. C., Bianco, M. S., Bianco, S. 2011. Estimativa da área foliar de
- plantas daninhas de ambiente aquático: Pistia stratiotes. Planta daninha, v. 29, n. 1, p. 65-68,
- 465 2011.
- 466 [11] Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances 25, 294-306.
- 467 [12] Costache T. A, Acién Fernández F.G., Morales M., Fernández Sevilla J.M., Stamatin, I.,
- 468 Molina, E., 2013 Comprehensive model of microalgae photosynthesis rate. Appl Microbiol
- 469 Biotechnol., 17:7627-37
- 470 [13] Craggs, R.J., Heubeck, S., Lundquist, T.J., Benemann, J.R. 2011. Algae biofuel from
- wastewater treatment high rate algal ponds. Water Sci. Technol. 63(4), 660-665.
- 472 [14] Dauta, A., Devaux, J., Piquemal, F., Boumnich, L. 1990. Growth rate of four freshwater
- algae in relation to light and temperatura. Hydrobiologia 207, 221-226.
- 474 [15] Fernández, I. Acién, F.G., Berenguel, M., Guzmán J.L., Andrade, G.A., Pagano, D.J. 2014.
- 475 A Lumped parameter chemical-physical model for tubular photobioreactors. Chemical
- 476 Engineering Science 112, 116-129.
- 477 [16] Fernández, I., Acién, F.G., Fernández, J.M., Guzmán, J.L., Magán, J.J., Berenguel, M.
- 478 2012. Dynamic model of microalgal production in tubular photobioreactor. Biosource
- 479 Technology 126, 172-181.
- 480 [17] Hase, R., Oikawa, H., Sasao, C., Morita, M., Watanabe, Y., 2000. Photosynthetic
- 481 production of microalgal biomass in a raceway system under greenhouse conditions in Sendai
- 482 city. J. Biosci. Bioeng. 89 (2), 157–163.
- 483 [18] Hulatt, C.J., Thomas, D.N., 2011. Productivity, carbon dioxide uptake and net energy
- return of microalgal bubble column photobioreactors. Biosour. Technol. 102, 5775-5787.
- 485 [19] Larsdotter, K., 2006. Wastewater treatment with microalgae-a literature review. Vatten,
- 486 31–38.

- 487 [20] Molina Grima, E., Fernández, J., Acién Fernández, G., Chisti, Y., 2001. Tubular
- 488 photobioreactor design for algae cultures. Journal of biotechnology 92, 113–131.
- 489 [21] Molina Grima, E., 1999. Mass culture methods. In: Flickinger, M.C., Drew, S.W. (Eds.),
- 490 Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, vol. 3.
- 491 Wiley, pp. 1753–1769.
- 492 [22] Novak, J.T., Brune, D.E. 1985. Inorganic carbon limited growth kinetics of some
- freshwater algae. Water Res. 19, 215-225.
- 494 [23] Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M. 2011. Growth and neutral
- 495 lipid synthesis in green microalgae: a mathematical model. Bioresour Technol; 102:111–7.
- 496 [24] Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L.,
- 497 Vanrolleghem, P., 2001. River Water Quality Model no. 1 (RWQM1): II. Biochemical process
- 498 equations. Water science and technology: a journal of the International Association on Water
- 499 Pollution Research 43(5), 11–30.
- 500 [25] Sanchez, J.F., Fernández-Sevilla, J.M., Acíen, F.G., Ceron, M.C., Perez-Parra, J. &
- Molina-Grima, E., 2008. Biomass and lutein productivity of Scenedesmus almeriensis:
- influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol., 79, 719–
- 503 729.
- 504 [26] Silva, H.J., Pirt, J. 1984. Carbon dioxide inhibition of photosynthetic growth of chlorella.
- Journal of General Microbiology, 130, 2833-2838.
- 506 [27] Solimeno, A., Samsó, R., Uggetti, E., Sialve, B., Steyer, J.P., Gabarró, A., García, J. 2015.
- New mechanistic model to simulate microalgae growth. Algal Research 12, 350-358.
- 508 [28] Solimeno. A., Samsó, R., García, J. 2016. Parameter sensitivity analysis of a mechanistic
- model to simulate microalgae growth. Algal Research 15, 217-223.
- 510 [29] Stokes, G. 1851. On the Effect of the Internal Friction of Fluids on the Motion of
- Pendulums. Transactions of the Cambridge Philosophical Society 9: 8–106.

- 512 [30] Ugwu, C.U., H. Aoyagi and H. Uchiyama, 2008. Photobioreactors for mass cultivation of
- 513 algae. Bioresour. Technol., 99: 4021-4028.
- 514 [31] Wang, B., Lan, Q., Horsman, M., 2012. Closed photobioreactors for production of
- microalgal biomasses. Biotechnology Advances 30 904–912.
- 516 [32] Weissmand, J.C., Goebel, R.P., 1987. Design and Analysis of Microalgal Open Pond
- 517 Systems for the Purpose of Producing Fuels. SERI/STR-231-2840.
- 518 [33] Wu, X., Merchuk, J., 2001. A model integrating fluid dynamics in photosynthesis and
- photoinhibition processes. Chemical Engineering Science 56, 3527–3538.