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Abstract

In our previous papers [11, 13] we showed that the Hamilton–Jacobi problem can be regarded as

a way to describe a given dynamics on a phase space manifold in terms of a family of dynamics

on a lower-dimensional manifold. We also showed how constants of the motion help to solve

the Hamilton–Jacobi equation. Here we want to delve into this interpretation by considering

the most general case: a dynamical system on a manifold that is described in terms of a family

of dynamics (‘slicing vector fields’) on lower-dimensional manifolds. We identify the relevant

geometric structures that lead from this decomposition of the dynamics to the classical Hamilton–

Jacobi theory, by considering special cases like fibred manifolds and Hamiltonian dynamics, in the

symplectic framework and the Poisson one. We also show how a set of functions on a tangent

bundle can determine a second-order dynamics for which they are constants of the motion.

Key words: Hamilton–Jacobi equation, slicing vector field, complete solution, constant of the

motion.
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1 Introduction

Hamilton–Jacobi theory originated with Hamilton to deal with what nowadays is called Hamil-

tonian optics, i.e. to describe the ray propagation of light, and with Jacobi who was interested

in devising a procedure to integrate equations of motions when they are given in canonical form.

In Jacobi’s own words: “After we have reduced the problems of mechanics to the integration of a

nonlinear first order partial differential equation, we must concern ourselves with the integration

of the same, i.e., with the search for a complete solution” [25, p. 183]. Hadamard [22, 23] and

Volterra [53] derived the Hamilton–Jacobi equations by considering the short-wave limit of wave

equations. It was this association which paved the way for de Broglie to introduce the relation

p dx−H dt = ~ (k dx− ω dt)
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relating wave concepts with particle concepts [2]. Using this analogy, Schrödinger proposed the

evolutionary equation for wave mechanics, opening the route to a formalism able to describe

physical phenomena at atomic scale. (A geometrical description of the quantum–to–classical

transition on space–time was elaborated by Synge [47].)

Concerning the role of solutions to the Hamilton–Jacobi equation, providing a family of

solutions for Hamilton’s equations, Dirac wrote [18]: “The family does not have any importance

from the point of view of Newtonian mechanics; but it is a family which corresponds to one

state of motion in the quantum theory, so presumably the family has some deep significance in

nature, not yet properly understood”. These general comments are aimed at contextualizing

the role of the Hamilton–Jacobi theory in theoretical physics. To enter the raison d’être of the

present paper, let us recall how Hamilton–Jacobi theory is usually dealt with in textbooks and

works on analytical mechanics [3, 21, 39, 44, 26, 57].

Hamilton–Jacobi theory is usually considered when dealing with canonical transformations

to define them by means of generating functions. Specifically, by using canonical coordinates,

say (p, q; t) and (p̄, q̄; t), one looks for a function S:Q×Q× R → R such that

p dq −H dt = p̄ dq̄ −K dt+ dS(q, q̄; t) ,

with H and K Hamiltonian functions on phase space. The associated transformation is defined

by means of the implicit equations

p =
∂S

∂q
, p̄ = −∂S

∂q̄
, K −H =

∂S

∂t
,

and this canonical transformation, if it exists, converts the Hamiltonian system described by H

into the one described by K. By further requiring that K is a constant or that it is a func-

tion depending only on p̄, one relates the original system to another one which is completely

integrable, and therefore integrable by quadratures.

The short-wave limit point of view starts from a second order partial differential equation of

hyperbolic type and derives what is known as the eikonal equation
(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2

= n2(x, y, z)

with n denoting the refractive index [9, p. 119] [19, p. 108]. The function S is usually called the

eikonal function or the characteristic function. As a matter of fact, Hamilton introduced two

functions, S(t, x, y, z), called the principal function, and putting W (x, y, z)− t E = S(t, x, y, z),

W was called the characteristic function [52].

From the point of view of Jacobi [25], the integration of Hamilton’s equations is achieved by

solving first the first-order differential equation on configuration space

dqj

dt
=

∂H

∂pj

∣∣∣∣
pj=

∂S

∂qj

;

then, setting

pj =
∂S

∂qj
(t, qj(t)) ,
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one finds a full solution of Hamilton’s equations with initial condition (qj(0), pj(0), t = 0). Thus,

from this point of view, the Hamilton–Jacobi equation is instrumental to define a family of

first–order differential equations on configuration space whose solutions will eventually produce

solutions for the Hamilton equations on phase space. In the first-order differential equation

(fode, in the sequel)
dqj

dt
=

∂H

∂pj

∣∣∣∣
pj=

∂S

∂qj

one changes the values of the arbitrary constants appearing in a complete integral function S

and obtains a family of fodes. The solutions of each one of these equations are the solutions

alluded to by Dirac and correspond to a given S, related to the phase of the wave function in

quantum mechanics.

Therefore a complete solution to the Hamilton–Jacobi equation gives rise to a family of first-

order differential equations on the configuration space, say Q, which are sufficient to recover all

the solutions to Hamilton’s equations on T∗Q. From the geometrical point of view, a complete

solution amounts to an invariant foliation of T∗Q, with leaves diffeomorphic to Q and transverse

to fibres of the cotangent bundle projection. A family of first–order differential equations is

obtained by restricting the Hamiltonian vector field to each leaf of the invariant foliation.

From all that we have said about Hamilton–Jacobi theory it is clear that we may identify

two main aspects in the Hamilton–Jacobi theory. The first one is to solve a fode in a manifold P

(usually T∗Q) by solving an associated family of fode’s on a lower dimensional manifold Q; when

all the solutions may be found in this manner, the family is said to be complete. The second one

consists of finding this complete family by solving an associated PDE for a single function S,

this would be the analog of the eikonal equation.

To analyse these problems we introduce a general scheme by means of a vector field Z on

a manifold P , along with a fibration P → M . We consider all the integral curves of Z on P

and project them onto M . Having all these curves on M , we would like to ‘group’ them into

coherent sets of integral curves for vector fields on M . In other terms, we would like to put

together all those integral curves of Z which may be obtained as integral curves of a certain

vector field X on M . If all integral curves of Z may be grouped into families such that each

family, after projection, arises as integral curves of a vector field X on M , we say that the family

of vector fields X is a complete slicing of the dynamics Z, or that it is a complete solution to

the generalized Hamilton–Jacobi problem. This paper deals mostly with the first aspect, i.e., to

solve a differential equation on P by means of a familly of differential equations on Q.

A similar problem, i.e. going from trajectories to vector fields on M , was discussed in [40,

chapter 6]. It is shown there that, in this generality, by no means the problem will have solutions.

Thus, the existence of a family of vector fields on M sufficient to reproduce all integral curves of

Z on P will put quite strong conditions on Z. We have already remarked that for Hamiltonian

systems on P = T∗Q the existence of the family would require Z to be a completely integrable

system. Of course a kind of inverse problem could be posed: given a family of vector fields

on M , is it possible to find a vector field Z on P such that it would be possible to represent

the whole family of integral curves of the various vector fields on M as projections of integral
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curves of the vector field Z on P? Let us stress that these problems would arise in particular

physical problems like motion of particles with internal structure and in general in problems

with restricted allowed Cauchy data, for instance, gauge terms. It would also occur in quantum

mechanics when we consider a composite system and we would like to describe it in terms of

the evolution of subsystems (entanglement would be an obstruction to the solution of the posed

inverse problem). A single case where the inverse problem has a nice solution is provided by

a second order vector field on TQ, completely determined by a suitable family of functionally

independent constants of the motion, as we show at the end of the paper.

To pin-point the geometrical contents of the standard Hamilton–Jacobi equation, first we

shall consider the usual Hamilton–Jacobi theory from a more geometric point of view. In the

usual approach P = T∗Q, and π:P → Q is the usual cotangent bundle projection. The dy-

namical vector field Γ = Z solves the equation iΓω = dH, where ω is the canonical symplectic

structure in T∗Q and H is the Hamiltonian function. By using the symplectic potential for ω,

say ω = −dθ0, we define a vector field ∆, i∆ω = θ0, which represents the linear structure along

the fibers, and the Hamilton–Jacobi equation for S becomes

(dS)∗θ0 = dS , (dS)∗H = E ,

where E is a ‘parameter’. When S is a complete integral, we have that dS:Q×N → T∗Q is a

diffeomorphism for ‘most initial conditions’ for Γ. It provides a dimQ-foliation of T∗Q (or some

open dense submanifold of it) transversal to the fibers. The vector field Γ, restricted to each

leaf, being tangent to it, defines a vector field which projects onto a vector field X defined on

Q. There would be a vector field X for each leaf. In this manner the invariant foliation defines

a family of first-order differential equations on Q, each one of them being the projection of the

restriction of Γ to the invariant leaf. This means that Γ may be replaced by the family of vector

fields that we obtain by restricting Γ to a family of leaves transversal to the fibres. Thus the

issue becomes how to find an invariant foliation transversal to fibres.

These and other intrinsic considerations about the Hamilton–Jacobi equation can be found

in [1, 37, 38]. In addition, in [11] a general geometric framework for the Hamilton–Jacobi theory

was presented and the Hamilton–Jacobi equation in the Lagrangian and in the Hamiltonian for-

malisms was formulated for autonomous and non-autonomous mechanics, recovering the usual

Hamilton–Jacobi equation as a special case in this generalized framework. The relationship be-

tween the Hamilton–Jacobi equation and some geometric structures of mechanics were analyzed

also in [7, 12]. A similar generalization of the Hamilton–Jacobi formalism was outlined in [27].

Later on, these geometric frameworks were used to develop the Hamilton–Jacobi theory in many

different situations. Thus, in [8, 13, 30, 24, 41, 42] this is done for holonomic and non-holonomic

mechanical systems, in [20, 29, 32, 33] the theory is extended for singular systems, in [4, 28]

and [34] for geometric mechanics on Lie algebroids and almost-Poisson manifolds respectively,

in [6, 54, 55] for control theory, in [10, 31, 35, 36, 51] for different formulations of classical field

theories (and in [50] for partial differential equations in general), and in [15, 16, 17, 49] for higher

order dynamical systems and higher-order field theories. Finally, the geometric discretization of

the Hamilton–Jacobi equation is also considered in [5, 43].

In particular, in our previous papers [11, 13] we saw that the Hamilton–Jacobi problem
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can be regarded as a way to describe a given dynamics on a phase space manifold in terms of

a family of dynamics on a lower-dimensional manifold. Moreover, we saw that the existence

of many constants of the motion for the given dynamics helps to solve the Hamilton–Jacobi

problem. The aim of this paper is to look more deeply into this interpretation by considering

the most general case and identifying what are the relevant geometric structures.

We should remark that our framework allows to handle dynamical vector fields which cannot

be handled with classical approaches to Hamilton–Jacobi equation. For instance, suppose we

have a completely integrable Hamiltonian system given by a Hamiltonian vector field ZH ; its

Hamilton–Jacobi equation has a complete solution, and therefore we have a complete slicing

of the dynamics. Then consider a new dynamics given by Z ′ = f ZH , where f is a generic

function —this leads to a reparametrization of the integral curves. Our procedure allows to

construct a complete slicing for Z ′, although Z ′ may not be Hamiltonian. (An instance where

this reparametrization may be required is when ZH is not a complete vector field.)

The paper is organized as follows: In section 2 we present the general concepts and results

needed to state a more general framework for the Hamilton–Jacobi problem. The study of con-

stants of the motion and complete solutions and their relationship for this general setting is done

in section 3, by introducing the concept of slicing vector fields and complete slicings. Section 4

is devoted to discuss some particular situations deriving from this general framework, such as

Hamiltonian systems defined on symplectic and Poisson manifolds. The slicing problem is dis-

cussed again in section 5 in the case where the dynamical system, either general or Hamiltonian,

is defined on a generic fibered manifold. Finally, in section 6 we show how our previous results

in [11] are recovered form here, and we also study how the knowledge of enough constants of

the motion determines a second-order dynamics. Along the work, different examples are also

introduced to illustrate our results. All the manifolds and maps are assumed to be C∞.

2 Dynamical systems, invariant submanifolds and constants of

the motion

Dynamical systems

A dynamical system is a pair (P,Z) given by a manifold P and a vector field Z on P . This

defines a (first-order, autonomous) differential equation on P , γ′ = Z ◦ γ, for a path γ: I → P .

This dynamics may possess several features. For the purposes of this work we are especially

interested in invariant submanifolds and constants of the motion.

A submanifold M ⊂ P is said to be invariant by Z when the flow of Z leaves M locally

invariant, or, in other words, when every integral curve of Z meeting M is contained in M at

least for some time (if M is not closed then this integral curve may eventually leave it). These

conditions are equivalent to saying that Z is tangent toM . The preceding definition is applicable

to regular submanifolds but also to immersed submanifolds.

A particular instance of invariant submanifolds is provided by constants of the motion. In

its most elementary form a constant of the motion for Z is a function f :P → R such that, along

every integral curve γ of Z, the function f ◦ γ is constant. This is equivalent to saying that the
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Lie derivative of f with respect to Z is zero, LZf = 0. In the same way one can consider a

vector-valued constant of the motion F :P → Rn, whose components are scalar constants of the

motion, or, more generally, a manifold-valued map F :P → N such that for every integral curve

γ the map F ◦ γ is constant. If c ∈ N , then the closed subset F−1(c) ⊂ P is clearly invariant

by Z. So, those of the sets F−1(c) that are not empty constitute a partition of P . In some cases

we can ensure that they are also submanifolds, for instance when F is a submersion. In this

case, constants of the motion provide a whole family of invariant submanifolds.

Of course, not all invariant submanifolds are levels sets of constants of the motion. A very

simple example is given by the planar system ẋ = −y + x(1−x2−y2), ẏ = x + y(1−x2−y2),

that reads in polar coordinates ṙ = r(1−r2), φ̇ = 1; it has an equilibrium point (the origin), a

limit cycle (r = 1), and no nontrivial global constants of the motion. More interesting examples

are provided by Liénard’s equation and the particular case given by van der Pol’s equation. For

instance, the system ẋ = −y + x sin(x2 + y2), ẏ = x + y sin(x2 + y2), has a countable number

of limit cycles.

A general framework for the Hamilton–Jacobi theory: slicing vector fields

One of the distinctive facts of the Hamilton–Jacobi equation is that it allows to describe the

dynamics given by the Hamilton equation on the cotangent bundle in terms of a family of first-

order dynamics on the configuration space (as for instance in [1, theorem 5.2.4]). According to

this general principle, to describe the dynamics Z on P in terms of other dynamics on lower-

dimensional manifolds, we consider another manifold M , a vector field X on M , and a map

α:M → P . The following diagram captures the situation:

TM
Tα //

��

TP

��

M
α //

X

HH

P

Z

VV

What can be said about the relation between X, α and Z? The following results are well-known:

Proposition 1 Given the preceding data, the following properties are equivalent:

1. For every integral curve ξ of X, ζ = α ◦ ξ is an integral curve of Z.

2. X and Z are α-related (X ∼
α
Z), that is to say,

Tα ◦ X = Z ◦ α , (1)

Suppose moreover that α is an injective immersion, thus inducing a diffeomorphism α◦:M →
α(M) of M with an immersed submanifold α(M) ⊂ P . Then the preceding properties are also

equivalent to

3. Z is tangent to α(M), and, if Z◦ is the restriction of Z to α(M), X is given by the pullback

X = α∗
◦(Z◦).
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In this case, the map ξ 7→ α ◦ ξ is a bijection between integral curves of X and integral curves

of Z passing through α(M).

When these conditions hold, we can regard X as a ‘partial dynamics’, or a ‘slice’ of the

dynamics given by Z. Eventually, if we knew enough of these slices, we could recover the whole

dynamics of Z.

Definition Given a dynamical system (P,Z), we will call a slicing of it a triple (M,α,X)

satisfying the slicing equation (1).

When α is an immersion the vector field X, if it exists, is uniquely determined by α and Z;

so, in this case, we can speak of (M,α) being a solution of the slicing equation for (P,Z). This

hypothesis will hold in many applications, in particular for the sections α of a bundle P → M

(as a matter of fact, they are embeddings).

As we will see later on in this paper, equation (1) may be thought of as a generalisation of

the Hamilton–Jacobi equation. One of our main purposes is to identify the precise conditions

that take us from the slicing equation to the Hamilton–Jacobi equation.

Coordinate expression Let us express equation (1) in coordinates. Consider coordinates

(xi) in M , (zk) in P , and use them to express the map α(x) = (ak(x)) and the vector fields

X = Xi ∂/∂xi, and Z = Zk ∂/∂zk. Then the difference Tα ◦ X − Z ◦ α reads

(xi) 7→
(
ak(x),

∂ak

∂xi
Xi − Zk(α(x))

)
,

and so (M,α,X) is a solution of the slicing equation iff
∂ak

∂xi
Xi(x) = Zk(α(x)).

Gauge freedom of the solutions

The notion of a slicing of Z has a certain ‘gauge freedom’, in the sense that with a given solution

(M,α,X) there exist many associated solutions that are equivalent to it: if ϕ:M ′ → M is a

diffeomorphism then (M ′, α ◦ ϕ,ϕ∗(X)) is also a solution of the slicing equation. There are two

situations where this freedom can be easily removed.

One, to be studied later on, occurs when P is assumed to be fibred over a manifold and one

only deals with maps α that are sections of this projection.

The other one is provided by invariant submanifolds of P . Indeed, this is an immediate

consequence of proposition 1:

Corollary 1 Let P◦ ⊂ P be a regular submanifold. The canonical inclusion j:P◦ →֒ P is a

solution of the slicing equation iff Z is tangent to P◦.

Every other solution given by an embedding α with α(M) = P◦ is equivalent to it.
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3 Constants of the motion and complete solutions

Constants of the motion

We still deal with our dynamical system (P,Z). A (generalized) constant of the motion of it is

a map F :P → N into another manifold N satisfying the following property: for any integral

curve ζ: I → P of Z, F ◦ ζ is constant.

Example We consider the isotropic harmonic oscillator with two degrees of freedom (with

phase space R4),

ẋ = −y

ẏ = x.

All its integral curves are a foliation of R4 − {0} ∼= S3 × R+ onto R3 − {0} ∼= S2 × R+ and the

projection R4 − {0} → R3 − {0} (Kustaanheimo–Stiefel map), or S3 → S2, is a constant of the

motion.

We have several characterisations of this property:

Proposition 2 The following properties are equivalent:

1. F is a (manifold valued) constant of the motion.

2. Each integral curve η of Z is contained in a level set F−1(c) of F .

3. Z is F -related with the zero vector field of N : (Z ∼
F
0).

Suppose moreover that F is a submersion (thus KerTF ⊂ TP is an integrable tangent subbundle

whose associated foliation has as leaves the level sets F−1(c), which are closed submanifolds

of P ). Then the preceding properties are also equivalent to

4. Z takes its values in KerTF .

5. Z is tangent to every level set F−1(c).

The following diagram summarizes the situation:

TP
TF //

��

TN

��

I
η // P

F //

Z

HH

N

0

VV

The tangency of Z to a certain submanifold shows up in propositions 1 and 2. This com-

parison suggests that a constant of the motion is related to a whole family of solutions of the

slicing equation, as we are going to show.

Complete solutions

A single solution α:M → P , X:M → TM , of the slicing equation allows to describe the integral

curves of Z contained in α(M) ⊂ P . To describe all of its integral curves we need a complete

solution. This can be defined as a family of solutions indexed by some parameter space N .
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Definition Given a dynamical system (P,Z), a complete slicing of it is given by

• a map α:M ×N → P and

• a vector field X :M ×N → TM along the projection M ×N → M

(that is, smooth families of maps αc ≡ α(·, c):M → P and vector fields Xc ≡ X(·, c):M → TM ,

both indexed by the points c ∈ N) such that:

• α is surjective (or at least its image is an open dense subset), and

• for each c ∈ N , the map αc:M → P and the vector field Xc:M → TM constitute a slicing

of Z.

TM ×N
T1α //

��

TP

��

M ×N
α //

X

HH

P

Z

VV

Since (almost) every z ∈ P is the image by α of a point (x, c) ∈ M ×N , the integral curve of Z

through z can be described as the integral curve of Xc through x by means of the map αc.

When each αc is an immersion (for instance, when α is a diffeomorphism) the vector fields

Xc are determined by the αc, so in this case we do not need to specify X to define the complete

solution.

Example The simplest example of a solution of the slicing equation for a vector field Z is just

given by its integral curves α: I → P . Indeed, consider the following diagram:

TI
Tα //

��

TP

��

I
α //

d

dt

HH
α′

==
③
③
③
③
③
③
③
③
③

P

Z

VV

The commutativity of its upper triangle is the definition of the velocity α′, whereas the commu-

tativity of the lower one is the assertion that α being an integral curve of Z. When this holds,
d
dt ∼α Z, which means that α is a solution of the slicing equation for Z.

Let z ∈ P be a noncritical point of Z. Then one can build a local complete slicing around z.

To this end, consider a hypersurface N ⊂ P containing z, and such that Z(z) is transversal to N .

Then the restriction of the flow F of Z to a smaller product I◦ × N◦ gives a diffeomorphism

F◦: I◦ × N◦ → P◦ with an open neighbourhood P◦ of z, such that ∂
∂t

∼
F◦

Z. So, F◦ with ∂
∂t

is a complete slicing for Z restricted to P◦. Indeed, this is the usual procedure to prove the

straightening theorem for vector fields.

Local existence of complete slicings

The preceding example can be extended to prove a general existence theorem for complete

slicings. Indeed, we are going to prove that, under some regularity conditions, any given slicing

can be locally embedded in a regular local complete slicing.
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Theorem 1 Let (P,Z) be a dynamical system, and z◦ ∈ P a noncritical point of Z. Let

(M,α,X) be a solution of the slicing equation for Z, with z◦ = α(x◦), and such that α is an

immersion at x◦.

There exist an open neighbourhood M◦ of x◦, an open neighbourhood N◦ of 0 in Rn (where

n = dimP − dimM), and a diffeomorphism α:M◦ × N◦ → P◦ with an open neighbourhood P◦

of z◦, such that

• α is a complete slicing for Z|P◦
, and

• α(·, 0) = α|M◦
.

Proof Since the result is a local one, and every immersion is locally an embedding, the gauge

freedom of the solutions of the slicing equation allows us to suppose that M is a regular sub-

manifold of P and that α is the inclusion. The hypothesis is that Z is tangent to M .

The proof of the straightening theorem for vector fields can be adapted to construct co-

ordinates (z1, . . . , zm, . . . , zp) around z◦ such that M is locally described by zm+1 = . . . =

zp = 0, and that Z = ∂/∂z1. Then, in a small product M◦ × N◦, define α(x; s1, . . . , sn) =

(z1(x), . . . , zm(x), s1, . . . , sn), where the right-hand side is expressed in terms of these coordi-

nates. In a small neighbourhood of (x◦, 0) this is a diffeomorphism, and for every s ∈ N◦ the

vector field Z is tangent to the submanifold αs(M◦). Therefore α is a complete slicing of Z.

Relation between complete slicings, constants of the motion and connections

Now we are going to see that, under some regularity hypotheses, there is a close relationship

between complete slicings and constants of the motion.

Theorem 2 Let (P,Z) be a dynamical system, and α:M ×N → P a diffeomorphism. Then α

is a complete slicing for Z iff F = pr2 ◦ α−1:P → N is a constant of the motion for Z.

P
F // N

M ×N

α

OO

pr2

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇

Proof If α is a complete slicing, for each c ∈ N , α restricts to a map M ×{c} → αc(M) which

is a diffeomorphism, and all the integral curves of Z in αc(M) correspond to a common value

of c. This means the map F = pr2 ◦ α−1:P → N is a constant of the motion.

Conversely, from F = pr2 ◦α
−1 we have that, for every c, F (α(x, c)) = c, or αc(M) ⊂ F−1(c).

Both submanifolds have the same dimension, and, since F is a constant of the motion, Z is

tangent to F−1(c); therefore Z is tangent to αc(M), which proves that the αc are solutions to

slicing equation for Z.

This result shows that there is a bijection between complete slicings and constants of the

motion, but these are being assumed to satisfy a very strong regularity condition, which es-

sentially requires that all the level sets F−1(c) are diffeomorphic to a common manifold M , in
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such a way that gluing the collection of diffeomorphisms M → F−1(c) yields a diffeomorphism

α:M ×N → P . Of course, these conditions are very restrictive, but in practice they may hold

in a generic way. We will see this in some examples.

Example Consider the manifold R2 with the radial vector field Z = z1 ∂/∂z1+z2 ∂/∂z2, whose

integral curves are the equilibrium at the origin and the paths ζ(t) = et(a1, a2), (a1, a2) 6= (0, 0),

running along the half-lines from the origin.

To illustrate the preceding theorem we have to exclude the origin: P = R2 − {0}. The map

F :P → N = S1 given by F (z) = z/‖z‖ is clearly a constant of the motion for Z. Its level sets

F−1(u) (for u ∈ S1) are diffeomorphic to the real line M = R; for instance, by αu:R → P ,

αu(x) = exu. All together yield a diffeomorphism α:R × S1 → R2 − {0}: α(x, u) = exu. This

is a complete solution of the slicing equation for Z. The corresponding vector fields on M are

Xu = ∂/∂x.

The relationship between slicings and constants of the motion is lost when we do not consider

complete slicings. A solution of the slicing equation doesn’t need to preserve any given constant

of the motion, and the preservation of a constant of the motion does not guarantee that a map

is a slicing of the dynamics. The simplest way to show all this is by an example.

Example We consider the manifold P = R3, with coordinates (x, y, z), and the simple dy-

namics given by the vector field Z = ∂/∂x. The function F = z is obviously a constant of the

motion with values in R.

The map α:R2 → R3 given by α(u, v) = (u, v, 0), satisfies F ◦ α = 0, constant. On the other

hand, ᾱ(u, v) = (u, 0, v) satisfies (F ◦ ᾱ)(u, v) = v, not constant. Both α and ᾱ are solutions of

the slicing equation for (P,Z), since Z is tangent both to the planes α(R2) and ᾱ(R2).

Now consider β:R → R3 given by β(v) = (0, v, 0). Obviously F ◦β = 0 but β is not a solution

of the slicing equation since Z is not tangent to the line β(R).

Invariant foliations

The notion of complete solution is close to that of invariant foliation. Roughly speaking, a

foliation of P consists in describing it as the disjoint union of immersed submanifolds. This

defines an integrable tangent distribution on P , and conversely. The leaves of the foliation are

solutions of the slicing equation for Z iff Z is tangent to the foliation (or, in other words, if the

foliation is invariant by the flow of Z). Equivalently, iff Z is a section of the associated tangent

distribution.

So, if α:M × N → P is a complete slicing, bijective, and with every partial map αc an

immersion, then the submanifolds αc(M) are a foliation of P invariant by Z. However, not

every invariant foliation can be defined by a global diffeomorphism in this way.

Example Consider the ‘irrational linear flow’ on the 2–dimensional torus T2: ẋ = 1, ẏ = ry,

with r an irrational number. Its integral curves are dense immersions R → T2. These immersed
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submanifolds constitute a foliation of the torus invariant by the flow. However, there is no

diffeomorphism R×N → T2, as well as no nontrivial constants of the motion.

In the usual Hamilton–Jacobi theory a family of vector fields is usually determined by solv-

ing an associated partial differential equation of first order. This requires the use of a skew-

symmetric (0, 2)-tensor field which relates a vector field, say Z, with a 1-form. The skew-

symmetry ensures that the contraction of Z with the corresponding 1-form identically vanishes.

4 Slicing of Hamiltonian systems

In the standard Hamilton–Jacobi theory the skew-symmetric (0, 2)-tensor is assumed to be

the natural symplectic structure of the cotangent bundle. The classical Hamilton–Jacobi theory

makes an essential use of a symplectic structure. In view of this, we still consider the most general

slicing problem but now for a Hamiltonian system. Thus P is endowed with a symplectic form ω,

which defines a vector bundle isomorphism ω̂: TP → T∗P ; and Z = ZH is the Hamiltonian vector

field of a Hamiltonian function H:P → R: Z = ω̂−1
◦ dH.

Lemma 1 Consider a Hamiltonian dynamical system (P, ω,H) and Z = ZH its Hamiltonian

dynamical vector field. Let α:M → P be a map, and X an arbitrary vector field on M . We

have the following relations:

t(Tα) ◦ ω̂ ◦ Tα ◦ X = iXα∗(ω) ,

t(Tα) ◦ ω̂ ◦ Z ◦ α = dα∗(H) ,

where all the vector bundle sections and maps are understood to be over the base space M .

These relations are expressed in the following diagram (we insist that, since we have to work

with the transpose morphism t(Tα), all the involved vector bundles are considered over the base

space M):

TM

��

Tα // M ×α TP
ω̂ // M ×α T∗P

t(Tα) // T∗M

M

Tα◦X

Z◦α

99
s
s
s
s
s
s
s
s
s
s

iXα∗(ω)

dα∗(H)

33

Proof The map Tα ◦ X is a vector field along α, ω̂ ◦ Tα ◦ X is a differential 1-form along α,

and finally its composition with the transpose morphism t(Tα) (along M), t(Tα) ◦ ω̂ ◦ Tα ◦ X,

is the differential 1-form on M iXα∗(ω), since t(Tα) ◦ ω̂ ◦ Tα = α̂∗(ω).

On the other hand, since Z is the Hamiltonian vector field of H, ω̂ ◦ Z ◦ α = dH ◦ α, a

differential 1-form along α, and its composition with the transpose morphism t(Tα) is just de

pull-back by α of dH, t(Tα) ◦ ω̂ ◦ Z ◦ α = α∗(dH) = dα∗(H).

Proposition 3 With the preceding notations, if (M,α,X) is a solution of the slicing equation

for (P,Z), Tα ◦ X − Z ◦ α = 0, then

iXα∗(ω)− dα∗(H) = 0 . (2)
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Proof From the preceding lemma we have

t(Tα) ◦ ω̂ ◦ (Tα ◦ X − Z ◦ α) = iXα∗(ω)− dα∗(H) . (3)

Notice by the way that, if α∗(ω) were a symplectic form on M , then equation (2) would mean

that X is the Hamiltonian vector field associated with the Hamiltonian function α∗(H).

Coordinate expressions It is interesting to reproduce the proof of the previous equations

in coordinates. Again we have local charts (xi) in M , (zk) in P , and use them to express

α(x) = (ak(x)) and X = Xi ∂/∂xi. The symplectic form reads ω =
1

2
ωkℓ dz

k ∧ dzℓ, where

Ω = (ωkℓ) is skew-symmetric. The matrix of ω̂ is Ω⊤. And the Hamiltonian vector field

Z = ZH =
∂H

∂zℓ
ωℓk ∂

∂zk
, where (ωkℓ) = Ω−1.

Then Tα ◦ X − Z ◦ α in coordinates reads

(xi) 7→
(
ak(x);

∂ak

∂xi
Xi − ∂H

∂zℓ
(α(x))ωℓk(α(x))

)
.

And α∗(ω) =
1

2
ωkℓ(α(x))

∂ak

∂xi
∂aℓ

∂xj
dxi∧ dxj, iXα∗(ω) = Xi ωkℓ(α(x))

∂ak

∂xi
∂aℓ

∂xj
dxj, dα∗(H) =

∂H

∂zk
(α(x))

∂ak

∂xj
dxj, so that iXα∗(ω)− dα∗(H) reads

(
Xi ωkℓ(α(x))

∂ak

∂xi
∂aℓ

∂xj
− ∂H

∂zk
(α(x))

∂ak

∂xj

)
dxj .

We see that multiplying the local expression of Tα ◦ X − Z ◦ α by (ωkℓ) and then by (∂aℓ/∂xj)

we obtain the local expression of iXα∗(ω)− dα∗(H).

In general the morphism t(Tα) is not bijective, therefore the implication in the previous

proposition cannot be inverted. This is easily seen in an example.

Example Consider a Hamiltonian system (P, ω,H). Let α: I → P be any path that is not a

solution of the Hamilton’s equation, but such that H ◦ α = const, and consider the vector field

X = d
dt on I ⊂ R. Then iXα∗(ω)−dα∗(H) vanishes trivially, whereas, of course, Tα◦X−Z ◦α =

α′ − Z ◦ α 6= 0.

The preceding proposition gives a link between the slicing problem and the usual formulation

of the Hamilton–Jacobi equation, dα∗(H) = 0. However, we need to revert the direct implica-

tion, and this can be done in some cases, as it was already shown in our paper [11]. There are

at least two ways for doing this, according to whether we have an isotropy condition, as below,

or a fibred structure, as in the next section.

Isotropic and Lagrangian embeddings

In this subsection we are going to study slicings satisfying a geometric property with respect

to the symplectic form. First we need to recall that a submanifold M ⊂ P is called isotropic,

coisotropic or Lagrangian [56] when all the tangent spaces at each point are, which means:
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• isotropic: TzM ⊂ (TzM)⊥;

• coisotropic: (TzM)⊥ ⊂ TzM ;

• Lagrangian: isotropic and coisotropic: TzM = (TzM)⊥.

(Here the orthogonality is taken with respect to the symplectic form.)

An important type of solutions α:M → P of the slicing equation for Z satisfy the condition

α∗(ω) = 0 . (4)

When α has constant rank this condition means that, locally, the image α(M) ⊂ P is an isotropic

submanifold. When α is an immersion this requires that dimM ≤ 1
2 dimP . Of course, in this

case the preceding proposition takes a simpler form: a solution of the slicing problem satisfies

dα∗(H) = 0, whereas its converse is false, as is also shown by the same preceding example.

To go further, we need a couple of lemmas. The notation F ◦ ⊂ E∗ denotes the annihilator

of a vector subspace F ⊂ E.

Lemma 2 Suppose that α is an embedding, so that P0 = α(M) ⊂ P is a submanifold. Then:

• α∗(ω) = 0 iff ω̂(TP0) ⊂ (TP0)
◦, i.e., P0 ⊂ P is an isotropic submanifold.

• ω̂(TP0) = (TP0)
◦ iff ω̂(TP0) ⊂ (TP0)

◦ and dimP = 2dimM , i.e., P0 ⊂ P is a Lagrangian

submanifold.

Proof The first statement is a consequence of the fact that α∗(ω) is essentially the restriction

of ω to tangent vectors to α(M); the second one is a matter of dimension counting: m = p−m.

Lemma 3 If α is an embedding with α(M) = P0 then Ker t(Tα) = (TP0)
◦.

Proof Basic linear algebra applied to Txα for every x ∈ M .

Consider the following diagram, which contains all of these objects:

M×αTP0
� _

��

(M×αTP0)
◦

� _

��

M ×α TP
ω̂ // M ×α T∗P

t(Tα) // T∗M

M

Z◦α

OO

dH◦α

77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦ α∗(dH) = dα∗(H)

66

Theorem 3 Let (P, ω,H) be a symplectic Hamiltonian system, with Hamiltonian vector field Z,

and let α:M → P be an embedding.

If α is a solution of the slicing equation (1) (that is, Z is tangent to α(M)) and satisfies the

isotropy condition (α∗(ω) = 0) then α satisfies

dα∗(H) = 0 . (5)

Conversely, if α satisfies this equation and the Lagrangianity condition (α∗(ω) = 0 and dimP =

2dimM) then it is a solution of the slicing equation.
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Proof We have already proved the direct implication.

Conversely, if α∗(dH) is zero then dH ◦α takes its values in the kernel, which is (M×αTP0)
◦.

When the Lagrangianity condition ω̂(TP0) = (TP0)
◦ holds we conclude that Z ◦ α is a section

of TP0, or, in other words, that Z is tangent to P0, which is one of the ways of saying that α is

slicing of Z.

So for Lagrangian embeddings to solve the slicing equation is equivalent to solving equa-

tion (5). We call these solutions Lagrangian slicings of Z.

Constants of the motion and involutivity

In the preceding section we have observed the close relationship between complete slicings and

constants of the motion. So, consider a submersion F :P → Rn, with level sets Pc ≡ F−1(c).

Lemma 4 The functions F i are in involution, {F i, F j} = 0, iff all the level sets Pc are

coisotropic submanifolds of P .

When dimP = 2n this means that the Pc are Lagrangian submanifolds.

Proof The proof is easy, see [37, p. 101].

So, a complete slicing given by n constants of the motion in involution has coisotropic leaves,

and if dimP = 2n then the leaves are Lagrangian submanifolds, and conversely.

Remark As all our preliminary analysis has been made without the help of a (0, 2)-tensor

field, it is clear that when the vector field Z allows for alternative invariant skew symmetric

(0, 2)-tensor fields, it is possible to consider alternative cotangent bundle structures on P and

therefore different projections.

Example We can consider the isotropic harmonic oscllator and if we write, in coordinates

(x, p) ∈ R2,

x cosα+ P sinα = q , P cosα− x sinα = p ,

we have that dq ∧ dp = dx ∧ dP , d(p dq) = d(P dx).

The fibering vector fields p ∂/∂p and P ∂/∂P are diffeomorphically related but induce alter-

native cotangent bundle structures on R2 [14]

Local existence of complete Lagrangian slicings

In the preceding section we have proved a local existence theorem for complete slicings. Now

we are going to prove a similar result in the Hamiltonian framework, for solutions satisfying the

Lagrangianity condition. See also [46, p. 156].

Theorem 4 Let (P, ω,H) be a symplectic Hamiltonian system, with Hamiltonian vector field Z,

and z◦ ∈ P a noncritical point of H. There exists a Lagrangian slicing of Z passing through z◦.

Indeed, this slicing is contained in a local complete Lagrangian slicing of Z.
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Proof By applying the Carathéodory–Jacobi–Lie theorem —see for instance [37, p. 51]— H

can be included in a set of local Darboux coordinates (q1, . . . , qn,H = p1, . . . , pn) centered at z◦.

Then Z = ∂/∂q1 is tangent to the Lagrangian submanifolds of P defined by p1 = c1, . . . ,

pn = cn. These submanifolds constitute the complete slicing we sought.

Poisson Hamiltonian systems

The preceding argument can be adapted to the Poisson case. Let P be a manifold endowed with

an almost-Poisson tensor field Λ, that is to say, a section of Λ2TP . This defines a vector bundle

morphism Λ̂:T∗P → TP by
〈
β, Λ̂(α)

〉
= Λ(α, β). The image of this morphism, C = ImΛ̂ ⊂ TP ,

is called the characteristic tangent distribution of Λ. If Λ has constant rank then C is a vector

subbundle.

We will need a generalisation of the concept of Lagrangian submanifold to the Poisson case.

A submanifold P0 ⊂ P of an almost-Poisson manifold is called Lagrangian [48, p. 100] when

Λ̂ ((P0 ×P0
TP0)

◦) = TP0 ∩ (P0 ×P0
C) .

The almost-Poisson tensor field also defines an almost-Poisson bracket {f, g} = Λ(df,dg),

which is skew-symmetric and a derivation on each of its arguments (it does not necessarily satisfy

the Jacobi identity unless the Schouten bracket vanishes, i.e., [Λ,Λ] = 0).

Suppose that we have a Hamiltonian function H:P → R, which defines a Hamiltonian vector

field Z = ZH = Λ̂ ◦ dH and the corresponding Hamiltonian dynamics. We want to study the

slicing problem for (P,Z).

As before, we consider the elements in this diagram, but notice that Λ may be degenerate:

M×αTP0
� _

��

(M×αTP0)
◦

� _

��

M×αTP M×αT
∗P

Λ̂oo
t(Tα) // T∗M

M
Z◦α

dd

dH◦α

OO

α∗(dH)= dα∗(H)

<<

Lemma 5 Let E be a finite-dimensional vector space, E∗ its dual space, E0 ⊂ E a vector

subspace, λ:E∗ → E a linear map, δ ∈ E∗ a covector. Denote by E◦
0 ⊂ E∗ the annihilator of E0

and by tλ:E∗ → E the transpose map of λ. Then λ(δ) ∈ E0 iff δ ∈ (tλ(E◦
0 ))

◦. If moreover λ is

symmetric or skew-symmetric (tλ = ±λ), then λ(δ) ∈ E0 iff δ ∈ (λ(E◦
0 ))

◦.

Theorem 5 Let (P,Λ,H) be an almost-Poisson Hamiltonian system, with Hamiltonian vector

field Z. Let α:M → P be an embedding with image α(M) = P0. Then α is a solution of the

slicing equation iff

dH ◦ α is a section of
(
Λ̂ ((M ×α TP0)

◦)
)◦

. (6)
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Suppose that P0 ⊂ P is a Lagrangian submanifold. Then α is a solution of the slicing equation

iff

dH ◦ α is a section of (M ×α TP0)
◦ + (M ×α Ker Λ̂), (7)

that is to say, iff

α∗(dH) is a section of t(Tα)(Ker Λ̂). (8)

Proof The first statement is a consequence of the lemma.

As for the second statement, being P0 Lagrangian means that Λ̂ ((P0 ×P0
TP0)

◦) = TP0 ∩
(P0×P0

C). When restricted this to α and with the annihilator we have
(
Λ̂ ((M ×α TP0)

◦)
)◦

=

((M ×α TP0) ∩ (M ×α C))◦ = (M ×α TP0)
◦ + (M ×α C)◦, and remember that C◦ = Ker tΛ̂ =

Ker Λ̂.

The symplectic case is obtained when C = TP , or equivalently when Ker Λ̂ = {0}. Then for

the Lagrangian case the last statement in the theorem means that α is a slicing iff α∗(dH) = 0,

as was already given by theorem 3.

Example Consider P = R3 with coordinates (x, y, z) and the Poisson structure given by

the Poisson bracket {f, g} = z

(
∂f

∂y

∂g

∂x
− ∂f

∂x

∂g

∂y

)
—indeed, this is the Lie–Poisson structure

constructed from the Heisenberg Lie algebra [48, p. 153]. The Hamiltonian function H = 1
2z(x

2+

y2) defines the Hamiltonian vector field Z = z2
(
−y

∂

∂x
+ x

∂

∂y

)
.

We have two constants of the motion, x2 + y2 and z. Excluding the z-axis, all their level

sets are diffeomorphic to the unit circle; parametrising the circle with the natural angle, these

diffeomorphisms read αr,c(φ) = (r cosφ, r sinφ, c). It is easily checked that α∗
r,c(dH) = 0.

Since for c 6= 0 all these level sets are Lagrangian submanifolds, we conclude from the

preceding theorem that the αr,c constitute a complete Lagrangian slicing for Z on the open set

given by z 6= 0.

In general this situation prevails for Poisson manifolds and we have to consider Casimir

functions and constants of the motion in involution. Casimir functions identify ‘parameters’

(like mass, spin, charge, isospin, coloured charge) while the constants of the motion identify the

decomposition into vector fields on lower dimensional submanifolds

5 Slicing in fibred manifolds

In this section we consider a dynamical system (P,Z), where the manifold P is fibred over

another manifold, that is to say, we work in a fibre bundle π:P → M . We consider the slicing

problem as before:

TM
Tα //

��

TP

��

M
α //

X

HH

P
π

jj

Z

VV
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but only for sections of π, that is to say, for maps α:M → P such that π ◦ α = IdM . For this

problem there is not a ‘gauge freedom’ as mentioned in section 2: the submanifold α(M) ⊂ P

cannot be expressed as the image of any other section.

Since α is an embedding, we know that equation (1) determines X. Nevertheless, composing

this equation with the tangent map Tπ, we can give an explicit formula for X:

X = Tπ ◦ Z ◦ α . (9)

So, from now on we assume that X is defined by this equation from α. In this case, proposition 1

adopts the following form:

Proposition 4 A section α of π:P → M is a solution of the slicing equation for (P,Z) iff

Tα ◦ Tπ ◦ Z ◦ α = Z ◦ α ; (10)

that is to say, if Tα ◦ Tπ ◦ Z agrees with Z on the submanifold α(M).

Lemma 6 If α is a slicing section, the vector field along α defined as Tα ◦Tπ ◦Z ◦α−Z ◦α is

π–vertical.

Remember that the vertical subbundle of TP is VP = KerTπ. Its fibres are VzP = KerTzπ ⊂
TzP and are naturally identified with the tangent spaces to the fibres of π. Application of Tπ

to Tα ◦ Tπ ◦ Z ◦ α− Z ◦ α yields immediately zero since α is a section of π.

Sections, projectors, and connections

If α is a section of P , let us have a look at the composition Tα◦Tπ. At a given point z = α(x) ∈ P ,

Tz(α ◦ π): TzP → TzP is an endomorphism, and since Tπ ◦ Tα is the identity, we note that

Tz(α ◦ π) ◦Tz(α ◦ π) = Tz(α ◦ π), therefore it is a projector in TzP . Since Txα is injective, it is

clear that

KerTz(α ◦ π) = KerTzπ = VzP .

Therefore

ImTz(α ◦ π) = Tzα(M)

is a complementary subspace to VzP .

So we can write, for every x ∈ M , a direct sum decomposition

Tα(x)P = Vα(x)P ⊕ Tα(x)α(M) .

This can be written globally in the pull-back vector bundle:

M×αTP = M×αVP ⊕ M×αTα(M) .

Now suppose that we have not only a section but a family of non overlapping sections covering

the whole manifold P ; this can be defined by a diffeomorphism α:M × N → P , where each

αc = α(·, c) is a section of P , but this diffeomorphism could as well be defined on open sets of P .

The preceding study can be performed at every point z ∈ P , therefore the family α defines
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a horizontal subbundle, that is, a vector subbundle H ⊂ TP complementary to the vertical

subbundle VP ⊂ TP . A horizontal subbundle of TP is also called a (nonlinear) connection on

the bundle P . This horizontal subbundle is obviously integrable, its integral manifolds being

given by the embeddings αc.

Conversely, if a connection on the bundle P → M has integrable horizontal subbundle (which

amounts to saying that its curvature vanishes, see [45, p. 90]), then its integral manifolds are

locally the images of sections of the bundle.

Complete solutions and connections

Still working with the diffeomorphism α:M × N → P , when is it a complete solution of the

slicing equation for sections? In addition to defining an integrable horizontal subbundle, Z has

to be tangent to it. Therefore, locally, complete solutions of the slicing equation are equivalent

to connections on π:P → M , with zero curvature, and invariant by Z.

The Hamiltonian case on a fibred manifold

Here we consider both a bundle structure and a Hamiltonian structure on P . So, π:P → M is

a fibre bundle and (P, ω) is a symplectic manifold, and Z = ZH is a Hamiltonian vector field

(with Hamiltonian function H). Let α be a section of π, and let us determine if it is a slicing

section for Z. We wish to give a kind of converse to proposition 3, which relates Tα ◦X −Z ◦ α

with iXα∗(ω)− dα∗(H) (where X is given by X = Tπ ◦ Z ◦ α.)

TM

��

Tα // M×αTP
ω̂ // M×αT

∗P
t(Tα) // T∗M

M

Tα◦X−Z◦α

99
t
t
t
t
t
t
t
t
t
t iXα∗(ω)−dα∗(H)

44

In this diagram ω̂ is bijective, and, as we have already noted, the problem is that t(Tα) is not

injective, since Ker t(Tα) = (M×αTP0)
◦. However, we have also noted that Tα ◦ X − Z ◦ α is

π–vertical. Therefore we only need to impose the injectivity of the restriction of t(Tα) ◦ ω̂ to

the subbundle M×αVP , and this is equivalent to saying that

ω̂(M×αVP ) ∩ (M×αTP0)
◦ = {0} .

Lemma 7 With the preceding hypotheses, the following conditions are equivalent:

• The fibres of π:P → M are isotropic submanifolds (with respect to ω).

• For every couple of vertical vectors wz, w
′
z ∈ VzP ⊂ TzP one has ω(wz, w

′
z) = 0.

• ω̂(VP ) ⊂ (VP )◦.

Proof The equivalence of the first two is due to the fact that the vertical vectors are those that

are tangent to the fibres.
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Corollary 2 If α is a section of P and the fibres are isotropic then ω̂(M×αVP )∩(M×αTP0)
◦ =

{0}.

Proof The vertical+horizontal decomposition yields M×αT
∗P = (M×αVP )◦ ⊕ (M×αP0)

◦.

Theorem 6 Let (P, ω,H) be a Hamiltonian system on a fibre bundle π:P → M . Let α:M → P

be a section of π, and define its associated vector field X = Tπ ◦ Z ◦ α. Suppose that the fibres

of π are isotropic. Then α is a slicing section iff

iXα∗(ω)− dα∗(H) = 0 .

Proof As we have just shown, the isotropy condition implies that t(Tα) ◦ ω̂ is injective when

applied to vertical vectors. Therefore if iXα∗(ω)− dα∗(H) is zero then Tα ◦X −Z ◦ α also is.

Coordinate expressions Let’s understand the proof of the theorem on the light of coordi-

nates. We use coordinates (xi) in M and adapted coordinates (xi, yµ) in P . The section takes

the form α(x) = (x, aµ(x)) and its tangent map is represented by the matrix
(

I
A

)
, where A is

the jacobian matrix of the aµ. The symplectic form ω is represented by a skew-symmetric matrix

Ω =

(
Ωb N

−N⊤ Ωf

)
. The matrix of ω̂ is Ω⊤. Then the linear map t(Txα) ◦ ω̂z is represented

by the matrix
(
Ω⊤

b +A⊤N⊤ −N + A⊤Ω⊤

f

)
, and its restriction to the vertical subspace by its

second block,

−N +A⊤Ω⊤

f .

Now, the fibres are isotropic iff Ωf = 0, and since Ω is nondegenerate N has to have maximal

rank and be injective. So, the only vertical vector sent to 0 by this map is 0.

In the preceding section we have already obtained the equation for the Lagrangian slicings.

We can combine theorems 3 and 6 in this way:

Corollary 3 For a Hamiltonian system (P, ω,H) fibred over M , with isotropic fibres, let α:M →
P be a section with isotropic image. Then α is a solution of the slicing problem iff

dα∗(H) = 0 .

Proof The isotropy of the fibres requires dimM ≥ dimP / 2 and the isotropy of α(M) requires

dimM ≤ dimP / 2. Therefore dimM = dimP / 2, which in particular means that α(M) ⊂ P is

a Lagrangian submanifold and then application of theorem 2 yields the desired result. Otherwise,

the isotropy of the image means α∗(ω) = 0 and one can apply theorem 4 at once.

The isotropy of the fibres is necessary to prove this result, as shown by the following example.

Example Take P = R4, with coordinates (x, px, y, py), with the usual symplectic form ω =

dx ∧ dpx + dy ∧ dpy, and the Hamiltonian of the isotropic double harmonic oscillator H =
1
2(x

2 + p2x+ y2 + p2y); its Hamiltonian vector field is Z = px ∂/∂x−x ∂/∂px + py ∂/∂y− y ∂/∂py.

Consider the trivial fibre bundle π:P → M given by M = R, with projection π(x, px, y, py) =

x. Of course, since M is 1-dimensional any section α of π satisfies α∗(ω) = 0.
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Then consider the local section α(x) = (x, x,
√
c2 − x2,

√
c2 − x2). It satisfies H ◦ α = c2 =

const, but one easily checks that it is not a slicing section. The point is that the fibres of π

are not isotropic —they cannot be since they are 3-dimensional submanifolds of a 4-dimensional

symplectic manifold.

6 Lagrangian and Hamiltonian formalisms

In this section we study some features specific to the dynamics on tangent and cotangent bundles,

and in particular to Lagrangian and Hamiltonian formalisms.

First, notice that the results of the preceding section apply directly to a canonical Hamilto-

nian system (P = T∗Q,ω,H), whith T∗Q endowed with its vector bundle structure π: T∗Q → Q

and its canonical symplectic form ω. The dynamical vector field Z is the symplectic gradient

ZH of the Hamiltonian function H.

Then we consider the slicing equation X ∼α Z for a section α of P , that is to say, a differential

1-form on Q. From (9) we can compute the slicing vector field X, which in this case turns out

to be X = FH ◦ α, where FH: T∗Q → TQ is the fibre derivative of H.

Now, notice that the fibres of T∗Q, that is to say, the cotangent spaces T∗
qQ, are isotropic

submanifolds of the cotangent bundle with respect to its canonical symplectic structure. So, we

are under the hypotheses of theorem 6 and its corollary, which give a special form for the slicing

equation.

In particular, the classical Hamilton–Jacobi equation is nothing but the slicing equation for

a closed 1-form α. This means that α is locally exact, α = dW , and the slicing equation has

the well-known form

H ◦ dW = const . (11)

The same applies to the Lagrangian formulation of mechanics when it is defined by a regular

Lagrangian function L: TQ → R. In this case the fibred manifold is P = TQ; now we don’t

have a canonical symplectic form, but the 2-form ωL defined from the Lagrangian. The Hamil-

tonian vector field is the symplectic gradient of the energy EL [1]. Then all proceeds as in the

Hamiltonian case.

Within this framework we recover some of our previous results. In fact theorem 6 has, as

particular cases, theorems 1 and 2 in our paper [11], corresponding to the Lagrangian and the

Hamiltonian formulations, respectively. In the same way, corollary 3 corresponds to proposi-

tions 3 and 7 of the same paper. There it is also proved (theorem 3) the equivalence between the

Hamilton–Jacobi theories for the Lagrangian and the Hamiltonian dynamics for regular systems.

The relationship between constants of the motion and complete slicings (theorem 2) was also

established for these particular cases in [11].

Determination of a second-order dynamics from constants of the motion

Suppose we have a foliation {Mc} of a manifold P . A vector field Z on P tangent to the foliation

defines a vector field Xc on every leaf Mc of the foliation. Conversely, a vector field Xc on every
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Mc defines a vector field Z on P (though a priori one cannot guarantee it to be continuous).

This is what happens when we have a complete slicing {(M,αc,Xc)} of a dynamics (P,Z),

as discussed in section 3. Now, suppose that the hypotheses of theorem 2 are satisfied, so that

the complete slicing is equivalent to a (manifold-valued) constant of the motion F :P → N .

Then it could seem that the dynamics Z is determined by F . But of course this is not true: the

conditions of the theorem assume that Z is already given, otherwise the vector fields Xc could

not be determined.

However, there is a very special instance where the knowledge of some constants of the motion

suffices to determine the dynamics. Recall that a vector field Z defined on the tangent bundle

TM of a manifold is said to satisfy the second-order condition when its integral curves are the

velocities of their projections to the base space M . It is easily proved that this is equivalent to

saying that, besides being a section of the tangent bundle of TM , τTM : T(TM) → TM , Z is also

a section of the other vector bundle structure of T(TM), the one given by TτM : T(TM) → TM .

In brief, this means that TτM ◦ Z = Id.

Lemma 8 Consider a dynamical system (P,Z) where P ⊂ TM is an open subset projecting

over M .

If (M,α,X) is a slicing of Z by a section α of P , and Z satisfies the second-order condition,

then X = α.

Conversely, suppose we have a complete slicing (αc,Xc) of Z by sections αc of P . If Xc = αc

for every c, then Z satisfies the second-order condition.

Proof If Z satisfies this condition, then the slicing equation Tα ◦X = Z ◦ α, composed with

TτM , yields X = α.

Conversely, when X = α the slicing equation reads Tα ◦ α = Z ◦ α, and composition with

TτM yields α = TτM ◦ Z ◦ α. This means that Z satisfies the second-order condition on every

point of α(M).

Theorem 7 Let P ⊂ TM be an open subset projecting onto M . Suppose we have m = dimM

functions fα:P → R whose fibre derivatives Ffα:P → T∗M are linearly independent at each

point.

Then around any point v ∈ P there exists a unique local vector field Z, satisfying the second-

order condition, and for which the fα are constants of the motion.

Proof Put F = (f1, . . . , fm):P → Rm. For every c ∈ Rm we have a submanifold Pc =

F−1(c) ⊂ P . The hypotheses imply that the restriction of the projection to this submanifold,

τ |Pc :Pc → M , is a diffeomorphism in a neighbourhood of any point v ∈ Pc. Let αc:M → Pc be

its inverse. This αc is also a vector field on M , so it defines a vector field Z|Pc, and this satisfies

the second-order condition by the preceding lemma. All of these together yield Z.

To complete the proof we need to show that Z is smooth, and we will do this by an explicit

computation in coordinates. Let v◦ ∈ P be an arbitrary point, and use natural coordinates

(qi, vi) around it. Write Z = vi
∂

∂qi
+ Zi(q, v)

∂

∂vi
. Imposing that the fα are constants of the



J.F. Cariñena et al — Structural aspects of Hamilton–Jacobi theory 23

motion for Z we obtain

LZf
α =

∂fα

∂qi
vi +

∂fα

∂vi
Zi = 0 .

The linear independence of the fibre derivatives means in coordinates that the matrix

(
∂fα

∂vi

)

is invertible. Hence, we determine the last coefficients of Z as

Zi = −
((

∂f

∂v

)−1)i

β

∂fβ

∂qj
vj .

Remark It is known that from a vector field X on M one can construct its canonical lift XT

to the tangent bundle. This vector field does not satisfy the second-order condition in the whole

TM , but in the points of X(M) it does. Indeed, in the first part of the preceding proof, what we

are defining is Z|X(M) = XT|X(M), where α ≡ X. Since we have a whole family of α’s covering

the whole space, the vector field Z constructed in this way satisfies the second-order condition

at every point.

Example We will use the free particle to show that working in the Lagrangian or in the

Hamiltonian formalisms is philosophically different.

If we take P = T∗Rn and the Hamiltonian H = 1
2

(
p21 + . . . + p2n

)
then the dynamical vector

field is Z =
∑

pi ∂/∂qi, and its constants of the motion are the functions f(p). But notice that

these functions are constants of the motion for H and also for any Hamiltonian of the form

H(p); the corresponding dynamical vector field is Z =
∑

∂H/∂pi ∂/∂qi.

Now take P = TRn and consider the functions fi = vi. Following the preceding theorem, we

can look for a second-order vector field Z having the fi as constants of the motion. There is a

unique such a vector field, and it is Z =
∑

vi ∂/∂qi. By the way, the same vector field would

be obtained if one considered, instead of the vi, any set of m independent functions fi(v).
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[8] L.M. Bates, F. Fassò and N. Sansonetto, “The Hamilton–Jacobi equation, integrability, and non-

holonomic systems”, J. Geom. Mech. 6 (4) (2014) 441–449.

[9] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and

diffraction of light (7th ed.), Cambridge University Press, Cambridge, 1999.

[10] C.M. Campos, M. de León, D. Mart́ın de Diego and M. Vaquero, “Hamilton–Jacobi theory in Cauchy

data space”, arXiv:1411.3959 [math-ph], (2014).
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