
Exploiting Narrow Values for Soft Error 
Tolerance 

Abstract—Soft errors are an important challenge in 
contemporary microprocessors. Particle hits on the components 
of a processor are expected to create an increasing number of 
transient errors with each new microprocessor generation. In 
this paper we propose simple mechanisms that effectively reduce 
the vulnerability to soft errors in a processor. Our designs are 
generally motivated by the fact that many of the produced and 
consumed values in the processors are narrow and their upper 
order bits are meaningless. Soft errors caused by any particle 
strike to these higher order bits can be avoided by simply 
identifying these narrow values. Alternatively, soft errors can be 
detected or corrected on the narrow values by replicating the 
vulnerable portion of the value inside the storage space provided 
for the upper order bits of these operands. We offer a variety of 
schemes that make use of narrow values and analyze their 
efficiency in reducing soft error vulnerability of level-1 data 
cache of the processor. 

Index Terms—Error Correction, Soft Errors, Narrow Values, 
Data Cache 

I. INTRODUCTION

lpha particles released by radioactive impurities and 
neutrons coming from outer space are known to cause 
transient errors in contemporary microprocessors [1][10].

“Single bit upsets” may arise when these particles hit 
intermediate capacitive nodes of processor storage 
components such as SRAM bitcells and latches. Since these 
transient errors occur due to an incorrect charge or discharge 
of an intermediate capacitive node, they do not cause 
permanent failure in the hardware and hence are termed “soft 
errors” in the literature. Microprocessors become more prone 
to soft errors with each new generation of manufacturing 
technology [11] and many techniques are proposed to improve 
soft error tolerance including redundant multithreading [12]
and value duplication [7].

Architectural Vulnerability Factor (AVF) of a processor 
component is defined as the probability that a particle strike at 
any place in the component will result in an erroneous 
behavior in the executed program. Mukherjee et al. [9]
defined architecturally correct execution (ACE) bits as the bits 
which are vulnerable to particle strikes. A particle hit on these 
ACE bits results in a visible error in the final program 
outcome. Similarly, a bit which does not hold any required 

information for architecturally correct execution and hence is 
not vulnerable to soft errors is defined as an unACE bit. AVF 
of a component is equal to the percentage of ACE bits inside 
the corresponding component. 
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Our design is generally motivated by the fact that many of 
the produced and consumed values in a processor are narrow 
where a narrow value is defined as a value that holds 
consecutive zeros or ones in its upper order bits [2][4][5].
These values can be represented in a simple compressed 
manner by just ignoring their upper order bits. 

This paper proposes several techniques that leverage 
narrow operands to improve soft error tolerance of processors’ 
data-holding components. With our first technique, by 
identifying narrow operands and zero partitions (consecutive 
zeros), some portion of the narrow data becomes invulnerable 
to particle strikes and the total number of soft errors that affect 
the final program output is reduced. As a second scheme, we 
improve our first technique to detect and correct the particle 
hits that occur on the unprotected part of the narrow value by 
replicating the significant part of the narrow value into the 
storage space devoted to store the upper order bits. We further 
improve our technique by using storage space allocated for 
data partitions that hold zero values as a repository for 
replicated data and later we use these replicated copies of the 
data to detect particle hits on the stored value. 

Narrow value replication was also used for soft error 
detection by Hu et al. in [7]. In addition to the soft error 
recovery scheme of [7] that replicates the narrow operands, 
we propose two extensions. We first show that by simply 
identifying narrow values it is possible to achieve a significant 
reduction in soft error vulnerability of the data holding 
components. We also show that zero holding partitions can be 
used as data repositories for data replication and this data 
replication can be combined with simple zero partition to 
achieve high soft error avoidance. 

II. REDUCING SOFT ERRORS USING NARROW VALUES

A. Identifying Narrow Values 
Many researchers observed that a large percentage of the 

generated and consumed values in a processor are narrow. 
The narrowness of the values was previously used for 
performance improvement [2][4] and energy efficiency 
[3][4][5][13] in superscalar microprocessors. In this paper, we 
propose a new way of exploiting narrow values by identifying 
them throughout the processor for reducing soft error 
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vulnerability and replicating them inside the conventional 
storage space for error detection and correction. In order to 
make use of the width variations in produced and consumed 
values, our proposed architecture uses an additional bit called 
Narrow Value Identifier Bit (NVIB)for each data storage entry 
in the value holding components for identifying a stored 
narrow operand. This bit is set whenever a narrow value is 
written into the storage space. By using this bit, it is possible 
to identify the unneeded portion of the stored value and these 
bits, which are identified as “unneeded”, are converted to 
unACE bits. Consequently, correctness of the stored narrow 
value is not endangered by a bit-flip caused by a particle strike 
if this particle strike occurs at the upper order bits. When a 
value is read out from the storage element, if the narrow value 
indicator bit is set, upper order bits are not read and the stored 
narrow value is sign extended to datapath width before it is 
ready to be used. This sign extension can be accomplished by 
using a simple multiplexer. 

Fig. 1 - Example of Narrow Value Identification 
Fig. 1 shows an example of the narrow value identification 

process where a narrow value is defined as a value which can 
be represented with only 8 bits. The NVIB is checked 
whenever a value is read from the data storage. If NVIB is set, 
Byte–0 is simply sign extended to 32 bits and any particle 
strikes to Bytes 1, 2 and 3 become ineffective. There are 
obvious trade-offs in defining the length of a narrow operand. 
If a narrow operand is defined to have too few bits, then the 
percentage of narrow operands decreases, but the benefits of 
identifying the narrow values for vulnerability reduction 
increases since more bits are transformed into unACE bits. If a 
narrow operand is defined to include large number of bits, the 
percentage of narrow values increases but the number of 
protected bits in each narrow value decreases and hence the 
benefits also decrease. Therefore there is an optimum point for 
defining the number of bits in a narrow operand where the 
percentage of narrow operands and the number of unACE bits 
are optimized for best vulnerability reduction. Choice of 
number of bits to define the size of narrow values depends on 
the applications that are run. 

It should be noted that the NVIB is itself unACE when it is 
indicating that a stored value is narrow. If this bit is flipped 
when it is indicating a narrow operand, the value is not 
endangered but the narrow value protection is nullified and 
the contents of the upper order bits become vulnerable to 
particle attacks. On the other hand, NVIB is an ACE bit when 
the storage space is holding a wide value since the contents of 
the upper order bits will be lost if a particle strike occurs on it. 
Therefore we call NVIB a “half-ACE” bit meaning that its 

vulnerability status depends on the contents of the value 
stored in the storage area. 

Although NVIB is half-ACE, it is still partially vulnerable to 
particle strikes and hence increases the vulnerability of the 
structure it is protecting. Therefore the vulnerability reduction 
achieved by adding these bits must justify the slight increase 
in soft error vulnerability. 

B. Identifying Zero Partitions 
A variation of narrow value identification can be used to 

increase the chances of reducing soft error vulnerability in a 
processor by identifying zero-partitions instead of identifying 
the whole narrow values. 

Fig. 2 - Example of Zero Byte Identification 
Fig. 2 shows an example of zero partition encoding process 

where a partition is defined to be a byte. By inserting one bit 
per byte, each all-zero-containing-byte can be identified and 
be immunized to particle strikes. When the zero byte identifier 
bit is found out to be set while reading the data, value is not 
read and instead a zero byte is provided. As it is the case with 
narrow value identification bits, zero partition identifier bits 
are also “half-ACE” since a particle strike on these bits do not 
jeopardize correct program execution when they indicate a 
zero byte. Therefore they also increase the soft error 
vulnerability of the component where they are added if they 
are not protected. 

III. REPLICATING NARROW VALUES FOR SOFT ERROR
DETECTION AND RECOVERY

Even though narrow value identification decreases the 
vulnerability in the data holding components of a processor, 
errors can still occur on the unprotected part of the narrow 
operand. Narrow value replication can be used for soft error 
detection and recovery since multiple copies of a narrow value 
can fit into the allocated storage space. In case of a particle hit 
on the entry, this particle hit can be detected by comparing 
stored copies with each other. Similarly, soft errors can be 
corrected by recovering the correct value from one of the 
uncorrupted copies without signaling an error or creating an 
exception if there are enough number of correct replicated 
copies. 

A. Narrow Value Replication 
In the implementation of narrow value replication, our 

previously proposed NVIB is replaced with a Narrow Value 
Replicated Bit (NVRB) which indicates that the stored value is 
narrow and the narrow value is replicated inside the storage 
space. Upon obtaining a value from the storage element, if 
NVRB of the value is set, replicated values are compared with 
each other for detecting or correcting a potential error. By 
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using this bit, it is possible to detect multiple particle hits to 
the value or correct at least a single particle hit and recover 
from the error provided that there are enough copies of the 
value inside the storage space. 

Fig. 3 shows an example of the narrow value replication 
process where a narrow value is defined as a value which can 
be represented with only 8 bits. If a value is identified as 
narrow, NVRB is set while the value is being replicated inside 
the storage element (4 copies of the Byte–0 are written to 32-
bit storage area). NVRB is checked whenever a value is read 
from the data storage. If this bit is set, Byte–0 is simply sign 
extended to 32 bits after comparing all of the replicated copies 
with each other and making sure that all copies indicate the 
same value. If some of the comparisons result in mismatch, 
simple voting is used to decide which value to use where the 
highest number of identical copies inside the storage space 
wins.

Fig. 3. Example of Narrow Value Replication 
Note that although the replicated value is protected from 

particle attacks, NVRB is itself not protected and is an ACE 
bit. A particle strike on this bit will endanger the correctness 
of the stored value at all times. Therefore unlike previously 
proposed NVIB the vulnerability increase introduced to the 
corresponding component by NVRB is not conditional. This 
bit can either be left unprotected to avoid increased 
complexity, at the expense of the soft error vulnerability 
increase, or it can be replicated like the narrow value. If the 
NVRB is not replicated, in some cases errors on this bit may 
still be recognized with additional hardware since the 
replicated copies will differ from each other significantly 
when the content of NVRB flips from 0 to 1. 

TABLE I
ACTIONS CORRESPONDING TO SPECIFIC NUMBER OF PARTICLE STRIKES

I J K L Action 

0 0 0 EL Corrected
0 0 EK EL If (K  L)  Corrected 

Else  Detected 
0 EJ EK EL If (J = K = L)  

   or (2 of [J,K,L] are equal)  Miscorrected 
Else  Detected 

EI EJ EK EL If (I = J = K = L)  
   or (3 of [I, J, K,L] are equal)  Miscorrected
Else  Detected 

Table I summarizes all possible cases for different number 
of bit flips on the same value where I, J, K and L denote the 
different copies of the replicated value and EI,J,K,L shows the 
number of bit flips on the corresponding copy. As it can be 
seen from the table, our narrow value replication technique 
with a narrow value size of 8 (4 copies of the value inside), 

can surely correct 1 particle hit on the storage and can at worst 
detect 2 particle hits if the dual bit flip cannot be corrected. 
Although a rare event, it is also possible to have a 
miscorrection if most copies are hit at the same bit position 
and simple voting favors the faulty copies. This situation is 
extremely improbable and therefore we do not provide any 
solutions in this paper for such occasions. 

In order to implement our soft error recovery mechanism, a 
number of comparators are needed to compare all versions of 
values with each other in addition to the narrow value 
replicated bit (and its replicated copies) per entry of the data 
storage element. In our example, where a narrow value is 
defined as 8-bits wide, there are 4 copies of the same value 
and six comparators are needed. 

B. Replicating Data into Zero Holding Partitions 
A variation of narrow value replication can be used for 

error detection by using the storage space allocated for zero 
partitions as a repository for replicating non-zero data. We 
propose to augment each byte inside data storage space to 
include a bit called “Zero-Byte, holding Replicated data” 
(ZBR). When a non-zero byte is replicated inside the storage 
space of a zero byte, this bit is set to indicate that the actual 
byte is zero and it now contains the value of another byte for 
error detection purposes. Similar to NVRB, ZBR is also an 
ACE bit at all times and same tradeoffs exist in terms of soft 
error vulnerability reduction and invested hardware. 

Different heuristics can be applied to leverage zero portions 
of the values for soft error detection (and possibly recovery) 
in order to simplify the replication and error detection logic. 
The number of copies generated for a non-zero portion 
determines the level of protection as it is the case for narrow 
value replication. As the number of copies generated and the 
number of different places a data partition can be replicated 
increases, complexity of the design increases together with the 
level of protection obtained. 

Fig. 4. Example of Using Zero Bytes as Replication Repositories 
As an example to demonstrate the effectiveness of our 

technique we present a simple heuristic to detect soft errors by 
taking a single copy of each byte and copying each byte only 
in one (or optionally two) different places. Fig.4 shows an 
example of the heuristic where the 32-bit value is divided into 
two parts and within each part each byte is allowed to be 
replicated to the other byte. Replicating bytes only within 16-
bit partitions simplifies the design since when the ZBR bit of a 
byte is set it is known that the replicated byte is the adjacent 
byte within the 16-bit grouping. In Fig. 4, value to be stored 
contains 2 zero bytes (Byte–1 and Byte–2). Using our 
heuristic, Byte–0 is replicated to Byte–1 and Byte–3 is 
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replicated to Byte–2. When the value is accessed from the 
storage space, the error detection logic will detect that Byte–1 
and Byte–2 holds replicated data and will compare Byte–3 
with Byte–2 and Byte–1 with Byte–0. If there is a mismatch, 
processor will signal the detected error. If an error is not 
detected, contents of Byte–2 and Byte–1 will be discarded and 
replaced with zero-bytes. 

An optimization is possible to extend the protection to 
cover the cases when Byte–3 and Byte–2 are zero-bytes and 
Byte–1 and Byte–0 hold valid data or vice versa (this case is 
similar to 16-bit narrow value replication with two uppermost 
bytes are zero). Our heuristic can be extended to detect this 
case and lower order 2 bytes can be copied to the upper order 
2 bytes. When the error detection logic detects that both ZBR 
bits within a 16-bit group are set, it understands that the stored 
bytes are copied from the other 16-bit group and compares the 
corresponding bytes with each other for error detection (Byte–
0 with Byte–2 and Byte–1 with Byte–3). 

Although the optimized heuristic of replicating data into 
zero bytes has larger soft error detection coverage, a better 
alternative would be to combine zero byte identification for 
vulnerability reduction and data replication for detection. 
When both of the bytes in a byte pair are zero, both ZBR bits 
can be set and their zero byte status can be identified without 
any data replication inside them. Upon reading the data, 
whenever error detection logic detects that both bits are set, it 
just replaces any data stored inside the bytes with zeros. This 
way zero bytes are protected from particle attacks while non- 
zero bytes can be replicated into a zero byte for error detection 
if the byte next to them is zero. 

IV. RESULTS AND DISCUSSIONS

In order to evaluate the proposed schemes we used a cycle-
accurate simulator that simulates a microarchitecture that 
resembles Intel’s Pentium 4 [6]. Table II shows the 
vulnerability reduction achieved in the level-1 data cache on 
average across all SPEC2k benchmarks for various schemes 
proposed in this paper. As the numbers reveal, decrease in soft 
error vulnerability increases as the number of bits in a narrow 
operand decreases and at 4-bits there is an optimum point that 
returns the best soft error coverage. 

TABLE II
SOFT ERROR REDUCTION ACHIEVED IN LEVEL-1 DATA CACHE

32 bit 27.1%
16 bit 38.0%

8 bit 45.7%
4 bit 47.1%

Decrease in soft error 
vulnerability for different 

narrow value widths 
2 bit 45.7%

Correction (10 bits) 45.0%Replicating narrow values 
Detection (16 bits) 49.6%
Simple replication 22.1%

Extended replication 30.6%Identifying and replicating 
zero partitions Simple replication with zero 

identification 62.4%

By replicating narrow values inside the provided storage 
space 45.0% of the errors can be corrected and around 49.6% 
of the errors can be detected. The numbers show that for 
different levels of complexity we can achieve high percentage 

of error coverage by exploiting narrow values.  
It should be noted that for individual benchmarks 

percentage of narrow values can vary and the optimum point 
for the best error tolerance can be different. Therefore the 
benefits of exploiting narrow values highly depend on the 
processor component and the workload. 

V. CONCLUSION

We proposed soft error avoidance, detection and recovery 
mechanisms which protect the stored values by either 
identifying narrow values or replicating parts of the operands 
into the already available storage space. None of our schemes 
result in IPC degradation. Exploiting narrow values for error 
tolerance turned out to be a cost effective solution although it 
provides protection only when the stored value is narrow. Our 
first technique of just identifying narrow values with a single 
bit results in a soft error vulnerability reduction of as high as 
47.1% in the level-1 data cache on average for SPEC2k. In 
order to protect the vulnerable part of the narrow value we 
proposed replicating these values into the provided storage 
space which lead to 49.6% error detection or 45.0% error 
correction for single bit upsets. Our last technique which 
replicates non-zero data partitions inside the storage space of 
zero partitions can detect 22.1% and 30.6% of the single bit 
errors with our simple and extended schemes respectively. 
Our hybrid scheme that combines replication and zero 
identification together avoids 40.3% and detects 22.1% of the 
errors which sums up to a total of 62.4% error reduction. 
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