
Exploiting Narrow Values for Soft Error
Tolerance

Abstract—Soft errors are an important challenge in
contemporary microprocessors. Particle hits on the components
of a processor are expected to create an increasing number of
transient errors with each new microprocessor generation. In
this paper we propose simple mechanisms that effectively reduce
the vulnerability to soft errors in a processor. Our designs are
generally motivated by the fact that many of the produced and
consumed values in the processors are narrow and their upper
order bits are meaningless. Soft errors caused by any particle
strike to these higher order bits can be avoided by simply
identifying these narrow values. Alternatively, soft errors can be
detected or corrected on the narrow values by replicating the
vulnerable portion of the value inside the storage space provided
for the upper order bits of these operands. We offer a variety of
schemes that make use of narrow values and analyze their
efficiency in reducing soft error vulnerability of level-1 data
cache of the processor.

Index Terms—Error Correction, Soft Errors, Narrow Values,
Data Cache

I. INTRODUCTION

lpha particles released by radioactive impurities and
neutrons coming from outer space are known to cause
transient errors in contemporary microprocessors [1][10].

“Single bit upsets” may arise when these particles hit
intermediate capacitive nodes of processor storage
components such as SRAM bitcells and latches. Since these
transient errors occur due to an incorrect charge or discharge
of an intermediate capacitive node, they do not cause
permanent failure in the hardware and hence are termed “soft
errors” in the literature. Microprocessors become more prone
to soft errors with each new generation of manufacturing
technology [11] and many techniques are proposed to improve
soft error tolerance including redundant multithreading [12]
and value duplication [7].

Architectural Vulnerability Factor (AVF) of a processor
component is defined as the probability that a particle strike at
any place in the component will result in an erroneous
behavior in the executed program. Mukherjee et al. [9]
defined architecturally correct execution (ACE) bits as the bits
which are vulnerable to particle strikes. A particle hit on these
ACE bits results in a visible error in the final program
outcome. Similarly, a bit which does not hold any required

information for architecturally correct execution and hence is
not vulnerable to soft errors is defined as an unACE bit. AVF
of a component is equal to the percentage of ACE bits inside
the corresponding component.

Manuscript submitted: 8 May 2006. Manuscript accepted: 19 June 2006.
Final manuscript received: 30 June 2006.

* Work done while working at Intel

Our design is generally motivated by the fact that many of
the produced and consumed values in a processor are narrow
where a narrow value is defined as a value that holds
consecutive zeros or ones in its upper order bits [2][4][5].
These values can be represented in a simple compressed
manner by just ignoring their upper order bits.

This paper proposes several techniques that leverage
narrow operands to improve soft error tolerance of processors’
data-holding components. With our first technique, by
identifying narrow operands and zero partitions (consecutive
zeros), some portion of the narrow data becomes invulnerable
to particle strikes and the total number of soft errors that affect
the final program output is reduced. As a second scheme, we
improve our first technique to detect and correct the particle
hits that occur on the unprotected part of the narrow value by
replicating the significant part of the narrow value into the
storage space devoted to store the upper order bits. We further
improve our technique by using storage space allocated for
data partitions that hold zero values as a repository for
replicated data and later we use these replicated copies of the
data to detect particle hits on the stored value.

Narrow value replication was also used for soft error
detection by Hu et al. in [7]. In addition to the soft error
recovery scheme of [7] that replicates the narrow operands,
we propose two extensions. We first show that by simply
identifying narrow values it is possible to achieve a significant
reduction in soft error vulnerability of the data holding
components. We also show that zero holding partitions can be
used as data repositories for data replication and this data
replication can be combined with simple zero partition to
achieve high soft error avoidance.

II. REDUCING SOFT ERRORS USING NARROW VALUES

A. Identifying Narrow Values
Many researchers observed that a large percentage of the

generated and consumed values in a processor are narrow.
The narrowness of the values was previously used for
performance improvement [2][4] and energy efficiency
[3][4][5][13] in superscalar microprocessors. In this paper, we
propose a new way of exploiting narrow values by identifying
them throughout the processor for reducing soft error

Oguz Ergin1*, Osman Unsal2*, Xavier Vera3, and Antonio González3

TOBB University of Economics and Technology, Ankara, Turkey, oergin@etu.edu.tr
Barcelona Supercomputing Center, Barcelona, Spain, osman.unsal@bsc.es

Intel Barcelona Research Center, Intel Labs – UPC, Barcelona, Spain, {xavier.vera, antonio.gonzalez}@intel.com

1

2

3

A

IEEE Computer Architecture Letters Vol. 5, 2006

Posted to IEEE & CSDL on 7/07/2006
DOI 10.1109/L-CA.2006.12 1556-6056/06/$20.00 © 2006 Published by the IEEE Computer Society

vulnerability and replicating them inside the conventional
storage space for error detection and correction. In order to
make use of the width variations in produced and consumed
values, our proposed architecture uses an additional bit called
Narrow Value Identifier Bit (NVIB)for each data storage entry
in the value holding components for identifying a stored
narrow operand. This bit is set whenever a narrow value is
written into the storage space. By using this bit, it is possible
to identify the unneeded portion of the stored value and these
bits, which are identified as “unneeded”, are converted to
unACE bits. Consequently, correctness of the stored narrow
value is not endangered by a bit-flip caused by a particle strike
if this particle strike occurs at the upper order bits. When a
value is read out from the storage element, if the narrow value
indicator bit is set, upper order bits are not read and the stored
narrow value is sign extended to datapath width before it is
ready to be used. This sign extension can be accomplished by
using a simple multiplexer.

Fig. 1 - Example of Narrow Value Identification
Fig. 1 shows an example of the narrow value identification

process where a narrow value is defined as a value which can
be represented with only 8 bits. The NVIB is checked
whenever a value is read from the data storage. If NVIB is set,
Byte–0 is simply sign extended to 32 bits and any particle
strikes to Bytes 1, 2 and 3 become ineffective. There are
obvious trade-offs in defining the length of a narrow operand.
If a narrow operand is defined to have too few bits, then the
percentage of narrow operands decreases, but the benefits of
identifying the narrow values for vulnerability reduction
increases since more bits are transformed into unACE bits. If a
narrow operand is defined to include large number of bits, the
percentage of narrow values increases but the number of
protected bits in each narrow value decreases and hence the
benefits also decrease. Therefore there is an optimum point for
defining the number of bits in a narrow operand where the
percentage of narrow operands and the number of unACE bits
are optimized for best vulnerability reduction. Choice of
number of bits to define the size of narrow values depends on
the applications that are run.

It should be noted that the NVIB is itself unACE when it is
indicating that a stored value is narrow. If this bit is flipped
when it is indicating a narrow operand, the value is not
endangered but the narrow value protection is nullified and
the contents of the upper order bits become vulnerable to
particle attacks. On the other hand, NVIB is an ACE bit when
the storage space is holding a wide value since the contents of
the upper order bits will be lost if a particle strike occurs on it.
Therefore we call NVIB a “half-ACE” bit meaning that its

vulnerability status depends on the contents of the value
stored in the storage area.

Although NVIB is half-ACE, it is still partially vulnerable to
particle strikes and hence increases the vulnerability of the
structure it is protecting. Therefore the vulnerability reduction
achieved by adding these bits must justify the slight increase
in soft error vulnerability.

B. Identifying Zero Partitions
A variation of narrow value identification can be used to

increase the chances of reducing soft error vulnerability in a
processor by identifying zero-partitions instead of identifying
the whole narrow values.

Fig. 2 - Example of Zero Byte Identification
Fig. 2 shows an example of zero partition encoding process

where a partition is defined to be a byte. By inserting one bit
per byte, each all-zero-containing-byte can be identified and
be immunized to particle strikes. When the zero byte identifier
bit is found out to be set while reading the data, value is not
read and instead a zero byte is provided. As it is the case with
narrow value identification bits, zero partition identifier bits
are also “half-ACE” since a particle strike on these bits do not
jeopardize correct program execution when they indicate a
zero byte. Therefore they also increase the soft error
vulnerability of the component where they are added if they
are not protected.

III. REPLICATING NARROW VALUES FOR SOFT ERROR
DETECTION AND RECOVERY

Even though narrow value identification decreases the
vulnerability in the data holding components of a processor,
errors can still occur on the unprotected part of the narrow
operand. Narrow value replication can be used for soft error
detection and recovery since multiple copies of a narrow value
can fit into the allocated storage space. In case of a particle hit
on the entry, this particle hit can be detected by comparing
stored copies with each other. Similarly, soft errors can be
corrected by recovering the correct value from one of the
uncorrupted copies without signaling an error or creating an
exception if there are enough number of correct replicated
copies.

A. Narrow Value Replication
In the implementation of narrow value replication, our

previously proposed NVIB is replaced with a Narrow Value
Replicated Bit (NVRB) which indicates that the stored value is
narrow and the narrow value is replicated inside the storage
space. Upon obtaining a value from the storage element, if
NVRB of the value is set, replicated values are compared with
each other for detecting or correcting a potential error. By

IEEE Computer Architecture Letters Vol. 5, 2006

using this bit, it is possible to detect multiple particle hits to
the value or correct at least a single particle hit and recover
from the error provided that there are enough copies of the
value inside the storage space.

Fig. 3 shows an example of the narrow value replication
process where a narrow value is defined as a value which can
be represented with only 8 bits. If a value is identified as
narrow, NVRB is set while the value is being replicated inside
the storage element (4 copies of the Byte–0 are written to 32-
bit storage area). NVRB is checked whenever a value is read
from the data storage. If this bit is set, Byte–0 is simply sign
extended to 32 bits after comparing all of the replicated copies
with each other and making sure that all copies indicate the
same value. If some of the comparisons result in mismatch,
simple voting is used to decide which value to use where the
highest number of identical copies inside the storage space
wins.

Fig. 3. Example of Narrow Value Replication
Note that although the replicated value is protected from

particle attacks, NVRB is itself not protected and is an ACE
bit. A particle strike on this bit will endanger the correctness
of the stored value at all times. Therefore unlike previously
proposed NVIB the vulnerability increase introduced to the
corresponding component by NVRB is not conditional. This
bit can either be left unprotected to avoid increased
complexity, at the expense of the soft error vulnerability
increase, or it can be replicated like the narrow value. If the
NVRB is not replicated, in some cases errors on this bit may
still be recognized with additional hardware since the
replicated copies will differ from each other significantly
when the content of NVRB flips from 0 to 1.

TABLE I
ACTIONS CORRESPONDING TO SPECIFIC NUMBER OF PARTICLE STRIKES

I J K L Action

0 0 0 EL Corrected
0 0 EK EL If (K L) Corrected

Else Detected
0 EJ EK EL If (J = K = L)

 or (2 of [J,K,L] are equal) Miscorrected
Else Detected

EI EJ EK EL If (I = J = K = L)
 or (3 of [I, J, K,L] are equal) Miscorrected
Else Detected

Table I summarizes all possible cases for different number
of bit flips on the same value where I, J, K and L denote the
different copies of the replicated value and EI,J,K,L shows the
number of bit flips on the corresponding copy. As it can be
seen from the table, our narrow value replication technique
with a narrow value size of 8 (4 copies of the value inside),

can surely correct 1 particle hit on the storage and can at worst
detect 2 particle hits if the dual bit flip cannot be corrected.
Although a rare event, it is also possible to have a
miscorrection if most copies are hit at the same bit position
and simple voting favors the faulty copies. This situation is
extremely improbable and therefore we do not provide any
solutions in this paper for such occasions.

In order to implement our soft error recovery mechanism, a
number of comparators are needed to compare all versions of
values with each other in addition to the narrow value
replicated bit (and its replicated copies) per entry of the data
storage element. In our example, where a narrow value is
defined as 8-bits wide, there are 4 copies of the same value
and six comparators are needed.

B. Replicating Data into Zero Holding Partitions
A variation of narrow value replication can be used for

error detection by using the storage space allocated for zero
partitions as a repository for replicating non-zero data. We
propose to augment each byte inside data storage space to
include a bit called “Zero-Byte, holding Replicated data”
(ZBR). When a non-zero byte is replicated inside the storage
space of a zero byte, this bit is set to indicate that the actual
byte is zero and it now contains the value of another byte for
error detection purposes. Similar to NVRB, ZBR is also an
ACE bit at all times and same tradeoffs exist in terms of soft
error vulnerability reduction and invested hardware.

Different heuristics can be applied to leverage zero portions
of the values for soft error detection (and possibly recovery)
in order to simplify the replication and error detection logic.
The number of copies generated for a non-zero portion
determines the level of protection as it is the case for narrow
value replication. As the number of copies generated and the
number of different places a data partition can be replicated
increases, complexity of the design increases together with the
level of protection obtained.

Fig. 4. Example of Using Zero Bytes as Replication Repositories
As an example to demonstrate the effectiveness of our

technique we present a simple heuristic to detect soft errors by
taking a single copy of each byte and copying each byte only
in one (or optionally two) different places. Fig.4 shows an
example of the heuristic where the 32-bit value is divided into
two parts and within each part each byte is allowed to be
replicated to the other byte. Replicating bytes only within 16-
bit partitions simplifies the design since when the ZBR bit of a
byte is set it is known that the replicated byte is the adjacent
byte within the 16-bit grouping. In Fig. 4, value to be stored
contains 2 zero bytes (Byte–1 and Byte–2). Using our
heuristic, Byte–0 is replicated to Byte–1 and Byte–3 is

IEEE Computer Architecture Letters Vol. 5, 2006

replicated to Byte–2. When the value is accessed from the
storage space, the error detection logic will detect that Byte–1
and Byte–2 holds replicated data and will compare Byte–3
with Byte–2 and Byte–1 with Byte–0. If there is a mismatch,
processor will signal the detected error. If an error is not
detected, contents of Byte–2 and Byte–1 will be discarded and
replaced with zero-bytes.

An optimization is possible to extend the protection to
cover the cases when Byte–3 and Byte–2 are zero-bytes and
Byte–1 and Byte–0 hold valid data or vice versa (this case is
similar to 16-bit narrow value replication with two uppermost
bytes are zero). Our heuristic can be extended to detect this
case and lower order 2 bytes can be copied to the upper order
2 bytes. When the error detection logic detects that both ZBR
bits within a 16-bit group are set, it understands that the stored
bytes are copied from the other 16-bit group and compares the
corresponding bytes with each other for error detection (Byte–
0 with Byte–2 and Byte–1 with Byte–3).

Although the optimized heuristic of replicating data into
zero bytes has larger soft error detection coverage, a better
alternative would be to combine zero byte identification for
vulnerability reduction and data replication for detection.
When both of the bytes in a byte pair are zero, both ZBR bits
can be set and their zero byte status can be identified without
any data replication inside them. Upon reading the data,
whenever error detection logic detects that both bits are set, it
just replaces any data stored inside the bytes with zeros. This
way zero bytes are protected from particle attacks while non-
zero bytes can be replicated into a zero byte for error detection
if the byte next to them is zero.

IV. RESULTS AND DISCUSSIONS

In order to evaluate the proposed schemes we used a cycle-
accurate simulator that simulates a microarchitecture that
resembles Intel’s Pentium 4 [6]. Table II shows the
vulnerability reduction achieved in the level-1 data cache on
average across all SPEC2k benchmarks for various schemes
proposed in this paper. As the numbers reveal, decrease in soft
error vulnerability increases as the number of bits in a narrow
operand decreases and at 4-bits there is an optimum point that
returns the best soft error coverage.

TABLE II
SOFT ERROR REDUCTION ACHIEVED IN LEVEL-1 DATA CACHE

32 bit 27.1%
16 bit 38.0%

8 bit 45.7%
4 bit 47.1%

Decrease in soft error
vulnerability for different

narrow value widths
2 bit 45.7%

Correction (10 bits) 45.0%Replicating narrow values
Detection (16 bits) 49.6%
Simple replication 22.1%

Extended replication 30.6%Identifying and replicating
zero partitions Simple replication with zero

identification 62.4%

By replicating narrow values inside the provided storage
space 45.0% of the errors can be corrected and around 49.6%
of the errors can be detected. The numbers show that for
different levels of complexity we can achieve high percentage

of error coverage by exploiting narrow values.
It should be noted that for individual benchmarks

percentage of narrow values can vary and the optimum point
for the best error tolerance can be different. Therefore the
benefits of exploiting narrow values highly depend on the
processor component and the workload.

V. CONCLUSION

We proposed soft error avoidance, detection and recovery
mechanisms which protect the stored values by either
identifying narrow values or replicating parts of the operands
into the already available storage space. None of our schemes
result in IPC degradation. Exploiting narrow values for error
tolerance turned out to be a cost effective solution although it
provides protection only when the stored value is narrow. Our
first technique of just identifying narrow values with a single
bit results in a soft error vulnerability reduction of as high as
47.1% in the level-1 data cache on average for SPEC2k. In
order to protect the vulnerable part of the narrow value we
proposed replicating these values into the provided storage
space which lead to 49.6% error detection or 45.0% error
correction for single bit upsets. Our last technique which
replicates non-zero data partitions inside the storage space of
zero partitions can detect 22.1% and 30.6% of the single bit
errors with our simple and extended schemes respectively.
Our hybrid scheme that combines replication and zero
identification together avoids 40.3% and detects 22.1% of the
errors which sums up to a total of 62.4% error reduction.

REFERENCES

[1] Baumann, R., “Soft Errors in Advanced Computer Systems”, in IEEE
Design & Test of Computers, 2005

[2] Brooks, D., and Martonosi, M., “Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance”, in HPCA,
1999

[3] Canal R., et al., “Very Low Power Pipelines using Significance
Compression”, in MICRO, 2000

[4] Ergin, O., et al., “Register Packing: Exploiting Narrow-Width Operands
for Reducing Register File Pressure”, in MICRO, 2004

[5] Gonzalez, R., et al. “A Content Aware Register File Organization”, in
ISCA, 2004

[6] Hinton, G., et al., “The Microarchitecture of the Pentium 4 Processor",
Intel Technology Journal, Q1, 2001

[7] Hu, J., et al., “In-Register Duplication: Exploiting Narrow-Width Value
for Improving Register File Reliability”, in DSN 2006

[8] Memik, G, et al., “Increasing Register File Immunity to Transient
Errors”, in DATE’05, 2005

[9] Mukherjee, S. S., et al., “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor”, in MICRO, 2003

[10] Phelan, R., “Addressing Soft Errors in ARM Core-based Designs”,
White Paper, ARM, December 2003

[11] Semiconductors Industry Association (SIA), International Technology
Roadmap for Semiconductors 2003,
http://public.itrs.net/Files/2003ITRS/Home2003.htm.

[12] Vijaykumar, T. N., et al., “Transient-Fault Recovery Using Simultaneous
Multithreading”, in ISCA, 2002

[13] Villa, L., et al., “Dynamic Zero Compression for Cache Energy
Reduction", in MICRO, 2000

IEEE Computer Architecture Letters Vol. 5, 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

