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Abstract

The charge profile of thermally poled electrets has been studied using
two different methods, laser induced pressure pulse (LIPP) and pulsed
electroacoustic (PEA), to gain insight into the mechanisms that are acti-
vated and assess which is the most appropriate method to study the charge
profile. Disc–shaped PET samples have been conventionally poled to acti-
vate both the α and the ρ relaxation and, right after, partially discharged
up to a temperature Tpd. In this way, samples with a different combination
of dipolar and space charge polarization have been obtained. Both LIPP
and PEA reveal asymmetric profiles for Tpd below the glass transition
temperature, that progressively become antisymmetric for higher temper-
atures. The shape and evolution of the charge profiles can be explained
assuming injection of negative carriers from the anode that enhances the
trapping of positive carriers near this electrode. It can be observed that
PEA is able to detect a wider variety of polarization mechanisms in the
system while LIPP gives a simpler picture of the charge profile.

1 Introduction

An electret is made of a dielectric material that has been poled in such a way
that it creates quasi–permanent external and internal electric fields [1, 2]. Elec-
trets can be poled by several techniques such as corona charging, electron beam
irradiation or thermal poling, among other ones [2]. Thermal poling (TP) is
a well-known technique to obtain electrets. It is the basis of techniques such
as thermally stimulated depolarization currents (TSDC) [3, 4], that has been
used for decades to study dipolar and space charge relaxation in solids. For
this reason, the results of TP are well known from a macroscopic point of view.
In spite of this fact, there is still unknown information about the microscopic
mechanisms that are activated by TP.

∗E–mail: jordi.sellares@upc.edu

1

ar
X

iv
:1

60
2.

05
37

7v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
7 

Fe
b 

20
16



For example, it seems out of question that the α relaxation is the dielectric
signature of the structural relaxation [5] while being due to the reorientation of
molecular dipoles and that the ρ relaxation is due to free space charge trapped
in localized states [6]. These relaxations can be seen, for example, as peaks in a
TSDC spectrum. Nevertheless, it is suspected that additional mechanisms are
needed to fully explain these phenomena. A throughout understanding of the
mechanisms that give rise to a relaxation is especially useful when interpreting
data from dielectric spectroscopy and can also give clues on how to obtain more
stable electrets or electrets that are better suited for particular applications.

One important piece of information related to the microscopic mechanisms
is the charge profile of the electret [7]. Many studies have been made about the
charge profile of corona charged or electron beam irradiated electrets but there
are few of thermally poled electrets [8]. This is because they tend to store less
charge and be less stable than electrets poled by other means. As a consequence,
its charge is more difficult to measure and results are less conclusive.

Several methods can be used to show the charge profile of an electret sample
[9] up to a certain resolution [10]. Acoustic methods can give directly (without
the need of deconvolution) the charge or field distribution in the sample. Addi-
tional quantities, such as surface potential, can be obtained by calculation from
these ones [11]. Depending on the signal–generation process, acoustic methods
can be divided into LIPP (laser-induced pressure pulse), PPS (piezoelectrically-
generated pressure step) or PEA (pulsed electro acoustic) methods. In all these
cases, pressure waves generated either at the sample surface or at charge layers
in the bulk, propagate through the sample with the speed of sound waves. The
deformations of the material that are produced cause currents or voltages at the
electrodes due to charge displacement, changes in dielectric permittivity or the
piezoelectric effect [12].

Within the LIPP method [13], one side of the sample is covered with a
target and irradiated with a short laser pulse. The target absorbs the energy
of the laser pulse and the rapid expansion that results produces a brief but
intense pressure pulse in the dielectric. When the compressed region pulse
travels through the sample a current is induced in the external circuit, due
to non-uniform charge distribution and permittivity change [14], reflecting the
charge distribution. We can record the charge profile connecting this setup
with an oscilloscope. Allegedly, one of the advantages of the LIPP method with
regards to other methods is that it produces pressure pulses with steeper rise
fronts, which increases the spatial resolution of the system. The LIPP method
has been used over the years extensively by their creators, Sessler and Gerhard,
in their investigations of charge profile in thin-film polymer materials [15]. It
can be used to determine space charge dynamics in charged samples [16, 17],
for example, to assess the degradation of a dielectric [18].

Instead, the principle of the electroacoustic–pulse (PEA) method is based on
the Coulomb law. An externally applied electric field pulse induces a perturbing
force on the charges that are present in the material. This perturbation launches
a sound wave which originates from the charge distribution. The acoustic signal
is detected by a piezoelectric transducer placed on one of the electrodes [19].
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The space-charge profile information contained in the signal is measured and
calibrated through the use of digital signal processing [20]. The main difference
in contrast to other methods, such as LIPP where the pressure wave is generated
externally, is that the acoustic wave is generated internally by the space charge
[21]. Initially deconvolution or other data processing was necessary to obtain the
charge profile. Some very important improvements were made recently to the
PEA method which eliminated the need for deconvolution [22]. The duration
of the voltage pulse in PEA measurements is usually between 5 to 40 ns [23].

The aim of this work is to study the charge profile of thermally poled electrets
in a double way. On the one hand, we want to assess which method, LIPP or
PEA, is more appropriate for this task, which are their relative merits and if
the information that they provide is complementary in some way. On the other
hand we want to know which are the mechanisms that are activated in the
poling stage and how they are spatially distributed along the sample. To this
end, we will measure the charge profile of samples prepared in such a way so
that higher frequency mechanisms are relaxed leaving only progressively lower
frequency mechanisms activated. We expect to find differences in the charge
profiles that allows us to elucidate the role of dipolar (higher frequency) and
space charge (lower frequency) mechanisms in TP and identify other relevant
factors such as the role of the electrodes.

2 Experimental

Experiments have been performed on amorphous PET samples. PET was sup-
plied by Goodfellow in the form of sheets with a thickness of 230 µm. Character-
ization by differential scanning calorimetry has shown that the glass transition
takes place at 80 ◦C and crystallization begins around 100 ◦C. It has also been
checked that the as received material has no noticeable crystallinity. Samples of
2.5× 2.5 cm2 were cut and aluminum electrodes with a diameter of 2 cm were
vacuum deposited on both sides.

Prior to experiments, samples were thermally poled and partially discharged
using a TSDC setup. An scheme of a TSDC setup can be seen in Figure 1.
The sample (S) is poled by the high voltage source (HVS) setting the two–way
switches 1 and 2 in position A. Instead, switches should be in position B to de-
pole the sample and record the displacement current through the amperimeter.
The sample is inside a forced air oven (FAO) driven by a PID controller with a
thermocouple (TC) as input.

The thermal and electrical history of our samples is described in Figure 2.
In first place, the sample is heated up to 95 ◦C, a temperature well-above the
glass transition but not high enough to crystallize the sample significantly. In
this way, the thermal history of the sample is erased and the experiment begins
in a structural equilibrium state. To pole mechanisms within a broad range of
frequencies, the sample is poled by applying a voltage of 1500 V isothermally
at a poling temperature (Tp) of 95 ◦C for 5 min (tp in Figure 2) and, next, the
sample is cooled at a constant rate of 2 ◦C/min down to a deposit temperature
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Figure 1: Scheme of the TSDC setup.
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Figure 3: Scheme of the LIPP setup

(Td) of 25 ◦C. The electric field is switched off during this cooling ramp, at
50 ◦C. This allows us to pole mechanisms with different relaxation times. In
particular, we will pole the α relaxation, which is a dipolar mechanism, and the
ρ relaxation, which is a space–charge mechanism.

Since we want to compare samples where different mechanisms have been
poled, we discharge the samples partially. After 15 minutes (td) at a deposit
temperature (Td) of 15 ◦C the sample is heated up to a partial discharge tem-
perature (Tpd) at the same rate of 2 ◦C/min. Once this temperature is reached,
the sample is cooled down to room temperature, also at 2 ◦C/min.

In this way, mechanisms that relax in a short time at temperatures be-
low Tpd are depoled and do not contribute to the polarization of the sample.
The only mechanisms that remain activated are the ones that remain poled at
Tpd. Since dipolar mechanisms have shorter relaxation times than space charge
mechanisms, samples partially discharged at increasing Tpd temperatures be-
come less polarized by dipolar mechanisms while space charge mechanisms are
less affected. This procedure is, therefore, well suited to study the role of dipo-
lar mechanisms in thermal poling. An alternative would have been to employ
fractional poling but this would result in a weaker signal because this poling
technique yields less polarization.

Once at room temperature, polarization is relatively stable and additional
procedures can be performed on the sample. The sample is further cut in a
circular shape to let it fit inside the LIPP sample holder. The diameter of the
resulting sample is one millimeter larger than the aluminum electrode. This
margin would not be enough to pole it again but is enough to discharge it later
so the mechanisms activated in the sample can be revealed.

After this preparation step, the charge profile of the samples is measured
with the LIPP method. A typical LIPP setup can be seen in Figure 3. Within
this method a laser pulse hits a target producing ablation. The momentum of
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the ablated particles is transferred, because of the momentum conservation law,
to the sample as a pressure pulse that propagates at the speed of sound. The
compression of the sample produces a change in its capacity. Since the sample
is shortcircuited through a current amplifier, the change in capacity leads to a
current due to the redistribution between electrodes of their free charge.

Laser pulses with a duration of 8 ns, wavelength of 1064 nm and an energy
of 10 mJ were produced by a Nd:YaG pulsed laser.

As a target we have used a blend of Ethylene vinyl acetate (EVA) with carbon
black. The components were mixed using a Brabender mixer type W 50 EHT PL
(Brabender GmbH & Co. KG, Germany) heated at 120 ◦C and a mixed speed of
75 rpm. The EVA matrix were melted for a minute and then, the black carbon
were added and mixed for a period of 10 min. The blend was then consolidated
in a hot plates press machine type Collin Mod. P 200E (Dr. Collin GmbH,
Germany) forming square sheets, measuring 160×160×0.3 mm3. Consolidation
was carried out at a pressure of 100 kN for 5 min using temperatures of 100 ◦C.
Finally, the square sheets were cooled under pressure using cool water. The
sheets were cut into disks of 1 cm of diameter and 10 µm of thickness.

To ease the transference of the pressure pulse between the target and the
sample a small layer of silicon oil has being put between them. Also, a small
drop of silicon oil is placed over the target to increase its lifetime. It has been
checked using a piezoelectric that this results in a pressure wave of roughly
triangular shape with a base–width of 35 ns and a half–width of 20 ns.

The target and the sample are hold together in an especially designed sample
holder. The sample holder ground electrode has an opening so the laser can
impact the target. Since the target itself is conductive it does not impede
electrical contact between the sample holder electrode and the vacuum deposited
electrode on the front side of the sample. At the opposite side of the sample
holder there is another electrode in direct contact with the vacuum deposited
electrode on the rear side of the sample. Throughout experiments, the side of
the sample that was exposed to the positive pole when poling is the front side.

Because of the intensity and duration of the current pulse, a high speed
current amplifier had to be used. In our setup it was a FEMTO DHPCA high
speed variable gain amplifier.

The current that flows through the current amplifier is converted into a
voltage that is read by an oscilloscope. This signal is interpreted according to
the following equations [24, 13].

I(t) = −(2− ε−1
r )χ

A

s
c

∫ s

0

P (ct− z)ρ(z)dz (1)

where εr is the relative permittivity, χ is the compressibility of the sample, A is
the sample area, s is the thickness of the sample, c is the speed of sound in the
sample, P (z) is the wavefunction of the pressure pulse and ρ(z) is the charge
profile. If we assume that P (z) is a sharp impulse we obtain

I(t) ' −(2− ε−1
r )χ

A

s
c2τPρ(ct) (2)

7



�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������

HV source1 MΩ

absorber

sample

anode

pulsed source
trigger

backing material

ground electrode / cathode

signal

back electrode

piezo device

amplifier

Figure 4: Scheme of the PEA setup

where P is the amplitude of the pulse and τ is its duration. Since the intensity
through the circuit is proportional to the voltage measured by the oscilloscope,
this voltage is approximately proportional to the charge profile through the
variable change x = ct.

To allow for an easier interpretation of results and compare the merits of both
techniques, the charge profile has also been measured with the PEA method. A
commercial setup provided by TechImp (Italy) was employed. A typical PEA
setup can be seen in Figure 4. Within this method, an electrical pulse (in our
setup with a width of 20 ns and an amplitude of 300 V ) is applied between the
anode and the cathode. This pulse produces a movement in the charges of the
system. The result is an acoustic pulse that is recorded through a piezoelectric.
Simultaneously, a direct current high voltage can be applied to the sample to
pole it in–place but we have used this possibility only in the measurement of the
speed of sound in PET. All the other samples where thermally poled by means
of the TSDC setup.

The recorded signal can be deconvolved in order to improve its resolution but
since it is not easy to obtain optimal results and we were seeking just qualitative
insight we present the PEA results without deconvolution.

Once the charge profile measurements are performed, the sampled is com-
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Figure 5: PEA measurement of the charge profile of a PET sample while 10 kV
are being applied at room temperature

pletely discharged to analyze by TSDC the charge that has been measured by
LIPP and PEA.

Also, because it is easier to locate the limits of the sample with PEA, we have
used this technique to measure the speed of sound in our samples. This can be
seen in Figure 5. This figure presents the signal obtained when a 10 kV field is
applied to a sample at room temperature. The position of the mirror charges can
be used to locate the limits of the sample and, therefore, to calculate the speed
of sound since we know the distance between them. From these measurement,
a speed of 2.4 km/s is deduced.

3 Results and discussion

As explained in the previous section, the sample is partially discharged after
being poled and before its charge profile is measured. The current recorded
during the partial discharges is plotted in front of temperature in Figure 6. this
figure represents the depolarization of each sample during the partial discharge.

In this figure we can see the α (dipolar) relaxation mostly between 70 and
87 ◦C and the ρ (free space charge) relaxation that starts at approximately
88 ◦C. For the samples with Tpd = 65 and 70 ◦C the intensity plot ends before
the α shows up. For this sample we expect both dipolar and free space charge
polarization. The plots that correspond to samples with Tpd = 78 and 83 ◦C
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Figure 6: Current recorded during partial discharges for the following values of
Tpd: 65 ◦C (continuous), 70 ◦C (dotted), 78 ◦C (dashed), 83 ◦C (long–dashed),
86 ◦C (dot–dashed), 95 ◦C (dot–long–dashed), 110 ◦C (dot–dot–dashed).

10



50 60 70 80 90 100 110 120
T (°C)

-2e-10

-1,5e-10

-1e-10

-5e-11

0

I 
(A

)

α ρ

Figure 7: Current recorded during final discharge for the following values of
Tpd: 65 ◦C (continuous), 70 ◦C (dotted), 78 ◦C (dashed), 83 ◦C (long–dashed),
86 ◦C (dot–dashed), 95 ◦C (dot–long–dashed), 110 ◦C (dot–dot–dashed).

show a portion of the α peak, that is almost fully discharged for Tpd = 86 ◦C.
Therefore we expect that these samples have progressively less dipolar polar-
ization while maintaining their free space charge polarization. The sample with
Tpd = 95 ◦C will have no dipolar polarization, according to this plot, but should
retain most of its free space charge. Finally, the sample with Tpd = 110 ◦C
should have almost no polarization of either type.

To confirm these assumptions, the samples are also discharged, this time
fully, after the charge profile has been measured. In this way we can analyze
the actual charge that was present during the charge profile experiments. The
intensity plots in front of temperature of these discharges are presented in Fig-
ure 7.

These plots confirm that samples with Tpd < 75 ◦C retain a large portion
of dipolar and space charge polarization. The Tpd = 78 ◦C shows only a small
portion of dipolar polarization. This means that some depolarization occurs
when the sample is cooled after it has reached Tpd and the current is no longer
recorded. Moreover, the ρ peak is also reduced greatly and a homopolar current
appears at a slightly higher temperature. This behavior can be observed for
samples with Tpd = 86, 89, and 95 ◦C. The most probable cause of this effect is
charge injection from the electrodes.

We can obtain the polarization by mechanism integrating the area of each
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Figure 8: Polarization of PET samples for a given Tpd: dipolar polarization
(square), free space charge polarization (circle), total polarization (triangle).

peak and, in this way, present graphically how Tpd affects the polarization of
the sample. This representation is presented in Figure 8 This is the polarization
of the charge whose profile we will be studying. From 78 ◦C up to higher
temperatures we only have ρ polarization while under this temperature we also
have α polarization. It can be observed that the space charge polarization
points have a higher dispersion which is due to a greater non–repetitivity of
space charge experiments.

In the LIPP experiments, the current intensity produced when the pressure
pulse travels through the sample is converted into a voltage by the current
amplifier and represented in Figure 9. This voltage resembles the charge profile
once the time variable has been converted into space using the speed of the
pressure pulse. For Tpd = 65 and 70 ◦C the charge profile is asymmetric while
for Tpd = 78, 83 and 86 ◦C it is antisymmetric. Samples with Tpd = 89 ◦C
and above do not present a meaningful signal. It seems that the charge profiles
that correspond to Tpd values that leave only the ρ relaxation activated are
antisymmetric. Instead, charge profiles with both the α and the ρ relaxation
activated are asymmetric. This is rather surprising since we expect that the
signature of dipolar polarization is two narrow peaks of opposite sign at the
borders of the sample, which are not seen on the figure, and not a rather broad
asymmetric distribution.

To interpret further these results we compare LIPP with PEA results. For

12



0 100 200 300 400 500
x (µm)

-0,1

0

0,1

V
 (

V
)

Figure 9: Charge profile measured by LIPP for the following values of Tpd: 65 ◦C
(continuous), 70 ◦C (dotted), 78 ◦C (dashed), 83 ◦C (long–dashed), 86 ◦C (dot–
dashed), 95 ◦C (dot–long–dashed), 110 ◦C (dot–dot–dashed).
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Figure 10: Comparison between LIPP (continuous) and PEA (dashed) charge
profile for 65 ◦C

clarity, we begin comparing two single plots that correspond to the sample
(Tpd = 65) measured by LIPP and PEA. Figure 10 presents this comparison. A
good agreement can be observed but with some caveats. The sharp distribution
at the edges of the sample can only be seen by PEA, together with its mirror
images at the electrodes. It seems clear that our LIPP setup, as it has been ob-
served by other researchers [25], is not able to detect thin charge distributions,
especially if they are neutralized by a nearby and similarly thin charge distri-
bution of opposite sign. Since in LIPP the current source is the same sample,
the capacity of the sample (and of the sample holder) tends to integrate the
signal, smoothing abrupt changes and giving only an average value. PEA does
not suffer from this inconvenient because the electrical signal is just the record
of the transducer and therefore its resolution is limited only by the duration of
the voltage pulse.

The PEA results that can be seen in Figure 11 correspond to the same sam-
ples previously measured by LIPP. Measurements were taken before the final full
discharge. More or less the same pattern as with LIPP is confirmed (asymmetric
profile when Tpd is below 78 ◦C and antisymmetric profile for this temperature
and higher ones) but now we can detect additional features of the charge pro-
file. There is no change in the anode side until the ρ peak is discharged. This
means that the charge distribution induced by dipolar polarization is just too
narrow to show up even with PEA [26]. The cathode side presents a larger
signal intensity that decreases to change the charge profile from asymmetric to
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Figure 11: Charge profile measured by PEA for the following values of Tpd:
65 ◦C (continuous), 70 ◦C (dotted), 78 ◦C (dashed), 83 ◦C (long–dashed), 86 ◦C
(dot–dashed), 95 ◦C (dot–long–dashed), 110 ◦C (dot–dot–dashed).
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antisymmetric. In fact, similar profiles have been reported previously in other
materials with other methods [27].

It seems clear that the main antisymmetric charge distribution corresponds
to the ρ peak but the fact that polarization is not uniform may be due to several
reasons. A plausible explanation can be that it is because the displacement of
charges is larger than in the case of dipolar orientation and, therefore, the
presence of the border has a certain influence in the polarization at each point.

The evolution of the asymmetry can be due to the following. In PET there
is injection of electronic carriers from the cathode [28]. This injection takes
place at the cathode even for low electric field values [29] and may be aided by
the relatively high poling temperature [30]. This injected negative charge may
favor the buildup of positive heterocharge near the cathode. This additional
heterocharge would be localized in shallow traps and should be released at a
lower temperature than ordinary heterocharge. This would explain why charge
profile is more intense near the cathode and also why this distribution is the
first one to relax.

4 Conclusions

The most immediate conclusion about the results is that thermal poling is more
complex than expected since it does not only involve dipolar and space charge
poling mechanisms but also injected charge from the electrodes. This should be
taken into account whenever the reproducibility or stability of a thermally–poled
electret is required.

As a consequence the shape and, especially, the evolution of the charge
profile of thermally–poled electrets is rather surprising and not easy to explain.
We found our results compatible with charge injection of negative carriers at
the cathode, as, otherwise, suggested by the literature. Even though there is
not enough experimental information to determine the exact charge dynamics
in the material, we can make a some assumptions about what happens in the
material, mainly that injected negative charge favors the trapping of additional
heterocharge in shallow traps. This would give an asymmetrical shape to the
charge profile that corresponds to the ρ relaxation with a higher density near
the cathode.

In the LIPP results is is not possible to observe image charge at the elec-
trodes, unlike in the PEA results. Since the duration of the pulses are com-
parable in both setups this must be a consequence of the arrangement of our
sample holder. In neither case the observed charge profile is related to dipolar
polarization, that seems to be too uniform to be detected.

PEA is definitively more sensible to the different types of charge mechanisms
activated in the sample giving a more complete picture of the charge profile.
Nevertheless, this may be a disadvantage when trying to discern between the
origin of the charge profile. Instead, LIPP seems to do rather well to detect
injected charge. LIPP may be more practical for studying space charge with
less interference from other kind of charge mechanisms and in combination with
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PEA it may be useful to distinguish the origin of the charge. In this sense we
may well say that these techniques are complementary.
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