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Abstract 

The history of the hydrocarbons business in Colombia dates back to the early twentieth 

century where mining and energy sector has been one of the principal pillars for the its 

development.  Thus, the pipelines currently in service have over 30 years and most of them 

are buried and phenomena like metal losses, corrosion, mechanical stress, strike by 

excavation machinery and other type of damages are presented. Since it can generate social 

and environmental problems, monitoring tools and programs should be developed in order to 

prevent catastrophic situations. However, the maintaining of these structures is very 

expensive and it is normally developed by foreign companies. In order to overcome this 

situation, recently the native research institute “Research Institute of Corrosion - CIC 

(Corporación para la Investigación de la Corrosión)” developed an in-line inspection tool to 

be operated in Colombian pipelines (especially gas) to get valuable information of their 

current state along of thousand kilometres. The recorded data is of big size and its 

processing demand a high computational cost and adequate tool analysis to determine a 

certain pipeline damage condition. On other hand, the author from UPC and UIS have been 

bringing its expertise in processing and analysing this type of big data by using mainly 

Principal Component Analysis (PCA) as an effective tool to detect and locate different 

damages. In previous papers, multidimensional data matrix was used to locate possible 

damages along the pipeline, however most of activated points were considered false alarms 

since they corresponded to weld points. Thus, in this paper it is proposed no considering 

piecewise weld points (tube sections) and an extension of PCA named Multiway PCA 

(MPCA) is applied for each each one of the tube sections that form the pipeline. Therefore, if 

a tube section is found outside from overall indices found by using the MPCA model, an 

alarm activated in that section and a precise location can be obtained by analyzing only data 

from that specific tube section. 
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1 INTRODUCTION 

The main objective of Structural Health Monitoring (SHM) is the verification of the 

condition of a structure in the incipient state guaranteeing the its integrity and hence, 

increasing the security, reducing costs of maintenance and repair [1]. Although it is not a 

recent topic, the structural fault detection based on Data Driven Models has recently started 

and it consists of taking measurements for assessment the current state of a structure [2]. 

Then, damages can be detected by comparing the current against an undamaged condition 

previously stored by using current sensor signals attached to the structure. A structure of 

special research interest is the pipelines since a damage condition represents real human 

lives, environmental, social and economic impact in a country. Thus, the pipeline safety and 

reliability is a critical monitoring aspect. Recently, an in-line inspection tool for monitoring 

Colombian gas pipelines denominated ITION (Inspection of Trends of Integrity and 

OperatioN) was developed and it is being implemented with very good performances. It is a 

robust engine with powerful technology that can help to gauge the health and integrity of 

metallic pipelines without stops in the process during its running. ITION travels 

through/inside the pipeline storing sensed data used to detect structural conditions along the 

pipeline. A very important measurement unit that can be installed in this tool consists of an 

arrangement of Magnetic Flux Leakage (MFL) sensors, which is a useful variable to detect 

along of a metallic pipe line dents, anomalous weld seams, longitudinal cracks, longitudinal 

grooves and corrosion. This variable sensed along a long pipeline (30 km for the 

experimental case analysed in this paper) contain valuable information but its millions of 

samples demand data compression achieve a reasonable quantity of variables. Thus this 

problem motivated the present research and here it is presented the use of an alternative tool  

(Multiway Principal Components Analysis) to locate sections of the pipeline with probable 

structural damages. 

2 ITION- SMART IN-LINE INSPECTION TOOL 

The Corrosion Research Institute (CIC) from Colombia is a center for developing 

technology and generating knowledge associated to industrial corrosion problems, especially 

those related with gas and oil infrastructures. On this direction this center developed a Smart 

Inspection Tool denominated ITION (Inspection of Trends of Integrity and OperatioN, see 

Figure 1) and it was used to inspect a 36 km Colombian gas pipeline, where inertial, pressure, 

temperature, magnetization and magnetic leakage signals were recorded along it with the 

purpose of detecting subnormal conditions of the structure such as weld failure, geometric 

deformation, corrosion, mass loss or adding, among others.   

 

 
 

Figure 1: Inspection of Trends of Integrity and OperatioN -ITION- 
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2.1 ITION Configuration 

 ITION corresponds to a smart pipeline inspection tool that consists of an instrumented 

vehicle capable of travelling inside a pipeline by propulsion of the transported fluid. It can 

acquire and record along the pipeline different variables according with the inspection 

purpose (measuring operational conditions, locating or inspecting damages, defining 

geometrical profiles) by installing different sensor inside and outside the chassis. Figure 1 

presents a basic configuration of this inspection tool, where all electronics are protected by a 

mechanical housing and designed to fit most of the conventional scraper routinely used in 

pipeline cleaning processes. The ITION tool includes the next measurement devices: 

odometer, Inertial Measurement Unit (IMU), accelerometers, calipers, pressure and 

temperature sensors. However, for inspecting the pipeline studied in this paper, the system 

has been expanded to incorporate a MFL system that consists of a prototype array of linear 

transducers that varies its output voltage in response to the perturbed magnetic field applied 

by permanent magnets. Thereby, next signals are recorded:  

  
Signals Variable 

1-3 Inertial Movement 

4-5 Remanent Magnetic fields 

6-7 Pressure and Temperature of the transported fluid 

8 Vibration 

9-10 Calibration Measurements 

11-18 Magnetic Flux Leakage 

 Table I: Recorded signals 

 By using the MFL measurements it is possible to obtain a magnetic profile of the pipeline 

and to identify, inspect or locate wall conditions, such as welds, mass loss or adding, among 

others, based on comparison of previous measurements or expert analysis. To understand 

better the MFL principle, it is presented in next section. 

2.2 Magnetic Flux Leakage (MFL)  

MFL is the most common in line inspection (ILI) technique used for monitoring wall 

thickness in long carbon steel pipelines in order to detect defects such as mass loss or adding, 

fitting or non well conditioned welds, associated with the presence of corrosion or other 

phenomena. According to [3] the MFL technique consists of detecting irregularities in the 

ferromagnetic pipe material under inspection (i.e. loss or adding material) when a permanent 

axially oriented magnetic field is applied by means of permanent magnets. Since the 

magnetic field is perturbed by the material defects a flux leakage outside the pipe is produced 

and measured by field sensors. For monitoring purpose, three important conditions for the 

applied field must be accomplished: strong, consistent (it should be measureable along the 

pipe) and spread out uniform through the pipe. Ferromagnetic materials (such as carbon steel 

materials) exhibit the hysteresis effect (See Figure 2), when a magnetic field is applied, 

which is used to detect abnormal conditions in the inspected material. This nonlinear 

behavior is summarized according to the operation points in the hysteresis curve of figure 2 

(see [3] for more details), where zones MFL (Magnetic Flux Leakage), LFM (Low 

Frequency Magnetic) and RES (Residual Magnetic Field) are the common ones during a 

MFL based pipeline monitoring.  
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Figure 2: Typical hysteresis loop 

 

3 DAMAGE DETECTION METHODOLOGY 

The main purpose of an in-line inspection is to ensure an adequate detection, sizing 

and location of flaws and defects within the pipe wall, in order to keep the integrity of the 

infrastructure and to establish its current and future state.  Different technologies are used 

such as ultrasound, eddy current and Magnetic Flux Leakage (MFL) to detect different types 

of defects at different precision levels. MFL is commonly used to inspect long gas pipelines, 

thus the ITION tool was used to record MFL measurements, among other variables, along a 

30 km Colombian gas pipeline. By recording samples by steps of cm, it means to get millions 

of samples, which also of requiring a high capacity storage system. Therefore, it is necessary 

an adequate data conditioning and analysis in order to avoid false alarms associated to 

changes in the time signals that does not belong to material defects. Due to analyse this 

millions of samples is not possible by human inspection, an alternative technique used by the 

authors in previous works is the Multivariable Statistical Analysis by using Principal 

Component Analysis [4]. In [5][6] it was reported the use of PCA to detect abnormal 

conditions of the same pipeline studied in this paper, where the main contribution consisted 

on using multivariable in place of univariable statistical analysis on the whole recorded 

signals along the total length of the pipeline. The main conclusion of these works is that the 

used statistical indices can detect damages, but also a big number of false alarms are 

activated by the presences of welds. On other hand, in [7] an artificial neural network is used 

to automatically detect welds of this pipeline by using acceleration, vibration and magnetic 

recorded signals. 

  Thus, in this paper a modified methodology based on PCA is proposed to determine 

pipeline sections that can contain a possible material defect (to be evaluated by experts) by 

using the statistics indices computed by independent sections of the pipeline.  
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3.1 Principal Component Analysis 

PCA is a statistical tool that allows an easy graphical representation of observations that 

belong to a general m-dimensional space in a small dimensional space (r) by transforming 

original variables (usually correlated) to new uncorrelated variables. The goal of PCA is to 

find a subspace of a shorter dimension than m that conserves the original structure, minimizes 

the redundancy and maximizes the variance. It means to find an orthogonal transformation 

matrix P to transform the original measurements matrix X into the form: 

 

 � = ��. (1) 

 

It has been demonstrated that the r-dimensional space that better represents X, correspond 

to the eigenvectors P associated with highest eigenvalues (diagonal values of �) of the 

covariance observations matrix CX obtained by equations 2 and 3. 

 

 �� =
'

(
���, (2)	

 ��� = ��,	 (3)	

 

where the columns of P are denominated the Principal Components (or loadings) and T the 

projected or transformed matrix to the principal component space (or score matrix). Since 

only a reduced number of r principal components are selected, it is not possible to fully 

recover X, however T can be projected back to the original space m and a new measurements 

matrix � is obtained as follows: 

 � = ���. (4) 

 

Therefore, the original data matrix X can be decomposed by the projected back data �	and 

the residual error matrix E, which describes the variability not described by the mode 

 

 � = 	��� + �. (5) 

 

Statistical Indices: Two well-known statistics indices are commonly used for analysis 

purposes: Q-statistic (or SPE-statistic) and the Hotelling’s T
2
-statistic (D-statistic). The first 

one represents the variability of the data projection in the residual subspace and denotes 

changes of events that are not explained by the principal components. The Q-statistic of the i-

th sample or experiment (row vector xi of data matrix X) is defined as follows: 

 

 �- = �-�
/ = �-(� − ��

/)�-
/, (6) 

 

where �- is its projection into the residual subspace (row vector of residual data matrix �). 

T
2
-statistic is based on the score matrix T to check the variability of the projected data in the 

new space of the principal components. The T
2
-statistic of the i-th sample (or experiment) is 

defined in the form: 

 �-
7 = �9-Λ

/�9-
/ = �- ��

;'�/ �-
/, (7) 

 

where tsi is its projection into the new space (row vector of the score matrix T).  
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3.2 Methodological steps 

The proposed methodology consists on using the signals recorded by the smart pig ITION 

and applying multivariable statistical analysis separately to each section of the pipeline 

instead of the total length. That is the main difference comparing to previous work. Thus 

individual and independent statistical indices are obtained for each zone by following the 

procedure depicted in Figure 3. 

i) Selection of variables to analyse: Since eighteen variables were measured by ITION for 

the inspected gas pipeline (inertial (3), remnant magnetic field (2), caliper (2) and MFL 

(8). Temperature (1), vibration (1) and pressure (1)), the three last variables were no 

considered for the multivariable analysis since they are not directly associated with any 

kind of defect to be analysed.  Although the variable directly related to material changes 

corresponds to MFL, it is also influenced by the dynamic behaviour of the inspection 

tool and the applied magnetic field, then the multivariable statistical analysis was 

applied on the first fifteen variables. 

ii) Sections definition and samples retrieving. A section for the present study was defined 

as each pipeline portion that exists between two consecutive welds without including the 

last ones. Thus a section can have different geometric shapes and sizes. Welds were not 

considered in the statistical analysis since they generate high MFL measurements that 

alter the statistical indices and hide the indices of interest.  To define each section, the 

MFL and odometer measurements joint to the welds chart given by the owner of the gas 

pipeline were used. It consisted of identifying each weld point reported by the owner 

with samples position where typical dynamical behaviour of the MFL signal associated 

to welds and then retrieve every one of the samples between two consecutive solds. This 

was necessary since the odometer contains error measurements and the reported weld 

position does not match with the distance measured by the odometer.  

iii) Selection of number of observations by section. By using Principal Component Analysis, 

it should be ensured that the number of observations m be greater than the number of 

correlated variables n. For the present analysis each sample of each recorded signal is 

considered as a correlated variable, thus the number of samples l by sensor for each 

observation is obtained by the following condition:  � = �/� ≥ � = ��, where L is the 

number of samples by sensor for each section and s is the number of sensors (15 for this 

case). Thus the number of samples l to be selected for each observation is given by: � ≤

�/15 and it can be different for each section since the length and number of recorded 

samples is variable. 

iv) Measurement matrix (X) organization. For each section an independent m×n 

measurement matrix X is obtained, where a row belongs to 15l samples of the analysed 

signals. The position of each one of the samples is not important since PCA consider 

each sample as a correlated variable.   

v) Computation of scores, T
2
 and Q statistical indices. For each section the PCA analysis is 

applied such that scores T and loadings P matrices are obtained and used to obtain the T
2
 

and Q statistical indices for each section.  

vi) Section activation based on maximum Qs. Since the goal of the multivariable statistical 

analysis is to create alarms on sections where greatest statistical indices are presented, it 

was conserved the highest Q index by section and used to compare it with every one of 

the maximal section Q indices. The activated maximal Qs are those greater than the 

mean value of the maximal Qs plus two times the standard deviation. 
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Figure 3: Methodological Steps followed to activate pipeline sections with potential changes 
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4 EXPERIMENTAL RESULTS AND DISCUSION 

The main purpose of this paper was to experimentally validate the methodology on each 

sections of an entire pipeline and to compare maximal statistical indices between them in 

order to detect those sections with some defect or abnormal situation by reducing the analysis 

from a huge quantity of samples to only one index (Q statistics).  

One part of the Colombian industrial gas pipeline network was inspected on September 

2012 by the ITION tool, whose recorded variables were used to experimentally validate the 

methodology proposed here. The pipeline section is 12" nominal diameter, 36 km inspected 

and 3000 welds. Around 14.000.000 samples were recorded, but 10.139.436 samples were 

considered (320 MB) (Initial static samples were disregarded). 

A first experimental validation of the methodology consisted into analyse the first 5 of the 

36 km total pipeline length (434 of 3000 sections). Then, each one of the above mentioned 

methodological steps were applied.    

i) By selecting 15 of the 18 recorded variables (Inertial, Remand Magnetic Field, Caliper 

and MFL), the total number of samples by sensor for the total length of the pipeline section is 

2.538.273 and the maximum number of samples by sensor in a section is 107.177. 

ii) By applying this step over the 5 km of the pipeline most of the weld points were 

identified and located at a sample were the dynamic behaviour of the MFL is that of a weld, 

however some points were no totally identified and it was necessary a visual inspection of the 

plotted MFL signal and contrasted with the chart weld points. Each point was identified by 

computing the sum of the square rms value of each MFL signal (computed for a window of 5 

samples) and at each weld chart point, where the sample selected corresponds to that where 

occurs the maximal value of the MFL between an interval of the half point of the current 

weld and previous one and the half point of the current weld and the next weld. A graphical 

representation of the type of plots used is presented in Figure 4.  

iii and iv) Once updated the sample position for each weld points and based on the 

condition of minimum number of observations, a m×15l measurement matrix was obtained 

for each one of the 434 sections. For example, for the section with the longest sample number 

(107.177) the number of observations was 1275 (it is rounded to the nearest integer toward 

minus infinity) and the length of each row is 15×84=1.260. 

v) For each measurements matrix X, PCA was applied and scores, m T
2
 and Q indices 

were obtained for each section. An example of the T
2
 indices obtained for section is presented 

in figure 5. 

 

  

Figure 4. MFL1 and weld chart points correspondence 

to weld chart 
Figure 5. Activated Maximum Q statistics 
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vi) Once the statistical indices are computed for each section and by applying the 

established condition, 29 sections were activated when the maximum Q indices were 

analysed (see figure 5). This means that in that sections a differentiated variation of one or 

more variables occurs and an expert should evaluate a potential variation in the operation 

condition. For the activated sections a similar pattern is recognized and it corresponds to 

abrupt changes in specific points of MFL sections that according to the inertial signals, they 

do no correspond to movements of magnets or tool. Figure 6 presents the dynamical 

behaviour of section 107 where occurs the maximum Q of all sections. In contrast, figure 7 

presents the dynamic behaviour of section 291 with the minimal value of Q where it can be 

observed a significant variation of MFL signals, but it can be observed that it is associated to 

movements in the tool, reported by inertial variables. 

 
Figure 6. Dynamic behaviour of section 107 with maximum Q statistics 

 
Figure 7. Dynamic behaviour of section 291 with minimum Q statistics 
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5. DISCUSION AND CONCLUSIONS 

Promising results by using multivariable statistical analysis in the analysis o a big number 

of data collected from a in-line inspection tool executed on a Colombian gas pipeline were 

previously reported, however some drawbacks such as false alarms associated to the presence 

of welds were continuously reported. Thus, this work was focused on to solve this drawback 

by excluding the weld effect on the MFL signals and to enhance the sensibility of the 

statistical indices.  

By applying multivariable statistical analysis on signals recorded along of each pipeline 

section, it was demonstrated that is it possible to exclude the effect of the weld on the MFL 

signals and to observe small and punctual events such as a fast change of some of the MFL 

signals, which could correspond to punctual defects such as mass loss at a specific point. 

Also it was demonstrated the robustness of the PCA analysis to exclude significant changes 

in variables such as inertial or MFL variables that do not correspond to damages but also 

correspond to normal dynamics behaviour of the inspection tool travelling along a pipeline 

that transport a fluid to high pressure. 
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