

MASTER THESIS

TITLE: Quadrature synchronous sampling for electrical impedance

plethysmography implemented on a MSP432 microcontroller

AUTHOR: José Miguel Sánchez Sanabria

DIRECTOR: Ernesto Serrano Finetti

DATE: February, 21st 2016

Overview

This project describes how to obtain the electric impedance plethysmography
ranged in low and high frequencies using the skill of quadrature synchronous
sampling without the need of having analog demodulation circuitry.

The system architecture includes a microcontroller unit (MCU), an external
analog-to-digital converter (ADC) and an analog-front-end (AFE). The MCU
controls the ADC acquisition to accomplish the timing requirements of the QSS
and also generates the excitation signal ensuring synchronization. The AFE
performs the voltage-to-current conversion and differential signal processing of
the captured voltage developed in the impedance under test.

The devices used in this project consist of MSP432 which is a low cost and low
power profile microcontroller which drives the analog to digital (ADC)
successive approximation ratio (SAR) converter AD7766 that offers up to 24
bits of resolution. The result system is able to obtain a plethysmography at
multiple frequencies.

ACKNOWLEDGMENTS

I want to thank Ernesto Finetti Serrano to grant me the possibility of realizing this
project.

I thank Ramon Pallars Areny for teaching me the principles of instrumentation and
sensors world.

I would like to thank Mr. Francis that helped me with the components soldering and
creating some helpful auxiliary tools which I needed.

I want to thank my friends despite having our discrepancies on a lot of things we
managed to cheer us up in our sad moments.

And of course I want to especially thank to my family, mother, father and sister that
carried me through my worst moments and encouraged me not to give up. Without
them any of the things I have achieved in life would have ever been possible.

Contents

1. INTRODUCTION -- 1

1.1. Background and Motivation-- 1

1.2. State of the Art --- 2

1.3. Goals of Present Work --- 2

2. PRINCIPLES OF THE BIOIMPEDANCE --- 3

2.1. The Bioimpedance--- 3

2.2. The IPG-- 5

3. PRINCIPLES OF QUADRATURE SYNCHRONOUS SAMPLING ----------------------- 7

3.1. Basis --- 7

3.2. Frequency Requirements-- 8

3.3. Timing Requirements --- 9

4. ANALOG FRONT END -- 11

4.1. Generating Circuit -- 11

4.1.1. Requirements -- 11

4.1.2. Design -- 11

4.1.3. Implementation --- 12

4.1.3.1. Active Filtering --- 12

4.1.3.2. Howland Current Pump --- 14

4.2. Acquiring Circuit -- 19

4.2.1. Requirements -- 19

4.2.2. Design -- 19

4.2.3. Implementation --- 20

4.2.3.1. Differential Electrode Buffers and High Pass Filter--- 20

4.2.3.2. Differential Amplifier and Low Pass Filter -- 21

4.3. Power Circuit --- 23

4.3.1. Requirements -- 23

4.3.2. Design and Implementation -- 23

5. DIGITAL BACK END -- 24

5.1. Generating -- 24

5.1.1. Requirements -- 24

5.1.2. Design -- 24

5.2. Acquiring -- 25

5.2.1. Requirements -- 25

5.2.2. Design -- 26

5.3. Processing -- 28

5.3.1. Requirements -- 28

5.3.2. Design -- 28

6. SOFTWARE IMPLEMENTATION -- 29

6.1. MCU algorithm -- 29

6.2. The Configuration -- 29

6.2.1. System’s Clock --- 29

6.2.2. GPIO -- 29

6.2.3. NVIC -- 30

6.2.4. SPI --- 30

6.2.5. DMA -- 31

6.2.6. Timer A & Timer 32 --- 31

6.3. The Start-Sleep-End -- 32

6.4. The Storing --- 32

6.5. The Active phase: Sample -- 33

6.6. Matlab Algorithm --- 38

7. EXPERIMENTAL RESULTS --- 39

7.1. Calibration -- 39

7.2. IPG -- 44

8. CONCLUSIONS AND FUTURE WORK --- 47

8.1. Conclusion -- 47

8.2. Future Work -- 47

9. BIBLIOGRAPHY --- 48

ANNEX A: MCU CODE -- 50

ANNEX B: MATLAB CODE -- 83

List of Figures

2.1: Simplified Cole-Cole equation representation. 3

2.2: Electrical Circuit equivalent of a cell. 4

2.3: Wave travelling in cell medium as function of its frequency. 5

2.4: IPG waveform and its main features like Systolic peak used for
synchronism of cardiovascular detection system [13].

6

3.1: Sampling times of in phase and quadrature pairs. [14]. 7

3.2: Frequency response of a Sample & Hold operation. 8

4.1: Active low pass filter and improved howland current pump design for
generating circuit stage.

11

4.2: Active Low pass Filtering circuit for 10 kHz. 12

4.3: Frequency responses of active low pass filtering circuit. 13

4.4: Left: MSP432 output wave at the input of the filter. Right: Wave at the
output of the filter.

13

4.5: Experimental frequency response at the output of the filter. 14

4.6: Non-ideal current pump model. 15

4.7: Dual configuration at negative feedback Howland current pump circuit. 15

4.8: Howland current pump output impedance characterization. 17

4.9: Acquiring circuit design for a differential input / output. 19

4.10: Differential buffer and high pass filter. 20

4.11: ADC differential input voltage range. 21

4.12: Differential signal at the output of differential high pass filter. 21

4.13: Differential Amplifier circuit. 22

4.2: Powering circuit design with voltage regulators. 23

5.1: Generating Wave digital module design. 25

5.2: Acquiring software module design. 27

5.3: Processing software module design. 28

6.1: GPIO Input and Output. 29

6.2: Storing interrupt into the NVIC. 30

6.3: Start Sleep End Phase procedure. 32

6.4: Left: SDHC Card initialization of SPI procedure. Right: SDHC Card data. 33

6.5: Active phase: Sampler program flowchart. 34

6.6: Active Phase, green - Data Ready; Purple - Differential signal; yellow -
ADC SAR Sample Clock.

35

6.7: 4 Mini active phases, Green - Data Ready; Purple - Differential signal;
Yellow - ADC SAR Sample Clock.

36

6.8: Active Phase, ADC sample process, Green - Data Ready; Purple -
Differential signal; Yellow - ADC SAR Sample Clock.

37

6.9: Single sample transmission: Red: Chip Select. Blue: Received 24 bits.
Green: Bit Clock. Yellow: Sampler Clock.

38

7.1: Experimental simulation electrode scenario plus load using capacitors
and resistors.

39

7.2: Impedance Module of a known load. Up 10: kHz. Down: 1 MHz. 40

7.3: Parallel Resistance of a known load. Up 10: kHz. Down: 1 MHz. 41

7.4: Parallel Capacitance of a known load. Up 10: kHz. Down: 1 MHz. 41

7.5: Noise Impedance. Up 10: kHz. Down: 1 MHz. 42

7.6: FFT of Noise Impedance of known load. Up 10: kHz. Down: 1 MHz. 43

7.7: Captured Voltage Module (for Noise calculation). Up 10: kHz. Down: 1
MHz.

43

7.8: Normalized Voltage module of a modulated 2Hz Sine at 10 kHz using
1 % modulation index.

44

7.9: FFT captured of a modulated 2Hz Sine at 10 kHz using 1 % modulation
index.

44

7.10: Normalized Voltage module of a modulated 2Hz Sine at 10 kHz using
0.1 % modulation index.

45

7.11: FFT captured of a modulated 2Hz Sine at 10 kHz using 0.1 %
modulation index.

45

7.12 IPG at 10 kHz. 46

7.13: FFT of IPG at 10 kHz. 46

7.14: Normalized and Filtered IPG at 10 kHz. 46

List of Tables

3.1: Required uncertainty times for a given frequency and resolution of both
resistive and reactive components.

10

4.1: Requirements of generating circuit. 11

4.2: Output Impedance required for N bits of resolution. 17

4.3: AD8041 Bandwidth and pole parameters. 18

4.4: Requirements of acquiring circuit. 19

4.5: Requirements of power circuit. 23

5.1: Requirements of acquiring circuit. 24

5.2: Requirements of acquiring software. 25

5.3: Requirements of processing software. 28

6.1: SPI Configuration. 30

6.2: DMA Configuration. 31

6.3: Timers A Configuration. 31

6.4: Timers 32 Configuration. 31

7.1: System precision. 44

1

1. Introduction

1.1. Background and Motivation

Nowadays, the spread use of mobile devices opens up the possibility of
implementing cheap, non-invasive measurements techniques aimed at obtaining
information about a person’s health status. The state of art of these techniques
shows a steady evolution towards different bioelectrical signal analysis in general.
One such technique is the measurement of the electrical bioimpedance of living
tissues (i.e. the human body).

The Bioimpedance measurement is cheap and non-invasive measurement method.
This characteristic is the one that makes current state of art constant evolving
towards bioelectric analysis in general.

Many electronic weighing scales give information about the body fat, body water or
muscle content by measuring the basal electrical bioimpedance of different body
segments. However, they also show weak variations due to the physiological
activity of the respiratory and the circulatory systems

The study of such variations is known as impedance plethysmography (IPG).
Electrical impedance myography (EIM) is another form of recording changes of the
body. In this case, the variations in impedance are due to the geometrical changes
induced by the muscular activity of a body limb which enables monitoring of
rehabilitation therapy in injured limbs.

These variations of complex impedance of living tissue –real and imaginary parts–
exhibit resistive and reactive behaviour. Moreover, this behaviour is frequency-
dependent, which makes it interesting to perform multiple frequency
measurements.

This kind of studies usually requires more complex systems that include coherent
analog demodulators both for the in-phase and quadrature components.

However quadrature synchronous sampling (QSS) is an under-sampling
acquisition strategy that enables the direct acquisition of the in-phase and the
quadrature signals of an AM signal, alleviating the use of complex hardware hence
reducing cost, space and power consumption.

It is desirable then to design a system based on low-cost microcontrollers (MCUs)
with low power consumption. Because of the small modulation index of

2

bioimpedance variations, a high resolution system is required of at least 16 bits [3]
in the range of hundreds of kilohertz which requires high CPU clocks.

1.2. State of the Art

The current state of the art includes several methods and designs to obtain the
bioimpedance measurements such as IPG and ECG using low frequency carrier
and analog demodulators based on FPGA [1], others include the use of a well-
known MCU (MSP430) while obtaining the in-phase and quadrature components
through synchronous sampling at low frequency [2] and others include
multichannel acquisition of in-phase and quadrature component both channels
characterized also at low frequency range [3].

1.3. Goals of Present Work

The aim of this project is to implement QSS on an MSP432 MCU to measure
cardiac and respiratory IPG signals at frequencies from 10 kHz to 100 kHz or more.
The MSP432 operates with a 48 MHz clock, enabling the desired upper frequency
range of carriers (100 kHz or more).
Specifically we need to develop a system that fulfills the following requirements:

1. Develop a low power consumption system that includes the necessary
analog front-end (AFE) to yield reliable signals, to be built on a wearable
object so that health centers and civilians can make disposition of it.

2. Use an MSP432 (Texas Instruments, Inc.) as the core of the system. The
new 32 bit MCU which exhibits the required low power consumption profile
required by the project

3. Store the data on a High Capability SD Card allowing the measurement to
be performed without the need of connecting to a PC.

3

2. Principles of the Bioimpedance

2.1. The Bioimpedance

Bioimpedance refers to the passive electrical properties of any organic tissue. As

any electrical impedance, it has both a resistive () and a reactive (�c) component
whose values depend on the excitation frequency, intracellular an extracellular
water and on the capacitance of the cells’ membrane.

The electrical properties of the living tissue can be considered as an ionic
conductor it is based on concentration activity charge and mobility of free ions,
positive ions (cations) move to the cathode and negative ions (anions) will move to
the anode. At electrodes the transformation between electrical current and ionic
current takes place.

Cells are the basic structural elements of living tissues hence they have an
important role in the determination of electrical impedance. Their membrane has
the ability to store capacitive energy (acting as a dielectric insulator) so that living
tissue is considered as a dispersive medium. Cole [11] introduced the first
mathematical expression able to describe the measurements in living tissues.

It is known as the Cole-Cole equation:

 = ∞ + ∆+ �� � (2.1)

 ∆ = − ∞ (2.2)

Where Z is the impedance value at frequency ω, j is the complex number, ∞ is the
impedance at infinite frequency, is the impedance at zero frequency, � is the
characteristic time constant and σ is a dimensionless parameter with a value
between 0 and 1 adjusted empirically to fit the observations.

Figure 2.1: Simplified Cole-Cole equation representation.

4

Note that σ is closely related with the spectral width of the dispersion; the minimum
spectral width corresponds to σ = 1 and the dispersion is broadened as σ tends to
lower values.

Since we are studying the model with a minimal spectral width dispersion [12] we
are evaluating the living tissue containing cell as a system with σ = 1.

The Cole-Cole equation with σ = 1 is equal to the Randles circuit model described
as:

Figure 2.2: Electrical Circuit equivalent of a cell

Being the cell membrane capacity and the intracellular resistance and the
extracellular resistance:

 depends on the saline solution: −

 depends on the saline solution: −

This means that for low frequencies the cell membrane acts as an open circuit and

therefore the current flows the path of + but for high frequencies the cell
membrane will act as an shorted circuit so the impedance will be .

As a consequence of this behaviour measurement at low frequencies yield
information about the extracellular fluid while at high frequencies yield information
about the intracellular media.

Usually, the range of frequencies of interest is that of the so-called beta dispersion
found in a frequency range from few kilohertz to few megahertz. It is a common
practice to work at frequencies above 5 – 10 kHz.

5

Figure 2.3: Wave travelling in cell medium as function of its frequency

However, the measured impedance is not exclusively dependent of these
properties; geometry also plays an important role. Bearing in mind the usual
simplified model of a cylindrical conductor, its resistance, depends on the resistivity
of the material (an intrinsic property) as well as its shape (section area and length).

Analogously, the electrical bioimpedance will depend on the resistivity of the body
segment under study but also on the cell constant, a parameter related to its
geometry. This enables recording not only true resistivity chances but also
geometrical changes that are linked to physiological activity.

2.2. The IPG

Plethysmography records the variations produced by physiological activity on a
given volume conductor like a limb or the human trunk. For example, photo-
plethysmography enables to record volume variations at the capillary arteries of
fingers yielding information about heart rate.

IPG signals record impedance variations due to physiological activity, for example
respiration or heart beats. If we model a body segment as a cylindrical conductor
[4] the variations induced by the pumping of arterial blood can be described by:

 ∆� = − (∆ + ∆) (2.3)

6

Where:

 ∆V = Arterial Volume change.

 L = Length of the arterial section between voltage electrodes.

 ρ = Blood resistivity.
 = Basal impedance according to Cole model

 ∆ = Impedance variation due to blood resistivity change

 ∆ = impedance variation due to arterial volume change

Therefore the IPG records the pulsatile impedance changes due to cardiovascular
activity caused by pressure pulse-propagations. The typical IPG waveform can be
seen in the next figure:

Figure 2.4: IPG waveform and its main features like Systolic peak used for
synchronism of cardiovascular detection system [13]

Usually the information of the IPG remains in a bandwidth of 0.5 – 12,5 Hz. It
represents the heart cycle as the cardiac ejection occurs a systolic peak is
represented followed by the percussion wave where we can identify for instance
the dicrotic notch pointed in figure 2.4 which is caused by closure of the aortic
valve.

7

3. Principles of Quadrature Synchronous Sampling

3.1. Basis

It is possible to demodulate a bandpass signal and obtain its phase and quadrature
component using the following interpolation equations:

 = � ∑ − � � − �∞
= −∞ (3.1)

 = � ∑ − � (� + � + �) − � − � − �∞

= −∞
(3.2)

This means that for any sample taken at t = u the quadrature pair will be at t =

u+ � even there is no need to taking both phase and quadrature components in

the same period as m ≠ 0 we can obtain the quadrature pair of that phase sample

from a different period only if we maintain the sampling interval of u+ �as it can be

seen in the Figure 3.1:

Figure 3.1: Sampling times of in phase and quadrature pairs. [14]

8

Since the Bioimpedance signal is a bandlimited signal we can obtain its real an

imaginary component by sampling at frequency or submultiples of it that fulfil the

Nyquist theorem by taking components at and + �.

In order to reconstruct de signal we will need a digital low pass filter of Bandwidth
B. The SAR analog to digital converter AD7766 does have a digital filter part which
in fact acts as a Sync filter plus 2 FIR stages that will help yield a high SNR (109
dB at 128 Ksps. We do not need to take care about the sample/hold circuit nor the
digital filter but only for the sampling instants leaded by MSP432.

3.2. Frequency Requirements

The minimal sampling frequency is B and we take 2 pair of samples filling the
Nyquist criteria. The available sampling rate at ADC ranges up to 128 Ksps so we
can think of sampling the signal at a high frequency and let the zero order sample
& hold reconstruct the R (t) and X (t) components.

The frequency response for a zero order hold lasting � seconds is:

 = |� � | (3.3)

Therefore should not differ from by more than the resolution − as
explained in the Figure 3.2 and Equation 3.4 and 3.5.

Figure 3.2: Frequency response of a Sample & Hold operation

| | − | || | − (3.4)

Finally given that the frequency responses of the zero order hold is a sinc(x); we
obtain that:

sin − − (3.5)

9

We require be at least 0.0001903556781 for a 24 bits resolution system. We
are interested in the 40 Hz frequency range (BW) so:

 = . (3.6)

 �� = . �� (3.7)

Since the ADC oversample the signal at 1 MHz rate the criterion is accomplished.

3.3. Timing Requirements

The time domain error is a critical requirement when it comes to demodulate using
QSS method.

The uncertainty in the aperture time ta created by sampling at an instant is a major
concern since it propagates as a voltage error hence lowering the SNR. This error
depends on the slope of the signal at the sampling point. It will be maximum when
the slope of the signal is maximal; therefore the error E can be expressed as:

 = (3.8)

Where Is the frequency of the sinusoidal signal (the carrier). The rule of thumb

now is to make the E less than the quantitation interval so it does not affect the
ADC resolution:

 − < (3.9)

 < − −
 (3.10)

In QSS we take samples always at the same point of the carrier so the major
concern is not the maximal slope of the signal but the actual slope where we are
taking a sample.

In Bioimpedance measurements the typical reactive component is obtained with �
of 10º (tan �= 0.176) the formula that describes the impedance is [14]:

 = cos() − . sin (3.11)

However what really matter is to compute the maximal so that the error is less
than the quantitation step:

 | − + | < − (3.12)

10

 | (+ �) − + � + | < − (3.13)

Computing the uncertainty times for different resolutions we can build the following
table:

Table 3.1: Required uncertainty times for a given frequency and resolution of
both resistive and reactive components.

Frequency Resistive Component Reactive Component

- 16 bits 20 bits 24 bits 16 bits 20 bits 24 bits

10 KHz 20.73 ns 90 ps 5.2 ps 3.70 ns 15 ps 900 fs

50 KHz 4.15 ns 18 ps 1.04 ps 740 ps 3 ps 180 fs

100 KHz 2.07 ns 8 ps 520 fs 370 ps 1.5 ps 90 fs

500 KHz 415 ps 1.6 ps 104 fs 74 ps 300 fs 18 fs

1 MHz 207 ps 800 fs 52 fs 37 ps 150 fs 9 fs

2 MHz 104 ps 400 fs 26 fs 18.6 ps 75 fs 4.5 fs

6 MHz 34.6 ps 130 fs 8.67 fs 6.17 ps 25 fs 1.5 fs

12 MHz 17.3 ps 67 fs 4.34 fs 3.09 ps 12.5 fs 750 as

As we can see the Reactive component is the most restrictive one. The ADC
sample and hold has an uncertainty jitter in the order of few ps so this
accomplishes the time domain requirements for 16 bits of resolution.

11

4. Analog Front End

Following, we describe the main analog processing blocks designed in this project.
A brief circuit description and analysis is provided together with the lab verification
results.

4.1. Generating Circuit

4.1.1. Requirements

This circuit should be able to generate a sinusoidal signal of current ideally
maintaining the amplitude steady in front of different loads at different frequencies.

The idea is to filter a square wave generated by the MSP432 and convert the
controlled voltage signal to a controlled current signal. The criterion of resolution
should be maintained at 12 bits (16 bits ideally) with a full scale of ±2.5 Volts. The
power consumption should be maintained as low as possible.

Table 4.1: Requirements of generating circuit

Parameter From To

Signal wave Square Sinusoidal

Controlled Signal Type Voltage Current

Total Harmonic Distortion (THD) -54 dB

Current peak to peak 200 µA

Frequency Range 10 kHz - 1 MHz

Resolution 12 bits (16 ideally)

Voltage Rails +5V – 0 V

4.1.2. Design

The design is composed of an analog active low pass filter and improved howland
current pump.

Figure 4.1: Active low pass filter and improved howland current pump design

for generating circuit stage

12

The idea is to get the square voltage signal provided by the MSP432 to be filtered
around the desired frequency so that we eliminate the harmonics which compose
the square signal leaving a sinusoidal signal with expected total harmonic distortion
to be small enough not to interfere in measurements. Finally the improved howland
current pump will transform the voltage signal into a controlled current signal.

4.1.3. Implementation

4.1.3.1. Active Filtering

The MSP432 is limited in current output. If we use a passive low pass filter there
will be a range of working load impedance. At high frequencies this range is also
limited due to the rule of combinations of RC at every stage of the filter in order to
avoid loading effect. This causes an output power problem.

Therefore Active filtering will solve that limitation as it will be the operational
amplifier which will provide the current needed and also we can improve the THD
from 30 dB up to 60 dB (compared with passive filtering) which means we have a
natural 10 bits resolution system. Using a little calibration we can aim up to 12 bits
of resolution.

The Active low pass filter circuit design is composed by:

Figure 4.2: Active Low pass Filtering circuit for 10 kHz

13

It is configured as an active 4th order low pass filter working for a corner frequency
of 10 kHz in order to perform the first test. The expected frequency response of the
filter should be:

Figure 4.3: Frequency response of active low pass filtering circuit

Yielding -50 dB of attenuation at 30 kHz where it is placed the first harmonic, also
the tolerance of the components can make the frequency response to change
corresponding to the brown range of the frequency plot.

The measured input wave shows almost no loading effect:

14

Figure 4.4: Left: MSP432 output wave at the input of the filter. Right: Wave at
the output of the filter

The measured output waveform shows amplitude of 1.84 V peak to peak meaning
that the attenuation at the fundamental frequency is:

 = ∗ (��) (4.1)

 ≈ − (4.2)

And the measured THD is as expected -51 dB:

Figure 4.5: Experimental frequency response at the output of the filter

4.1.3.2. Howland Current Pump

The Filtered wave of the previous stage will be converted to a current sine wave.
We intend to inject a current through the body with two electrodes and read the
voltage developed on a separate pair of electrodes (4-wire measurement scheme).

We will use a Non Inverting Negative Feedback improved Dual Howland current
source for this purpose which is a better version of the commonly used howland
current source.

The ideal model of current pump circuits is far from the practical model there are
many drawbacks.

15

Figure 4.6: Non-ideal current pump model

The main characteristics of a Current pump circuit are:

1- Output Impedance should be as higher as possible (ideally infinite) to avoid
loading effects.

2- Bipolar Current Output.
3- The Gain should remain the same at the range of working frequencies.

As mentioned in [15] the best configuration that fulfills the mentioned requirements
with special emphasis in output impedance and gain flatness is the howland
current pump in dual configuration at negative feedback.

The main circuit of this type of Howland current pump is composed by an
operational amplifier in closed loop configuration in both branches and a second
operational amplifier configured as a voltage buffer in the negative branch. (Fig
4.7)

Figure 4.7: Dual configuration at negative feedback Howland current pump
circuit.

16

Analysing the circuit in order to obtain its transconductance gm lead us to:

 ILoad = VinR (4.3)

 gm = R
(4.4)

The current going through the load only depends in the value of Vin and R meaning
there is no loading effect but this is the case only if all resistors are the same value
which is difficult to accomplish due to tolerance in resistors. In Practice the
Howland current pump must be trimmed to balance the values of all resistors.

The expression of the output impedance, Zout, is:

 Zout = R R RR R − R R (4.5)

 if R = R = R = R = (4.6)

 = = ∞

(4.7)

But this is only the ideal case, in our case the tolerance unbalance the branches
meaning that in the worst case is when the positive branch ratio goes minimum
while the negative branch ratio goes maximum:

 ↓↓↑↑ = ↑↑ ↓↓ (4.8)

 = − + +[+ −] − [− −] (4.9)

 Zout ≈ Rt (4.10)

From [6] says that the needed output impedance in order to not affect the
resolution for a Bioimpedance measurement is:

 = � − (4.11)

The change in load impedance depending on the position of the electrodes can go
from 1 Ω to 200 Ω and we use a system of 24 bits but only 16 effective bits so:

 = 6 Ω (4.12)

17

 = Ω (4.13)

A table with the output impedance requirements for a precision of N bits is made:

Table 4.2: Output Impedance required for N bits of resolution

Number of Bits
Output

Impedance

6 12.8 KΩ

8 51.2 KΩ

10 204.8 KΩ

12 819.2 KΩ

14 3.3 MΩ

16 13.2 MΩ

18 52.5 MΩ

20 210 MΩ

22 839 MΩ

24 3.36 GΩ

Zout, however, is not constant and will decay with frequency. It has a resistive part

() and a reactive part � the later one becomes predominant when the
frequency increases as it mainly Capacitive. Therefore Zout will decrease by a

factor of .

Figure 4.8: Howland current pump output impedance characterization

 Will depend on and which will depend on how accurate is the
matching of the resistors and the amplifier open loop gain:

 =
(4.14)

 = (+ �) ∗ (∗+)
(4.15)

18

We will use then a 10 kΩ resistors with 0.01 % tolerance so that Zout ranges to = 25 MΩ at DC. However at higher frequencies Zout will decay because
decreases following the open loop gain.

Using AD8041 the Open Loop Gain at DC is 99 dB and at 1 MHz is 45 dB so the

 will decay from 222 MΩ to 450 kΩ. This means that at 1 MHz the resistive part
of Zout of the Howland current pump will be affected as decreased and now

predominates over making the parallel be in the order of 440 kΩ.

On the other hand, the equivalent capacitance Co is defined by:

There is another component which affects the overall Zout which is the Reactive

component that will depend on � depending decaying at

 = + ⫽ (4.16)

Being the Op Amp Bandwidth and � the pole at which Open Loop Gain decays:

 � = � + �
(4.17)

 � = � � ℎ� �

(4.18)

From AD8041 Datasheet [16] we obtain:

Table 4.3: AD8041 Bandwidth and pole parameters

Parameter Value �� 160 MHz � 2.846 KHz � 0.4 pF � _ � 95 dB � _ ��_� 45 dB

Zout will range from 25 MΩ at DC to 300 kΩ at 1 MHz so we can achieve a natural
10 bits resolution at 1 MHz in the best case.

Moreover according to [15] the enhanced howland current pump using dual
configuration with a feedback at negative branch will improve Zout as now the

resistor network is more stable than without it thus increasing base and .

19

4.2. Acquiring Circuit

4.2.1. Requirements

The Acquiring circuit should be able to obtain the differential signal from electrodes
and suit it up for the Analog to digital converter (ADC). This process means that the
differential signal should be high-pass filtered and amplified while inserting the
common mode voltage of the differential signal match with half the voltage range of
analog to digital converter. As the input signal is differential the acquiring circuit
must ensure a high CMRR.

Table 4.4: Requirements of acquiring circuit

Parameter From To

CMRR 60 dB 80 dB

Voltage Range peak to peak ~200 mV ~1 V

DC Voltage (ADC) 1.25 V

Frequency Range 10 kHz-1 MHz

Resolution 12 bits (16 ideally)

Voltage Rails +5 V – 0 V

4.2.2. Design

Acquiring circuit overview is shown in Fig. 4.9. The voltage detection electrodes
are buffered to avoid loading effects and the differential signal is high-pass filtered
to eliminate electrode offset. Because the ADC needs an offset of 1,25 V, it is
provided by the biasing resistor connected to a suitable voltage. Following, a
differential amplifier –The gain will need to be adapted at max but ensuring the
amplifier outputs are not saturated and ADC range is matched–. It will be added a
low pass filter around our carrier frequency in order to reduce the noise at the ADC
input.

Figure 4.9: Acquiring circuit design for a differential input / output

20

4.2.3. Implementation

4.2.3.1. Differential Electrode Buffers and High Pass Filter

Since the electrodes exhibit high contact impedance, we will need to buffer their
signals in order to increase the ratio of input impedance vs electrode impedance
before entering the high-pass filter. A fully differential topology aids in preserving a
high CMRR in the signal chain. However, one requirement of the ADC is to have
both inputs biased at 1,25 V. The circuit shown in Fig. 4.10 has a cut-off frequency
of 88,4 Hz and allows the introduction of an offset equal to 2*Ibias*Rb.

Figure 4.10: Differential buffer and high pass filter

The size of needs to be high enough to maintain the CMRR but low enough to
avoid creating undesired added potential due to bias current generated by the two
AD8041s. With a 1µA bias current, placing a 1 MΩ resistance yields an added
potential of 2 V. In order to suit the ADC input, our differential signals needs to be

placed at � as �� = 2.5 V the common mode voltage needs to be placed at

1.25 V.

21

Figure 4.11: ADC differential input voltage range

Knowing that the bias currents are of 1.14 µA (measured) it was selected
Rb = 507 kΩ and the expected common mode voltage was 1.25 V.

Figure 4.12: Differential signal at the output of differential high pass filter

4.2.3.2. Differential Amplifier and Low Pass Filter

A fully-differential non-inverting amplifier topology was used for this stage (Fig
4.13), adapting the voltage ranges to the ADC’s full-scale.

22

Figure 4.13: Differential Amplifier circuit

The gain design equation is:

 = = . Ω = . Ω = . Ω (4.20)

When using a 10kΩ resistor network in the current source the expected current
peak amplitude will be of 100 µA. If it is considered a Basal Load impedance of 200
Ω the voltage read will be around 20 mV. Considering a DC offset of 1.25 V we can
amplify the differential signal to at least 1.25 V peak (G = 62.5). Using more
amplification will lead to saturation in the ‘negative’ voltage rail.

It is selected an initial G = 37 in order to performs the first experimental test. If it is
needed the gain will be maximized always considering the previous restriction.

The op amp used in this stage is also AD8041. It used in early stages because of
his CMRR up to 80 dB for a range from dc to 100 kHz enough for 14 bit of
resolution. At 1 MHz the CMRR is 68 dB, enough for a 10 bit of resolution.

AD8041 has a high input bias current but it is used as an advantage knowing that
the differential voltages need to be placed at 1.25 V (ADC reference).

 � = + ∗ �+ − �− . (4.19)

23

4.3. Power Circuit

4.3.1. Requirements

The powering circuit should be able to provide the amount of current needed for
the entire device and generate 3 different voltage rails at 5 V 3.3V 2.5 V from 9.6 V
battery.

Table 4.5: Requirements of power circuit

Power Circuit Requirements

Parameter Value

Input Voltage 9 V

Output Voltage 1 5 V

Output Voltage 2 3.3 V

Output Voltage 3 2.5 V

PSRR 80 dB

4.3.2. Design and Implementation

The powering circuit will be composed of 3 parallel voltage regulators configured
according to datasheets to get the desired voltage rails of 3.3 and 2.5 V (note that
the 5 V voltage rail will not need any configuration resistors). Decoupling capacitors
of 100 nF and 10 µF will be placed at every input / output IC Pin, close to it. This
can be applied for all the IC of the circuit.

Figure 4.2: Powering circuit design with voltage regulators.

24

5. Digital Back End

5.1. Generating

5.1.1. Requirements

The digital generating part will be managed by the MCU MSP432 from Texas
Instruments and the requirements are quite simple. It should be able to generate a
square signal at a frequency selected by the user, therefore the signal should be at
the range of the voltage rails of application and it should keep generating the signal
until the sampling process is over.

It is decided that in order to be able to witness some cardiac cycles the duration of
the generating part will be 10 seconds.

The MCU should also get into the state of sleep during the time there is no action
required, as the generation will be independent from MCU processing thanks to the
peripherals of the MSP432.

Table 5.1: Requirements of acquiring circuit

Parameter Value

Signal Wave Square

Voltage Rails +5 V – 0 V

Frequency Range 10 KHz – 1 MHz

Duration 10 seconds

5.1.2. Design

The design of the software module that will handle the generation of the input
signal wave will be managed by the Timer A module of the MSP432 which relies
on a peripheral counter and the crystal oscillator of 48 MHz

25

Figure 5.1: Generating Wave digital module design

5.2. Acquiring

5.2.1. Requirements

The digital acquiring part end will be managed by MSP432 ADC7766 and 8 GB
micro-SDHC card and the requirements should be generating the sampling
instants for the in-phase and the quadrature components and capture the digital
information provided by the ADC for a duration of 10 seconds (the time the system
is generating the input wave).

After obtaining all the information it should be able to deploy the data on a micro
SDHC card.

The critical part of the acquiring software is the error in the sampling instants of the
in-phase and quadrature components so it will be used high resolution timers plus
a high speed master clock.

Table 5.2: Requirements of acquiring software

Parameter Value

SDHC communication SPI-SD 1.1

ADC communication SPI

Frequency Range 10 KHz – 1 MHz

Duration 10 seconds

N Total Samples 1600

26

5.2.2. Design

The design of the software module that will manage the acquiring of the digital data
will be comprised by 3 peripherals the DMA the SPI and the NVIC. It will be
needed 2 DMA and 2 SPI modules which a pair will manage the communication of
ADC and the other pair will manage de deploy of the data into the SDHC. The
NVIC module will serve as interrupt handler for waking up the device at sampling
instant.

27

Figure 5.2: Acquiring software module design

28

5.3. Processing

5.3.1. Requirements

The Processing software should convert the binary data into analog voltage so that
it can be displayed the evolution of the voltages of the in-phase and quadrature
components over time. It should be able to calculate the frequency spectrum and
apply characterizing digital filters (most common case low pass filtering). The
software Matlab will handle all this process.

Table 5.3: Requirements of processing software

Parameter Value

Conversion Digital to Analog

Displaying Time, Frequency

Digital Filter Low Pass, High Pass, Noise Reduction

5.3.2. Design

The design of the processing software consists of reading the binary data of each
samples and calculating the voltage vectors. Then it will be corrected with the
calibration parameters and it will be calculated the impedance evolution over time.

At the end the processing software should show graph of the impedance over time.
Optionally it can also be done frequency analysis of the impedance.

Figure 5.3: Processing software module design

29

6. Software Implementation

According to the design of the Digital Back End the software implementation of
every need is implemented in the MCU MSP432. Below it is declared all the
configuration and algorithm developed in order to perform such tasks.

6.1. MCU algorithm

The algorithm of the MCU will be composed of 3 main phases; Configuration, Start-
Sleep-End and Storing plus an Active phase; the Sample Process.

6.2. The Configuration

The Configuration phase will set different modules: System’s Clock, GPIO, NVIC,
SPI, DMA, Timer A and Timer 32.

6.2.1. System’s Clock

At the start, the system clock will run at a rate of 3 MHz by default but we will use
the high frequency crystal oscillator to set up a new rate of 48 MHz. We will assign
the Master System Clock and the Sub System Master Clock to this crystal. [7]

6.2.2. GPIO

The GPIO will be configured as need searching into register tables the secondary
functions of the PIN involved into SPI, and Timer operations. [8]

Figure 6.1: GPIO Input and Output

30

The mark of I or O implies and Input operation or an Output operation for each pin.

The group of P1 and P3 belongs to SPI A and SPI B modules also P7 belongs to
Timer A1 module. The P8, P5, P2 and Led Pins will be played manually.

6.2.3. NVIC

The NVIC module controls the Interrupt operation of the MSP432, this module is a
newly created one with respect older version like MSP430. The required modules
(DMA1, DMA2, TimerA2, TimerA3, Timer 32A and Timer 32B) will enable their
interrupt capabilities and mentioned interrupts will be stored in the interrupt vector.
[9]

Figure 6.2: Storing interrupt into the NVIC

The priority is set at default knowing that the interrupts will fire in chain style and
any interrupt can’t impose another one.

6.2.4. SPI

The SPI modules EUSCIB0 and EUSCIB2 will be configured in order to serve ADC
and SD communication.

The correct configuration is shown in the following table:

Table 6.1: SPI Configuration

 Communication Type

Parameter SPI – ADC SPI - SD

Module EUSCIB0 EUSCIB2

Mode Master Master

Source Clock SMCLK SMCLK

Bit Clock Rate 4 MHz 200 KHz – 1 MHz

Polarity 1 1

Phase 0 0

Wiring 4 Wire* 3 Wire

The SPI ADC is configured in 4 wires although the Chip Select gate will not be
used to feed the ADC because the ADC will run in 3 wire modes as it was detected
that it performs better than in 4 wires mode due to gate-clock derives.

31

6.2.5. DMA

The DMA configuration requires activating certain channels which the DMA will be
aware in order to complete the memory transfer operations needed. According to
specification [7] the configuration is shown in the following table:

Table 6.2: DMA Configuration

 Communication Type

Parameter DMA SPI ADC DMA SPI SD

TX Channel 0 4

RX Channel 1 5

Mode Basic Basic

Channel Control Primary + Arbitrary mode Primary + Arbitrary mode

Transfer SPI Rx buffer to data buffer SPI Rx buffer to data buffer

Length 24 bits As needed

6.2.6. Timer A & Timer 32

The Timer A and Timer 32 will be configured in order to achieve wake up of the
device at the correct instants and to generate clock signals. The following table
summarizes the uses and configuration of the Timers A needed for this project:

Table 6.3: Timers A Configuration

Type Timer A0 Timer A1 Timer A2 Timer A3

Purpose
ADC Sampling

Clock
Square Wave

Generator
Q

Sampler
P’ and Q’
Sampler

Rate 1 MHz 10 KHz – 1 MHz - -

Output Yes Yes No No

Interrupt No No Yes Yes

The following table summarizes the uses and configuration of the Timer 32 needed
for this project

Table 6.4: Timers 32 Configuration

Type Timer 32 - 0 Timer 32 - 1

Purpose Main End Timer P Sampler

Rate 0,1 Hz 40 Hz

Output No No

Interrupt Yes Yes

32

6.3. The Start-Sleep-End

The Start-Sleep-End phase should be able to start the Sampler timer and the main
end program timer and then put system into sleep mode to save energy. After the
main timer is over the system should stop all clocks operation and proceed to
storing phase.

Figure 6.3: Start Sleep End Phase procedure

The system is put into LPM0 sleep mode. This is a mode of operation where CPU
turns off but peripherals are still on. The consumption of this power mode is around
60 µA / MHz.

The LPM3 mode enables deep sleep and 650 nA / MHz consumption but the
peripherals are turned off so we cannot operate in this power mode because NVIC
would not work. [10]

6.4. The Storing

The Storing phase will create a digital Hex vector from the digital received sample
vector and proceed to initialize the Secure Digital High Capability (SDHC) Card
through SPI and DMA modules.

Finally the storing phase should communicate with the SDHC Card and according
to FAT32 standard so that the Digital Sample data is deployed within and archive
stored into Root folder.

The following graph shows the communication routine for SDHC card for
initialization:

33

Figure 6.4: Left: SDHC Card initialization of SPI procedure. Right: SDHC Card
data transfer protocol

Once the SDHC Card has been put in SPI mode, reset and initialized the data
transfer can proceed following the next flow chart:

6.5. The Active phase: Sample

The sample process phase takes place when system is sleeping at a rate of 40 Hz.
This phase is called by the Sample timer Interruption and proceeds to activate the
SPI operation of sampling plus the DMA operation of storing the 24 bits into a large
buffer and then it proceeds to activate the following sampler timers.
After it is complete the system turns back to sleep mode waiting for the next call of
general sample timer interruption to start again.

34

Figure 6.5: Active phase: Sampler program flowchart

35

The sampling process consist of resetting the ADC thought SPI and take the 1st
sample that it is available, otherwise the ADC would not sample correctly due to
taking samples at non periodic times multiples of the sampling clock (MCLK)
provided to the ADC (AD7766), in this case 1 MHz.

The following capture shows the active phase including the reset of ADC for each
sample taken:

Figure 6.6: Active Phase, green - Data Ready; Purple - Differential signal;
yellow - ADC SAR Sample Clock

It can be seen how the active phase takes place every 25 ms (40 Hz). During the
Active phase 4 samples are taken obtaining the In-phase, the In-phase’ the
quadrature and the quadrature’ components respectively.

36

Figure 6.7: 4 Mini active phases, Green - Data Ready; Purple - Differential
signal; Yellow - ADC SAR Sample Clock

Now it is seen that the active phase in fact is the sum of 4 mini active phases. Each
one takes 1 sample being the first one the in-phase component, the next sample is
the in-phase’ component is being taken at other period +T/2 of the signal.

The quadrature and quadrature’ components are taken at any other period +T/4 so
that the synchronous sampling is effective.

Figure 6.8: Active Phase, ADC sample process, Green - Data Ready; Purple -

Differential signal; Yellow - ADC SAR Sample Clock

37

In order for a sample to be valid the ADC must be feed with the Sampler clock. The
SAR ADC needs a sampler clock to be able to approximate the conversion of the
voltage successively at every period of the clock. If the clock is taken away from
the SAR ADC, the output stream becomes undetermined unless you reset the ADC.

The problem comes when taking a sample at; (x + T/4) or (x + T/2) it must have a
sampler clock with a period resolution of at least T/4 so that each T/4 a new
sample is available. This is not scalable as for high frequencies (>=1MHz) it will
be need a sampler clock at least 4 times higher than the maximum frequency the
ADC7766 allows (1 MHz).

So the solution comes whenever we want to take a sample we must reset the ADC
and feed it with the sampler clock at its maximum rate. After the initialization of the
ADC is completed it comes that the 1st sample is a valid one.

We must repeat this process for every sample we want to take ensuring that the
next sample is taken at a time after the last initialization process of the ADC ended
while being sure that we respect the +T/4 or +T/2 rule.

The final note is that if the DMA is not used and the SPI is run manually the bit
clock of SPI will only transfer 8 cycles (8 bits is the SPI buffer length) and then stop
until it performs the operations needed to send another 8 bits.

This derive makes critical the process of reading the 24 bits that ADC is sending to
us because the bit clock will stop and some bits will be lost.

Below it is shown the correct use of SPI and DMA in order to read the 24 bits the
ADC is sending.

Figure 6.9: Single sample transmission: Red: Chip Select. Blue: Received 24
bits. Green: Bit Clock. Yellow: Sampler Clock.

38

6.6. Matlab Algorithm

The Data is stored into an SD card. The number of samples is 1600 which is 4
samples during at a rate of 40 Hz during 10 seconds. The sequence of the
samples is:

1- In-phase component
2- In-phase’ component
3- Quadrature component
4- Quadrature’ component

The prime components were taken at T/2 from the non-prime ones. This means
that if we subtract and each one and divide by 2 the offset should be erased. This
is in fact a digital low pass filter by doubling the number of samples with the
criterion aforementioned:

 = [+ − ′ +]/ (6.1)
 = [+ − ′ +]/ (6.2)

After the offset is erased for each pair of in-phase and quadrature components it
will be calculated the Module of the voltage using:

 |�| = √ + (6.3)

And then it will be calculated the module of the impedance using the calibration
parameter K:

 | | = |�|| | (6.4)

It will also be calculated the equivalent parallel resistance and parallel Capacitance
by using the angle calibration parameter Alf:

 = | | ∗ cos ∅ − (6.5)

 = | | ∗ sin ∅ − (6.6)

 = + tan ∅ − ∗ tan ∅ − ∗ (6.7)

 = − tan ∅ − / ∗ ∗ ∗ (6.8)

Moreover it will be computed the normalized Impedance module by subtracting the
Mean of all the samples in the impedance module.

Finally digitals filters (low, high) will be applied in the normalized impedance
module in order to reduce some undesired components. Then a FFT will be
computed before and after the filters.

39

The evolution over the 10 seconds of time of the impedance module along with the
parallel equivalent resistance and capacitance and the FFT will be shown in a
graph.

7. Experimental Results

7.1. Calibration

The calibration will be done using known Impedance as loads. This impedance will
be composed of a parallel R and C components plus a series of parallel and C
components placed in simulating the electrode set.

Figure 7.1: Experimental simulation electrode scenario plus load using

capacitors and resistors.

The simulated electrode impedance at 10 kHz will be of 185 Ω and at 1 MHz will be
of 7 Ω. This only recreates the case where it was placed ECG Gel between the
electrode and the skin, reducing the electrode contact impedance.

Using the known impedance (98.655 Ω) and the calculated experimental voltage
module we will be able to get the calibration parameter that fill:

 | | = |�|| � | (6.5)

Moreover using a resistive impedance the same value of a capacitance impedance
(at 10 kHz for instance) will mean that a known α=90 º will be expected.

Computing the experimental ‘Alf’ and subtracting to 90 º will lead to the calibration
angle:

 =∝ − º (6.6)

At the end a known load impedance of (70.42 Ω at 10 kHz, 1.0769 Ω at 1 MHz)
composed by a parallel resistance of 201.61 Ω and a parallel capacitance of
147.53 nF is used at 10 kHz and 1 MHz but this time the calibration parameters

40

will be used to calculate the impedance and its components mentioned in the
previous chapter.

Figure 7.2: Impedance Module of a known load. Up 10: kHz. Down: 1 MHz.

41

Figure 7.3: Parallel Resistance of a known load. Up 10: kHz. Down: 1 MHz.

Figure 7.4: Parallel Capacitance of a known load. Up 10: kHz. Down: 1 MHz.

42

Figure 7.5: Noise Impedance. Up 10: kHz. Down: 1 MHz.

43

Figure 7.6: FFT of Noise Impedance of known load. Up 10: kHz. Down: 1 MHz.

Figure 7.7: Captured Voltage Module (for Noise calculation). Up 10: kHz.
Down: 1 MHz.

44

The Following table shows the precision of the entire system:

Table 7.1: System precision

Type 10 kHz 1 MHz

Standard Deviation Voltage Module Noise 212 µV 5 mV

Standard Deviation Impedance Module Noise 0.03 Ω 1.6 Ω

Impedance Noise Power -34 dB -10 dB

Impedance Module Error % 0.05 % 2 %

Experimental (Voltage Full range = 5 V) Resolution 14 bits 10 bits

7.2. IPG

First it was configured a function generator with a modulated voltage change of
1 % simulating the IPG of human body.

The system was able to obtain perfectly the modulated signal as it is observed:

Figure 7.8: Normalized Voltage module of a modulated 2Hz Sine at 10 kHz
using 1 % modulation index

45

Figure 7.9: FFT captured of a modulated 2Hz Sine at 10 kHz using 1 %

modulation index

Then it was configured to work with a modulation of 0.1 % because IPG changes
can be from 0.1 to 1 % depending on factors such the subject or electrode’s
position:

Again the system is able to obtain really well the modulated signal:

Figure 7.10: Normalized Voltage module of a modulated 2Hz Sine at 10 kHz
using 0.1 % modulation index

Figure 7.11: FFT captured of a modulated 2Hz Sine at 10 kHz using 0.1 %
modulation index

Finally using electrode set RT34 SKINTACT [17] [18] it was performed the
measure of IPG on the human body several times, below is the best result
obtained:

46

Figure 7.12 IPG at 10 kHz

Figure 7.13: FFT of IPG at 10 kHz

Figure 7.14: Normalized and Filtered IPG at 10 kHz

47

The system IPG harmonic has not enough power to be clean enough to see it in
the results above. The breathing can be well appreciated in Fig 7.11.

However the system was not tested at 1 MHz as the 10 kHz test was worse than
expected it has no sense to test at 1MHz where the limitations will be bigger.

8. Conclusions and future work

8.1. Conclusion

It has been build a system from scratch using MSP432 MCU able to obtain
through QSS; the load impedance and calculate the parallel equivalent resistance
and capacitance with 14 bits of resolution at 10 kHz and 10 bits of resolution at 1
MHz. The system can also demodulate a 2 Hz signal at 10 kHz with an index
modulation of 1 % and 0.1 % quite well.

However the results of the IPG at 10 kHz indicate that there is so much noise
coupled into the measurements therefore the captured IPG does not appear as
well as it was expected.

The system is able to deploy the data into the SD Card so that it can be used
without a PC connection. Although the power consumption is not optimized the
system can be run by a battery of 9.4 Volts.

The final conclusion is that once the system is optimized in noise and power
consumption the entire build system is perfectly viable to perform multifrequency
(10-kHz – 1 MHz) IPG analysis at low power consumption.

8.2. Future Work

There is future work to perform following this project. The key aspects to perfection
this system should be:

 Use another type of operational amplifiers at the Active Low pass filter so
that the generated noise in this stage is lowered.

 Change the voltage rails of the system to +3.3 – 0 V.

 Program multifrequency user selectable output in the interface of MSP432

 Build logic gates so that the circuit performs the filters at the desired working
frequency

 Build a new module with another MSP432 plus a LED display to show the
IPG results live.

48

9. Bibliography

[1] M. Kristine Huseby, FPGA Based development platform for biomedical
measurements. Master Thesis, Universitas Osloensis, Spring 2013, 1,2.

[2] O. Puig Mas, Electronic design comparison for obtaining the IPG at the wrist.
Master Thesis, Universistat Politecnica de Catalunya, September 2015 1,2.

[3] G. Xercavins Torregrosa, Multichannel Bioimpedance meter for cardiovascular
time interval analysis, Universitat Politecnica de Catalunya, October 2016, 1,2

[4] Kubicek WG, Patterson RP, Witsoe DA (1970): Impedance cardiography as a
non-invasive method for monitoring cardiac function and other parameters of the
cardiovascular system. Ann. N.Y. Acad. Sci. 170: 724-32.

[5] Durrer D. Electrical aspects of human cardiac activity: a clinical-physiological
approach to excitation and stimulation. Cardiovascular Res. 1968; 2:1–18

[6] Aaron S.Tucker, Robert M. Fox, Rosalind J. Sadleir: Biocompatible High
Precision Wideband Improved Howland Current Source With Lead-Lag
Compensation. IEE Transactions on biomedical circuits and systems Vol 7
February 2013

[7] Texas Instruments. MSP432P4xx Family Technical Reference Manual, 302

[8] Texas Instruments. MSP432P4xx Family Technical Reference Manual, 504

[9] Texas Instruments. MSP432P4xx Family Technical Reference Manual, 105

[10] Texas Instruments. Designing an Ultra-Low-Power (ULP) Application with
MSP432™ Microcontroller. March 2015

[12] Antoni Ivorra, Meritxell Genesca, Anna Sola, Luis Palacios, Rosa Villa,
Georgina Hotter and Jordi Aguilo. Bioimpedance dispersion width as a parameter
to monitor living tissues. Institute of physics publishing physiological
measurements. 26. 1-9. November 2014

[13]Lee Stoner, Joanna M. Young, Simon Fryer. Assessments of Arterial Stiffness
and Endothelial Function Using Pulse Wave Analysis. International Journal of
Vascular Medicine, 2012.

[14] Ramon Pallas-Areny, John G. Webster. Bioelectric Impedance Measurements
using synchronous sampling. IEEE Transactions on biomedical engineering. Vol 40.
Nº 8. August 1993

49

[15] Dhouha Bouchaala, Qinghai Shi, Olfa Kanoun, Nabil Derbel. A High Accuracy
Voltage Controlled Current Source for Handheld Bioimpedance Measurement.
International Multi-Conference on Systems, Signals & Devices. March 18-21 2013

[16] Analog Devices. AD8041 Datasheet. Revision B

[17] SKINTACT Electrodes Catalog PDF. Leonhard Lang Publication October 2015

[18] SKINTACT Electrodes RT34 Technical Information PDF. Revision A. April
2014

50

Annex A: MCU Code

/***
*
* MSP432 main.c template - Empty main
*
*
* Created on: 20/5/2016
* Author: Josh
*
*
*
* MSP432P401
* ------------------
* /|\| |
* | | |
* --|RST |
* | |
* |P7.6/TA1.1 InGen |--> Square Input Wave Generator
* |P8.4 |--> Calibration Pin
* |P8.6 |--> ADC7766 Power Up / Down Pin
* |P8.7 (DRDY) |--> DRDY detect
* |-------ADC---
* |P1.4 (CS) |--> Chip Select (Active Low) (ADC CS)
* |P2.4 (MCLK) |--> MCLK (ADC)
* |P1.5 (SCLK) |--> SCLK (ADC)
* |P1.7 (S0MI) |--> SOMI (RX Digital Out ADC)
* |P1.6 (SIMO) |--> SIMO - (TX)
* |-------SD---
* |P5.5 (CS) |--> Manual Chip Select (Active Low) (SD CS)
* |P3.5 (SCLK) |--> SMCLK (SD)
* |P3.6 (SIMO) |--> SIMO (TX Digital In SD)
* |P3.7 (S0MI) |--> SOMI (RX Digital Out SD)
* |---
 |P1.0 |--> Red LED -> Error
* |P2.1 |--> Green LED -> Sampling
* |P2.2 |--> Blue LED -> Data transfer
*
*
* CONFIGURATION NUMBER
*
* 1- 5 KHz
* 2- 10 KHz
* 3- 20 KHz
* 4- 50 KHz
* 5- 100 KHz
* 6- 200 KHz
* 7- 500 KHz
* 8- 1 MHz
* 9- 2 MHz
* 10- 6 MHz
* 11- 12 MHz
*

51

*/

/* DriverLib Includes */
#include <driverlib.h>
#include <msp.h>

/* Standard Includes */
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

/* Own Includes */
#include <autoconfig.h>

void main(void){

 WDTCTL = WDTPW | WDTHOLD; // Stop WDT

 setup_clock(); // Set-Up ALL CLOCKS

 Configure_Master_Interrupts(); // Configure Master Interrupts

 Configure_GPIO(); // Configure GPIO PINS

 SelecT_InputFreq(2); // Configure Input Frequency

 Configure_Timers(); // Configure Timers

 Configure_SPI(); // Configure SPI Bus

 Configure_DMA(); // Configure DMA

 InitADC_OA(); // ADC7766 Power Up Sequence

 Timers_START(); // Starts Sampling Process

 while(1){
 __no_operation(); // For debugger
 }
}

/*
* autoconfig.h
*
* Created on: 20/5/2016
* Author: Josh
*
*
* CONFIGURATION NUMBER
*
* 1- 5 KHz

52

* 2- 10 KHz
* 3- 20 KHz
* 4- 50 KHz
* 5- 100 KHz
* 6- 200 KHz
* 7- 500 KHz
* 8- 1 MHz
* 9- 2 MHz
* 10- 6 MHz
* 11- 12 MHz
*
* PUBLIC FUNCTIONS :
*
* void setup_clock(void);
* void SelecT_InputFreq (int number1);
* void Configure_Master_Interrupts(void);
* void Configure_GPIO(void);
* void Configure_Timers(void);
* void Configure_SPI(void);
* void Configure_DMA(void);
* void Init_ADC_OA(void);
* void Timers_START(void);
* void Data_Dump(void);
* void error(void);
*
* void SD_init(void);
* void cs_enable(void);
* void cs_disable(void);
* void sd_spi_data_dump(void);
* void send_command_sd(uint8_t []);
* void send_sincro_command_sd(uint8_t []);
* void send_esp_command_sd(uint8_t []);
* void send_data_token_sd(uint8_t []);
* void configure_DMA_TX(int);
* int check_response (int);
* int check_data_response (int);
* void dec_hex(uint32_t);
* void cmd_plus_data_creation(uint32_t);
* void clean_DMA(void);
* void clean_data_DMA(void);
*
*/

/* SPI Configuration Parameter */
extern const eUSCI_SPI_MasterConfig spiMasterConfig;

/*------------------------------------ SPI DMA Data ----------------------------
------*/
extern uint8_t mstxData[3];

53

extern uint8_t msrxData[3];
extern uint8_t bufferedData1[4800];
extern uint8_t mychar_bit[41984];
extern uint32_t umode;
extern uint32_t umode1;
extern uint32_t ii;
extern uint32_t sampleX;
extern int myT_Square;
/*------------------------------------ SPI DMA SD ------------------------------
----*/
extern uint8_t sdtxData[16];
extern uint8_t sdrxData[16];
extern uint8_t sdtx_TOKEN_Data[531];
extern uint8_t sdrx_TOKEN_Data[531];
extern uint8_t sdtx_sincro_Data[10];
extern uint8_t bufferedSD_RX[8];
/*-------------------------------------SPI MSG SD PROTOCOL----------------------
------*/
extern uint8_t Dummy[16];
extern uint8_t Dummy1[10];
extern uint8_t CMD0[16];
extern uint8_t CMD8[16];
extern uint8_t CMD55[16];
extern uint8_t ACMD41[16];
extern uint8_t CMD16[16];
extern uint8_t CMD24_PLUS_ROOT_DATA[531];
extern uint8_t CMD24_PLUS_FAT_DATA[531];
extern uint8_t CMD24_PLUS_CPY_ROOT_DATA[531];
extern uint8_t CMD24_PLUS_CPY_FAT_DATA[531];
extern uint8_t CMD24_PLUS_ARCHIVE_DATA[531];

/*--------------------------------MAIN FUNCTIONS--------------------------------
----------------*/
void setup_clock(void); // Set
up all Clocks
void SelecT_InputFreq (int); // Configure
Square Wave Frequency
void Configure_Master_Interrupts(void); // Configure Master
Interrupts
void Configure_GPIO(void); // Configure
GPIO PINS
void Configure_Timers(void); // Configure
Timers
void Configure_SPI(void); // Configure
SPI Bus
void Configure_DMA(void); // Configure
DMA
void Init_ADC_OA(void); // Init
ADC and Operational Amplifiers
void Timers_START(void); // Starts
Sampling Process
void Data_Dump_PC(void); // Dump RX
Data buffer into SD
void Data_Dump_SD(void); // Dump RX
Data buffer into SD

54

void error(void); // Check
error function
/*--------------------------------SD FUNCTIONS----------------------------------
----------------*/
void SD_init(void); //
Initialization of SD - SPI Protocol
void cs_enable(void); // SD CS
Low State
void cs_disable(void); // SD CS
High State
void sd_spi_data_dump(void); // Dump
Buffered Data to SD
void send_command_sd(uint8_t []); // Send
Command to SD
void send_sincro_command_sd(uint8_t []); // Send Command to SD
void send_esp_command_sd(uint8_t []); // Send Special
Command
void send_data_token_sd(uint8_t []); // Send Data Token to
SD
void configure_DMA_TX(int); //
Reconfigure DMA TX Buffer Length
int check_response (int); // Check SD
Response for all Cases
int check_data_response (int); // Check SD
Response for Archive Data writing
void dec_hex(uint32_t); //
Convert decimal offset to hexadecimal offset
void cmd_plus_data_creation(uint32_t); // create cmd 24
void clean_DMA(void); // Clean
SD DMA
void clean_data_DMA(void); // Clean SD
DMA for archive data operations

/*
 * autoconfig.c
 *
 * Created on: 20/5/2016
 * Author: Josh
 *
 *
 * CONFIGURATION NUMBER
 *
 * 1- 5 KHz
 * 2- 10 KHz
 * 3- 20 KHz
 * 4- 50 KHz
 * 5- 100 KHz
 * 6- 200 KHz
 * 7- 500 KHz
 * 8- 1 MHz
 * 9- 2 MHz
 * 10- 6 MHz
 * 11- 12 MHz
 *

55

 *
* PUBLIC FUNCTIONS :
*
* void setup_clock(void);
* void SelecT_InputFreq (int number1);
* void Configure_Master_Interrupts(void);
* void Configure_GPIO(void);
* void Configure_Timers(void);
* void Configure_SPI(void);
* void Configure_DMA(void);
* void Init_ADC_OA(void);
* void Timers_START(void);
* void Data_Dump(void);
* void error(void);
*
* void SD_init(void);
* void cs_enable(void);
* void cs_disable(void);
* void sd_spi_data_dump(void);
* void send_command_sd(uint8_t []);
* void send_sincro_command_sd(uint8_t []);
* void send_esp_command_sd(uint8_t []);
* void send_data_token_sd(uint8_t []);
* void configure_DMA_TX(int);
* int check_response (int);
* int check_data_response (int);
* void dec_hex(uint32_t);
* void cmd_plus_data_creation(uint32_t);
* void clean_DMA(void);
* void clean_data_DMA(void);
*
*/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
/* DriverLib Includes */
#include <driverlib.h>
#include <msp.h>

/* SPI Configuration Parameter */
const eUSCI_SPI_MasterConfig spiMasterConfig =
{ EUSCI_B_SPI_CLOCKSOURCE_SMCLK, 48000000, 3000000,
 EUSCI_B_SPI_MSB_FIRST,
 EUSCI_B_SPI_PHASE_DATA_CAPTURED_ONFIRST_CHANGED_ON_NEXT,
 EUSCI_B_SPI_CLOCKPOLARITY_INACTIVITY_HIGH, UCMODE_2};

/* DMA Control Table */
#if defined(__TI_COMPILER_VERSION__)
#pragma DATA_ALIGN(MSP_EXP432P401RLP_DMAControlTable, 1024)
#elif defined(__IAR_SYSTEMS_ICC__)
#pragma data_alignment=1024
#elif defined(__GNUC__)

56

__attribute__ ((aligned (1024)))
#elif defined(__CC_ARM)
__align(1024)
#endif

/* Statics */
static int myT_Square=0;
static DMA_ControlTable MSP_EXP432P401RLP_DMAControlTable[32];

#define MAP_SPI_MSG_LENGTH 3
#define MAP_SD_SPI_MSG_LENGTH 16
#define MAP_SD_SPI_SINC_LENGTH 10
#define MAP_SD_SPI_TOKEN_LENGTH 531
#define MAP_SD_SPI_RXT_LENGTH 531

uint8_t mstxData[3] = { 0 };
uint8_t msrxData[3] = { 0 };

uint8_t sdtx_TOKEN_Data[531] = { 0 };
uint8_t sdrx_TOKEN_Data[531] = { 0 };
uint8_t sdtx_sincro_Data[10] = { 0 };
uint8_t sdtxData[16] = { 0 };
uint8_t sdrxData[16] = { 0 };

uint8_t bufferedData1[5400] = { 0 };
uint8_t mychar_bit[41984] = { 0 };
uint32_t tarp[1800] = { 0 };

uint32_t umode = 0;
uint32_t umode1 = 0;
uint32_t mitarp =0;
uint32_t pru =0;
uint32_t ii;
uint32_t ie=0;
int8_t e=0;
int8_t p_q_p=0;
uint32_t xc=0;
uint32_t w_sd=0;
uint32_t sampleX = 0;
uint32_t sd_data_loop=0;
uint32_t data_read=0;
uint16_t pounter=0;
uint32_t B_l=0;

uint32_t pos_dec=0;
uint8_t pos_hex[4] = { 0 };

uint32_t drdycount=0;

uint8_t Dummy[16] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t Dummy1[10] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,

57

 0xFF,0xFF};
uint8_t CMD0[16] = {0x40,0x00,0x00,0x00,0x00,0x95,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t CMD8[16] = {0x48,0x00,0x00,0x01,0xAA,0x87,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t CMD55[16] = {0x77,0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t ACMD41[16] = {0x69,0x40,0x00,0x00,0x00,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t CMD16[16] = {0x50,0x00,0x00,0x20,0x00,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};

uint8_t CMD24_PLUS_ROOT_DATA[531] = {0x58,0x00,0x00,0x40,0x00,0xFF,0xFF,0xFF,
 0xFE,0x42,0x20,0x00,0x49,0x00,0x6E,0x00,
 0x66,0x00,0x6F,0x00,0x0F,0x00,0x72,0x72,
 0x00,0x6D,0x00,0x61,0x00,0x74,0x00,0x69,
 0x00,0x6F,0x00,0x00,0x00,0x6E,0x00,0x00,
 0x00,0x01,0x53,0x00,0x79,0x00,0x73,0x00,
 0x74,0x00,0x65,0x00,0x0F,0x00,0x72,0x6D,
 0x00,0x20,0x00,0x56,0x00,0x6F,0x00,0x6C,
 0x00,0x75,0x00,0x00,0x00,0x6D,0x00,0x65,
 0x00,0x53,0x59,0x53,0x54,0x45,0x4D,0x7E,
 0x31,0x20,0x20,0x20,0x16,0x00,0x64,0xEE,
 0xB4,0x7B,0x49,0x7B,0x49,0x00,0x00,0xEF,
 0xB4,0x7B,0x49,0x03,0x00,0x00,0x00,0x00,
 0x00,0x44,0x41,0x54,0x41,0x20,0x20,0x20,
 0x20,0x54,0x58,0x54,0x20,0x10,0x5E,0xF6,
 0xB4,0x7B,0x49,0x7B,0x49,0x00,0x00,0xC6,
 0xB6,0x53,0x49,0x06,0x00,0x7E,0xA2,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

uint8_t CMD24_PLUS_CPY_ROOT_DATA[531] = {0x58,0x00,0x00,0x40,0x40,0xFF,0xFF,0xFF,
 0xFE,0x2E,0x20,0x20,0x20,0x20,0x20,0x20,0x20,
 0x20,0x20,0x20,0x10,0x00,0x64,0xEE,0xB4,
 0x7B,0x49,0x7B,0x49,0x00,0x00,0xEF,0xB4,
 0x7B,0x49,0x03,0x00,0x00,0x00,0x00,0x00,
 0x2E,0x2E,0x20,0x20,0x20,0x20,0x20,0x20,
 0x20,0x20,0x20,0x10,0x00,0x64,0xEE,0xB4,
 0x7B,0x49,0x7B,0x49,0x00,0x00,0xEF,0xB4,
 0x7B,0x49,0x00,0x00,0x00,0x00,0x00,0x00,
 0x42,0x47,0x00,0x75,0x00,0x69,0x00,0x64,
 0x00,0x00,0x00,0x0F,0x00,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
 0xFF,0xFF,0x00,0x00,0xFF,0xFF,0xFF,0xFF,
 0x01,0x49,0x00,0x6E,0x00,0x64,0x00,0x65,
 0x00,0x78,0x00,0x0F,0x00,0xFF,0x65,0x00,
 0x72,0x00,0x56,0x00,0x6F,0x00,0x6C,0x00,
 0x75,0x00,0x00,0x00,0x6D,0x00,0x65,0x00,
 0x49,0x4E,0x44,0x45,0x58,0x45,0x7E,0x31,
 0x20,0x20,0x20,0x20,0x00,0xB3,0xEE,0xB4,
 0x7B,0x49,0x7B,0x49,0x00,0x00,0xEF,0xB4,

58

 0x7B,0x49,0x04,0x00,0x4C,0x00,0x00,0x00,
 0x42,0x74,0x00,0x00,0x00,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0x0F,0x00,0xCE,0xFF,0xFF,
 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
 0xFF,0xFF,0x00,0x00,0xFF,0xFF,0xFF,0xFF,
 0x01,0x57,0x00,0x50,0x00,0x53,0x00,0x65,
 0x00,0x74,0x00,0x0F,0x00,0xCE,0x74,0x00,
 0x69,0x00,0x6E,0x00,0x67,0x00,0x73,0x00,
 0x2E,0x00,0x00,0x00,0x64,0x00,0x61,0x00,
 0x57,0x50,0x53,0x45,0x54,0x54,0x7E,0x31,
 0x44,0x41,0x54,0x20,0x00,0xB4,0xEE,0xB4,
 0x7B,0x49,0x7B,0x49,0x00,0x00,0xEF,0xB4,
 0x7B,0x49,0x05,0x00,0x0C,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

uint8_t CMD24_PLUS_FAT_DATA[531] = {0x58,0x00,0x00,0x31,0x84,0xFF,0xFF,0xFF,
 0xFE,0xF8,0xFF,0xFF,0x0F,0xFF,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0x0F,0xFF,0xFF,0xFF,0x0F,
 0xFF,0xFF,0xFF,0x0F,0xFF,0xFF,0xFF,0x0F,
 0x07,0x00,0x00,0x00,0xFF,0xFF,0xFF,0x0F,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00};

uint8_t CMD24_PLUS_CPY_FAT_DATA[531] = {0x58,0x00,0x00,0x38,0xC2,0xFF,0xFF,0xFF,
 0xFE,0xF8,0xFF,0xFF,0x0F,0xFF,0xFF,0xFF,0xFF,
 0xFF,0xFF,0xFF,0x0F,0xFF,0xFF,0xFF,0x0F,
 0xFF,0xFF,0xFF,0x0F,0xFF,0xFF,0xFF,0x0F,
 0x07,0x00,0x00,0x00,0xFF,0xFF,0xFF,0x0F,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00};

uint8_t CMD24_PLUS_ARCHIVE_DATA[531] = {0x00};

void setup_clock(void){

 /* Configuring pins for peripheral/crystal usage and LED for output
*/

 /* HFXT*/
 MAP_GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_PJ,
 GPIO_PIN3 | GPIO_PIN4, GPIO_PRIMARY_MODULE_FUNCTION);

 /*LFXT*/
 GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_PJ,
 GPIO_PIN0 | GPIO_PIN1, GPIO_PRIMARY_MODULE_FUNCTION);

 /* Setting the external clock frequency LFXT, HFXT. This API is
optional, but will
 * come in handy if the user ever wants to use the
getMCLK/getACLK/etc
 * functions
 */
 CS_setExternalClockSourceFrequency(32768,48000000);

59

 /* Starting HFXT in non-bypass mode without a timeout. Before we
start
 * we have to change VCORE to 1 to support the 48MHz frequency */
 MAP_PCM_setCoreVoltageLevel(PCM_VCORE1);
 MAP_FlashCtl_setWaitState(FLASH_BANK0, 2);
 MAP_FlashCtl_setWaitState(FLASH_BANK1, 2);

 /* Starting HFXT and LFXT in non-bypass mode without a timeout. */
 CS_startHFXT(false);
 CS_startLFXT(false);

 /* Initializing the clock source as follows:
 * MCLK = HFXT = 48MHz
 * HSMCLK = HFXT = 48MHz
 * ACLK = LFXT = 750KHz (Ideally I need 1.024MHz)
 */
 MAP_CS_initClockSignal(CS_MCLK, CS_HFXTCLK_SELECT,
CS_CLOCK_DIVIDER_1);
 MAP_CS_initClockSignal(CS_HSMCLK, CS_HFXTCLK_SELECT,
CS_CLOCK_DIVIDER_1);
 MAP_CS_initClockSignal(CS_ACLK, CS_HFXTCLK_SELECT,
CS_CLOCK_DIVIDER_64);

 /* Enabling FPU for DCO Frequency calculation */
 MAP_FPU_enableModule();

}

void Configure_Master_Interrupts(void){
 /* Enabling MASTER interrupts */
 MAP_Interrupt_enableMaster();
 SCB->SCR |= SCB_SCR_SLEEPONEXIT_Msk; // Enable sleep
on exit from ISR
 __enable_irq();
 // Enable Master Interrupts Interrupts
 NVIC->ISER[0] = 1 << ((INT_T32_INT1 - 16) & 31); // Push P1 interrupt
in NVIC module
 NVIC->ISER[0] = 1 << ((INT_TA2_0 - 16) & 31); // Push Q1
interrupt in NVIC module
 NVIC->ISER[0] = 1 << ((INT_TA3_0 - 16) & 31); // Push Q1'
interrupt in NVIC module
 NVIC->ISER[0] = 1 << ((INT_T32_INT2 - 16) & 31); // Push Tempo
interrupt in NVIC module
}
void Configure_GPIO(void){

 /* Input Signal */
 P7DIR |= BIT6;
 // P7.6 set as output
 P7SEL0 |= BIT6;
 // P7.6 set TA1.1

 /* MCLK Signal */

60

 P2DIR |= BIT4; //
P2.4 set as output
 P2SEL0 |= BIT4; //
P2.4 set TA0_1

 /* DRDY */
 P8DIR &= ~BIT7;
 // P8.7 set as input to check data ready of adc

 /* ADC7766 Power Up / Down */
 P8DIR |= BIT6; //
P8.6 set as output simulate SYNC pin also put it High
 P8OUT &= ~BIT6;
 // P8.6 set Low

 /* Calibration */
 P8DIR |= BIT4;
 // P8.4 set as output auxiliar to calculate Filter Offset Pin
 P8OUT &= ~BIT4;
 // P8.4 set Low

 /* Red LED */
 P1DIR |= BIT0;
 P1OUT &= ~BIT0;
 // Red OFF

 /* Green LED */
 P2DIR |= BIT1;
 P2OUT &= ~BIT1;
 // Green OFF

 /* Blue LED */
 P2DIR |= BIT2;
 P2OUT &= ~BIT2;
 // Blue OFF

 /* SD-SPI CS PIN Controlled Manually */
 P5DIR |= BIT5;
 // 5.5 set as output

 P5DIR |= BIT2;
 // 5.5 set as output
 P5OUT &= ~BIT2;
 // Blue OFF

 /* Configure SPI MASTER PIN: CLK, MOSI & MISO for SPI0 (EUSCI_B2)
for SD Data Dump */

 MAP_GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P3,
 GPIO_PIN5 | GPIO_PIN6, GPIO_PRIMARY_MODULE_FUNCTION);
 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P3,
 GPIO_PIN7, GPIO_PRIMARY_MODULE_FUNCTION);

 /* Configure SPI MASTER PIN: CLK, MOSI & MISO for SPI0 (EUSCI_B0)
for ADC */

61

 MAP_GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P1,
 GPIO_PIN4 | GPIO_PIN5 | GPIO_PIN6, GPIO_PRIMARY_MODULE_FUNCTION);
 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1,
 GPIO_PIN7, GPIO_PRIMARY_MODULE_FUNCTION);

}

void SelecT_InputFreq (int number1){

 switch(number1)
 {
 case 1 : myT_Square = 9600;
 break;
 case 2 : myT_Square = 4800;
 break;
 case 3 : myT_Square = 2400;
 break;
 case 4 : myT_Square = 960;
 break;
 case 5 : myT_Square = 480;
 break;
 case 6 : myT_Square = 240;
 break;
 case 7 : myT_Square = 96;
 break;
 case 8 : myT_Square = 48;
 break;
 case 9 : myT_Square = 24;
 break;
 case 10 : myT_Square = 8;
 break;
 case 11 : myT_Square = 4;
 break;
 }
}

void Configure_Timers(void){

 /* Timer MCLK Signal PIN */
 TA0CCTL0 &= ~CCIFG;
 // Clear Interrupt Flag
 TA0CCR0 = 48-1;
 // MCLK period
 TA0CCR1 = 24-1;
 // TA0CCR1 MCLK duty cycle
 TA0CCTL1 |= OUTMOD_7;
 // TA1CCR1 output mode = reset/set

 /* Input Signal Timer TA1.2 Set-Up */
 TA1CCTL1 &= ~CCIFG;
 // Clear Interrupt Flag
 TA1CCR0 = myT_Square-1;
 // Signal Period

62

 TA1CCR2 = myT_Square/2;
 // TA1CCR1 Signal Duty Cycle
 TA1CCTL2 |= OUTMOD_7;
 // TA1CCR1 output mode = reset/set

 /* Q1 Sampler Timer for ADC7766 TA3.0 Set-Up */
 TA2CCTL0 &= ~CCIFG;
 // Clear Interrupt Flag
 TA2CCR0 = ((2*myT_Square)+(myT_Square/2)+(myT_Square/4))-1+302;
 //1M -240 to correct for software delay Sample period in ticks
(Tq(t)*48e6)
 //TA2CCR0 = ((10*myT_Square)+(myT_Square/4))-1; //1M -240 to
correct for software delay Sample period in ticks (Tq(t)*48e6)
 TA2CCTL0 |= CCIE; //
Enable Timer2_A interrupts

 /* P1' and Q1' Sampler Timer for ADC7766 TA3.0 Set-Up */
 TA3CCTL0 &= ~CCIFG;
 // Clear Interrupt Flag
 TA3CCR0 = ((2*myT_Square)+(myT_Square/2))-1+302;//10k -302 to
correct for ADC INIT (CAL FOR 10K)
 TA3CCTL0 |= CCIE; //
Enable Timer3_A_N interrupts

 /* P Sampler Timer 32 bits 40 Hz for ADC7766 */
 MAP_Timer32_initModule(TIMER32_1_BASE, TIMER32_PRESCALER_1,
TIMER32_32BIT, TIMER32_PERIODIC_MODE);
 MAP_Timer32_setCount(TIMER32_1_BASE,1200000-1);
 MAP_Timer32_enableInterrupt(TIMER32_1_BASE);

 /* Tempo Timer for 10 seconds Set-Up */
 MAP_Timer32_initModule(TIMER32_0_BASE, TIMER32_PRESCALER_1,
TIMER32_32BIT, TIMER32_PERIODIC_MODE);
 MAP_Timer32_setCount(TIMER32_0_BASE,480600000-1);
 MAP_Timer32_enableInterrupt(TIMER32_0_BASE);

}

void Configure_SPI(void){

 /*------------------------ ADC SPI -------------------------*/

 /* Put SPI state machine in reset */
 UCB0CTLW0 |= UCSWRST;

 /* Configure SPI */
 UCB0CTLW0 |= UCMST|UCCKPH|UCSYNC|UCMSB|UCMODE_0|UCSTEM;// Clock
polarity high, MSB, Master
 UCB0CTLW0 |= UCSSEL__SMCLK; // SMCLK Clock Source
= 48MHz
 UCB0BRW = 0x000C; // SPICLK = 3072Khz
// 3000 Khz

 /* Enable the SPI module */

63

 MAP_SPI_enableModule(EUSCI_B0_BASE);

 /*------------------------ SD SPI -------------------------*/

 /* Put SPI state machine in reset */
 UCB2CTLW0 |= UCSWRST;

 /* Configure SPI */
 UCB2CTLW0 |= UCMST|UCCKPH|UCSYNC|UCMSB|UCMODE_0;// Clock polarity
high, MSB, 3 wire ,Master
 UCB2CTLW0 |= UCSSEL__SMCLK; // SMCLK Clock
Source = 48MHz
 UCB2BRW = 0x00F0; // SPICLK = 400 Khz
}
void Configure_DMA(void){

 /* Configuring DMA module */
 MAP_DMA_enableModule();
 MAP_DMA_setControlBase(MSP_EXP432P401RLP_DMAControlTable);

 /* Assign DMA channel 0 to EUSCI_B0_TX0, channel 1 to EUSCI_B0_RX0
*/
 MAP_DMA_assignChannel(DMA_CH0_EUSCIB0TX0);
 MAP_DMA_assignChannel(DMA_CH1_EUSCIB0RX0);

 /* Set-Up Channel Controls */
 MAP_DMA_setChannelControl(DMA_CH0_EUSCIB0TX0 | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
UDMA_ARB_1);

 MAP_DMA_setChannelControl(DMA_CH1_EUSCIB0RX0 | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
UDMA_ARB_1);

 /* Set-Up Channel Transfers */
 MAP_DMA_setChannelTransfer(DMA_CH0_EUSCIB0TX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, mstxData,
 (void *) MAP_SPI_getTransmitBufferAddressForDMA(EUSCI_B0_BASE),
 MAP_SPI_MSG_LENGTH);

 MAP_DMA_setChannelTransfer(DMA_CH1_EUSCIB0RX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC,
 (void *) MAP_SPI_getReceiveBufferAddressForDMA(EUSCI_B0_BASE),
 msrxData,
 MAP_SPI_MSG_LENGTH);

 /*------------------------ SD DMA -------------------------*/

 /* Assign DMA channel 4 to EUSCI_B2_TX0, channel 5 to EUSCI_B2_RX0 */
 MAP_DMA_assignChannel(DMA_CH4_EUSCIB2TX0);
 MAP_DMA_assignChannel(DMA_CH5_EUSCIB2RX0);

 /* Set-Up Channel Controls SPI - SD */

64

 MAP_DMA_setChannelControl(DMA_CH4_EUSCIB2TX0 | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_1);

 MAP_DMA_setChannelControl(DMA_CH5_EUSCIB2RX0 | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 | UDMA_ARB_1);

 /* Set-Up Channel Transfers SPI - SD */
 MAP_DMA_setChannelTransfer(DMA_CH4_EUSCIB2TX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, sdtx_sincro_Data,
 (void *) MAP_SPI_getTransmitBufferAddressForDMA(EUSCI_B2_BASE),
 MAP_SD_SPI_SINC_LENGTH);

 MAP_DMA_setChannelTransfer(DMA_CH5_EUSCIB2RX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC,
 (void *) MAP_SPI_getReceiveBufferAddressForDMA(EUSCI_B2_BASE),
 sdrxData,
 MAP_SD_SPI_MSG_LENGTH);

 /*------------------------ ADC DMA Interrupt -------------------------*/

 /* Enable DMA interrupt SPI + ADC */
 MAP_DMA_assignInterrupt(INT_DMA_INT1, 1);
 MAP_DMA_clearInterruptFlag(DMA_CH1_EUSCIB0RX0 & 0x0F);

 /* Enable DMA interrupt SPI - SD */
 DMA_assignInterrupt(INT_DMA_INT2, 5);
 MAP_DMA_clearInterruptFlag(DMA_CH5_EUSCIB2RX0 & 0x0F);

 /* Assigning/Enabling Interrupts */
 MAP_Interrupt_enableInterrupt(INT_DMA_INT1);
 MAP_DMA_enableInterrupt(INT_DMA_INT1);

 /* Assigning/Enabling Interrupts SPI - SD */
 MAP_Interrupt_enableInterrupt(INT_DMA_INT2);
 MAP_DMA_enableInterrupt(INT_DMA_INT2);

}

void InitADC_OA(void){

 /* Operational Amplifiers ON */
 P8OUT ^= BIT4;
 // PUT P8.4 HIGH
 /* Input Signal Timer */
 TA1CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA1CCR0), Clear TAR1, Start Counting from here
 for (pru=0;pru<9600000;pru++){}
}

void Timers_START(void){

 /* Green Led Indicates that Sample Process Start */
 P2OUT ^= BIT1;

65

 while (TA1R < 3300){};

 /* Tempo Timer */
 Timer32_startTimer(TIMER32_0_BASE,true);

 /*P Sample Timer */
 Timer32_startTimer(TIMER32_1_BASE,false);
 //PCM_gotoLPM0InterruptSafe(); // Calls
WFI enter Low Power Mode LPM0 (Clocks ON | Peripherials ON | CPU OFF)

}

void T32_INT2_IRQHandler(void){

 /* P Sampler */
 /* Start MCLK timer at 800 Khz */
 TA0CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA0CCR0), Clear TAR0, Start Counting from here
 /* ADC7766 ON */
 P8OUT ^= BIT6; // PUT
P8.6 HIGH
 P8OUT &= ~BIT6; // PUT
P8.6 LOW
 while ((P8IN & BIT7)==0){};
 P8OUT ^= BIT6; // PUT
P8.6 HIGH
 /* Wait until DRDY = 0 so ADC is stable */
 while ((P8IN & BIT7)!=0){};
 /* P Sampler UP */
 TA3CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA2CCR0), Clear TAR2, Start Counting from here
 while ((P8IN & BIT7)==0){};
 TA0CTL = MC__STOP;
 /*Take 1 CHECK SAMPLE*/
 DMA_Control->ENASET = 1 << (1 & 0x0F);
 DMA_Control->ENASET = 1 << (0 & 0x0F);
 tarp[mitarp]= TA1R;
 mstxData[0] = 0xFF;
 mstxData[1] = 0xFF;
 mstxData[2] = 0xFF;
 P8OUT &= ~BIT6; // PUT
P8.6 LOW
 TIMER32_CMSIS(TIMER32_1_BASE)->INTCLR |= 0x01;
 //Timer32_haltTimer(TIMER32_1_BASE); // Stop
mode
 mitarp++;
 p_q_p=0;
}

void TA3_0_IRQHandler(void){

 /* P' and Q' Sampler */
 /* Start MCLK timer at 800 Khz */

66

 TA0CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA0CCR0), Clear TAR0, Start Counting from here
 /* ADC7766 ON */
 P8OUT ^= BIT6; // PUT
P8.6 HIGH
 P8OUT &= ~BIT6; // PUT
P8.6 LOW
 while ((P8IN & BIT7)==0){};
 P8OUT ^= BIT6; // PUT
P8.6 HIGH
 /* Wait until DRDY = 0 so ADC is stable */
 while ((P8IN & BIT7)!=0){};
 /* Q Sampler UP */
 TA2CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA2CCR0), Clear TAR2, Start Counting from here
 while ((P8IN & BIT7)==0){};
 TA0CTL = MC__STOP;
 /*Take 1 CHECK SAMPLE*/
 DMA_Control->ENASET = 1 << (1 & 0x0F);
 DMA_Control->ENASET = 1 << (0 & 0x0F);
 tarp[mitarp]= TA1R;
 mstxData[0] = 't';
 mstxData[1] = 'a';
 mstxData[2] = 'e';
 P8OUT &= ~BIT6;
 TA3CTL = MC__STOP;
 // Stop mode
 TA3CCTL0 &= ~CCIFG;
 if(p_q_p==1){
 TA2CTL = MC__STOP;
 // Stop mode
 TA2CCTL0 &= ~CCIFG;
 }
 mitarp++;
}

void TA2_0_IRQHandler(void){

 /* Q Sampler */
 /* Start MCLK timer at 800 Khz */
 TA0CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA0CCR0), Clear TAR0, Start Counting from here
 /* ADC7766 ON */
 P8OUT ^= BIT6; // PUT
P8.6 HIGH
 P8OUT &= ~BIT6; // PUT
P8.6 LOW
 while ((P8IN & BIT7)==0){};
 P8OUT ^= BIT6; // PUT
P8.6 HIGH
 /* Wait until DRDY = 0 so ADC is stable */
 while ((P8IN & BIT7)!=0){};
 /* P Sampler UP */
 TA3CTL |= TASSEL__SMCLK | MC__UP | TACLR; // SMCLK, Up
Mode (Counts to TA2CCR0), Clear TAR2, Start Counting from here

67

 while ((P8IN & BIT7)==0){};
 TA0CTL = MC__STOP;
 /*Take 1 CHECK SAMPLE*/
 DMA_Control->ENASET = 1 << (1 & 0x0F);
 DMA_Control->ENASET = 1 << (0 & 0x0F);
 tarp[mitarp]= TA1R;
 mstxData[0] = 'i';
 mstxData[1] = 'k';
 mstxData[2] = 'u';
 P8OUT &= ~BIT6;
 TA2CTL = MC__STOP;
 // Stop mode
 TA2CCTL0 &= ~CCIFG;
 mitarp++;
 p_q_p=1;
}

void T32_INT1_IRQHandler(void)
{
 /* Stop P Sampler*/
 Timer32_haltTimer(TIMER32_1_BASE); // Stop
mode

 /* Stop Q Sampler*/
 TA2CTL = MC__STOP;
 // Stop mode
 TA2CTL |= TACLR;
 // Clear TAR2

 /* Stop P' and Q' Sampler*/
 TA3CTL = MC__STOP;
 // Stop mode
 TA3CTL |= TACLR;
 // Clear TAR3

 /* Disable SPI */
 SPI_disableModule(EUSCI_B0_BASE);

 /* Disable DMA */
 MAP_DMA_disableChannel(1);
 MAP_DMA_disableChannel(0);

 /* Input Signal Timer */
 TA1CTL = MC__STOP;
 // Stop mode
 TA1CTL |= TACLR;
 // Clear TAR1

 /* Tempo Timer */
 Timer32_haltTimer(TIMER32_0_BASE); // Stop
mode

 /* Clear Interrupt Flag from all timers */
 Timer32_clearInterruptFlag(TIMER32_0_BASE);
 Timer32_clearInterruptFlag(TIMER32_1_BASE);

68

 TA0CCTL0 &= ~CCIFG;
 TA1CCTL0 &= ~CCIFG;
 TA2CCTL0 &= ~CCIFG;
 TA3CCTL0 &= ~CCIFG;

 /* Shut Down OAs */
 P8OUT &= ~BIT4;
 // P8.4 set Low
 /* Shut Down ADC */
 P8OUT &= ~BIT6;
 // P8.6 set Low

 /* Shut Down Green Led as Sampling Process is over */
 P2OUT &= ~BIT1;

 /* Blue Led Indicates that DATA transfer to SD card initiated */
 P2OUT ^= BIT2;
 P5OUT &= ~BIT2;
 // Blue OFF

 Data_Dump_SD();
 //Data_Dump_PC();
}

void Data_Dump_SD(void){

 for(ie=48;ie<521;ie++){
 CMD24_PLUS_FAT_DATA[ie] = 0x00;
 CMD24_PLUS_CPY_FAT_DATA[ie] = 0x00;
 };

 for(ie=144;ie<521;ie++){
 CMD24_PLUS_ROOT_DATA[ie] = 0x00;
 };

 for(ie=279;ie<521;ie++){
 CMD24_PLUS_CPY_ROOT_DATA[ie] = 0x00;
 };

 for(ie=521;ie<531;ie++){
 CMD24_PLUS_ROOT_DATA[ie] = 0xFF;
 CMD24_PLUS_FAT_DATA[ie] = 0xFF;
 CMD24_PLUS_CPY_ROOT_DATA[ie] = 0xFF;
 CMD24_PLUS_CPY_FAT_DATA[ie] = 0xFF;
 };

 for(ie=522;ie<531;ie++){
 CMD24_PLUS_ARCHIVE_DATA[ie] = 0xFF;
 CMD24_PLUS_ARCHIVE_DATA[ie] = 0xFF;
 };

 xc = 0;
 for(ie=0;ie<4800;ie++) {

69

 for (e=7; e>=0; e--){

 switch (e){

 case 7:
 if ((bufferedData1[ie] & 0x80) == 0x80){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 6:
 if ((bufferedData1[ie] & 0x40) == 0x40){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 5:
 if ((bufferedData1[ie] & 0x20) == 0x20){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 4:
 if ((bufferedData1[ie] & 0x10) == 0x10){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 3:
 if ((bufferedData1[ie] & 0x08) == 0x08){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 2:
 if ((bufferedData1[ie] & 0x04) == 0x04){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 1:
 if ((bufferedData1[ie] & 0x02) == 0x02){

70

 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 case 0:
 if ((bufferedData1[ie] & 0x01) == 0x01){
 mychar_bit[xc] = 0x31;
 }
 else{
 mychar_bit[xc] = 0x30;
 }
 break;
 }
 xc++;
 }
 if ((ie+1)%3==0){
 mychar_bit[xc] = 0x0D;
 xc++;
 mychar_bit[xc] = 0x0A;
 xc++;
 }
 }

 /* Start SD Process */
 SD_init();
 /* Blue Led OFF Data transfer is over */
 P2OUT &= ~BIT2;
 /* Call Disable all function? */
}

void SD_init(void){

 /* Initialization of SD_SPI Protocol */

 /* Red Led Indicates that INIT Started */
 P1OUT ^= BIT0;

 /* Enable SD_SPI Module */
 MAP_SPI_enableModule(EUSCI_B2_BASE);

 /* CS HIGH State */
 cs_disable();

 /* Send Dummy Message to generate 400 KHz Clock for 74 clock
Periods */
 send_sincro_comand(Dummy1);

 /* Wait 420 us to let SD stabilize */
 for (w_sd=0;w_sd<20000;w_sd++){}

 /* Wait 210 us to let SD stabilize */

71

 for (w_sd=0;w_sd<10000;w_sd++){}

 /* CS LOW State to make SD enter SPI Mode */
 cs_enable();

 /* Send CMD0 */
 send_command_sd(CMD0);

 /* Read Buffered RX Response from SD if not 0x01 Keep sending CMD
and Keep Reading */
 while(!check_response(3)){
 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}
 /* if not detected send again and read again */
 send_command_sd(CMD0);

 }

 /* CS HIGH State */
 cs_disable();

 /* Wait 210 us to let SD stabilize */
 for (w_sd=0;w_sd<10000;w_sd++){}

 /* CS LOW State to make SD enter SPI Mode */
 cs_enable();

 /* Send CMD0 */
 send_command_sd(CMD8);

 /* Read Buffered RX Response from SD if not 0x01 Keep sending CMD
and Keep Reading */
 while(!check_response(3)){
 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}
 /* if not detected send again and read again */
 send_command_sd(CMD8);

 }

 /* CS HIGH State */
 cs_disable();

 /* Wait 210 us to let SD stabilize */
 for (w_sd=0;w_sd<10000;w_sd++){}

 /* CS LOW State 2nd Transmission */
 cs_enable();

 /* Send CMD55 */
 send_command_sd(CMD55);
 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}

72

 /* Send ACMD41 */
 send_command_sd(ACMD41);

 /* Read Buffered RX Response from SD if not 0x01 Keep sending Dummy
and Keep Reading */
 while(!check_response(0)){

 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}
 /* Send CMD55 */
 send_command_sd(CMD55);
 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}
 /* Send ACMD41 */
 send_command_sd(ACMD41);
 }

 /* CS HIGH State */
 cs_disable();

 /* Disable SD_SPI Module */
 MAP_SPI_disableModule(EUSCI_B2_BASE);

 /* Configure SD_SPI Module at Max Speed 1 MHz */
 UCB2BRW = 0x0030; // SPICLK = 1 MHz

 /* Enable SD_SPI Module */
 MAP_SPI_enableModule(EUSCI_B2_BASE);

 /* INIT END */
 P1OUT &= ~BIT0;

 /* SD in SPI mode, at 1 MHz Speed, Ready for Data Operations */
 sd_data_dump();
}

void sd_data_dump(void){

 /* CS LOW State CMD16 Transmission */
 cs_enable();

 /* Send CMD16 Set Block Length 512 Bytes */
 send_command_sd(CMD16);

 /* Read Buffered RX Response from SD if not 0x00 Keep sending Dummy
and Keep Reading */
 while(!check_response(0)){
 /* if not detected send again and read again */
 send_command_sd(CMD16);
 }

 /* CS HIGH State */
 cs_disable();

73

 /* Wait to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_esp_command_sd(CMD24_PLUS_FAT_DATA);

 /* Wait to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}

 /* CS HIGH State */
 cs_disable();

 /* Read Buffered RX Response from SD if not 0x00 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(0)){}

 /* Read Buffered RX Response from SD if not 0xE5 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(1)){}

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_command_sd(Dummy);

 /* Read Buffered RX Response from SD if not 0xFF (Idle) the SD is
still busy Keep sending Dummy and Keep Reading */
 while(!check_response(2)){
 send_command_sd(Dummy);
 }

 /* CS HIGH State */
 cs_disable();

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_esp_command_sd(CMD24_PLUS_CPY_FAT_DATA);

 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}

 /* CS HIGH State */
 cs_disable();

 /* Read Buffered RX Response from SD if not 0x00 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(0)){}

74

 /* Read Buffered RX Response from SD if not 0xE5 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(1)){}

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_command_sd(Dummy);

 /* Read Buffered RX Response from SD if not 0xFF (Idle) the SD is
still busy Keep sending Dummy and Keep Reading */
 while(!check_response(2)){
 send_command_sd(Dummy);
 }

 /* CS HIGH State */
 cs_disable();

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 /* CS LOW State Data Token Transmission */
 cs_enable();

 send_esp_command_sd(CMD24_PLUS_ROOT_DATA);

 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}

 /* CS HIGH State */
 cs_disable();

 /* Read Buffered RX Response from SD if not 0x00 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(0)){}

 /* Read Buffered RX Response from SD if not 0xE5 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(1)){}

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_command_sd(Dummy);

 /* Read Buffered RX Response from SD if not 0xFF (Idle) the SD is
still busy Keep sending Dummy and Keep Reading */
 while(!check_response(2)){
 send_command_sd(Dummy);
 }

75

 /* CS HIGH State */
 cs_disable();

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_esp_command_sd(CMD24_PLUS_CPY_ROOT_DATA);

 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}

 /* CS HIGH State */
 cs_disable();

 /* Read Buffered RX Response from SD if not 0x00 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(0)){}

 /* Read Buffered RX Response from SD if not 0xE5 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(1)){}

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_command_sd(Dummy);

 /* Read Buffered RX Response from SD if not 0xFF (Idle) the SD is
still busy Keep sending Dummy and Keep Reading */
 while(!check_response(2)){
 send_command_sd(Dummy);
 }

 /* CS HIGH State */
 cs_disable();

 /* Wait 1 ms to let SD stabilize */
 for (w_sd=0;w_sd<48000;w_sd++){}

 for (sd_data_loop=0;sd_data_loop<82;sd_data_loop++)
 {
 cmd_plus_data_creation(sd_data_loop);

 /* CS LOW State Data Token Transmission */
 cs_enable();

 send_esp_command_sd(CMD24_PLUS_ARCHIVE_DATA);

 /* Wait 100 ms to let SD stabilize */
 for (w_sd=0;w_sd<400000;w_sd++){}

76

 /* CS HIGH State */
 cs_disable();

 /* Read Buffered RX Response from SD if not 0x00 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(0)){}

 /* Read Buffered RX Response from SD if not 0xE5 Keep Repeating
CMD24 + Data sequence and Keep Reading */
 while(!check_data_response(1)){}

 /* Wait 100 us to let SD stabilize */
 for (w_sd=0;w_sd<4800;w_sd++){}

 cs_enable();

 send_command_sd(Dummy);

 /* Read Buffered RX Response from SD if not 0xFF (Idle) the SD is
still busy Keep sending Dummy and Keep Reading */
 while(!check_response(2)){
 send_command_sd(Dummy);
 }

 /* CS HIGH State */
 cs_disable();

 for (w_sd=0;w_sd<400000;w_sd++){}

 }

 // DATA DUMP SUCCESSFULL STOP ALL.
}

void error(void){

 static uint32_t k=0;
 P1DIR |= BIT0;
 while (1)
 {
 P1OUT ^= BIT0;
 for(k=0;k<20000;k++); // Blink LED
forever
 }

}

void DMA_INT1_IRQHandler(void){

 /* ADC DMA */

 /* Clear interrupt flags */
 DMA_Channel->INT0_CLRFLG |= (1 << 1);
 DMA_Channel->INT0_CLRFLG |= (1 << 0);

77

 /* Disable Channels so they can be set up again */
 DMA_Control->ENACLR = 1 << (1 & 0x0F);
 DMA_Control->ENACLR = 1 << (0 & 0x0F);

 /* Store Data */
 bufferedData1[sampleX] = msrxData[0];
 bufferedData1[sampleX+1] = msrxData[1];
 bufferedData1[sampleX+2] = msrxData[2];

 sampleX++;
 sampleX++;
 sampleX++;

 /* Set Channel DMA Transfer (Configure it with DMA->r.CHannelTransfer =
todos los bits = menos el mode) */
 MAP_DMA_setChannelTransfer(DMA_CH0_EUSCIB0TX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, mstxData,
 (void *)
MAP_SPI_getTransmitBufferAddressForDMA(EUSCI_B0_BASE),
 MAP_SPI_MSG_LENGTH);

 MAP_DMA_setChannelTransfer(DMA_CH1_EUSCIB0RX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC,
 (void *) MAP_SPI_getReceiveBufferAddressForDMA(EUSCI_B0_BASE),
 msrxData,
 MAP_SPI_MSG_LENGTH);

 // DMA_Control->ENASET = 1 << (1 & 0x0F);
 // DMA_Control->ENASET = 1 << (0 & 0x0F);
}

void DMA_INT2_IRQHandler(void){

 /* SD DMA */
 /* Check if the basic "A" transfer is complete */
 umode = MAP_DMA_getChannelMode(DMA_CH4_EUSCIB2TX0 | UDMA_PRI_SELECT);
 umode1 = MAP_DMA_getChannelMode(DMA_CH5_EUSCIB2RX0 | UDMA_PRI_SELECT);

 if(umode == UDMA_MODE_STOP && umode1 == UDMA_MODE_STOP)
 {
 /* Clear interrupt flags */
 MAP_DMA_clearInterruptFlag(5);
 MAP_DMA_clearInterruptFlag(4);

 /* Disable Channels so they can be set up again */
 MAP_DMA_disableChannel(5);
 MAP_DMA_disableChannel(4);

 /* Set Channel DMA Transfer (Configure it with DMA->r.CHannelTransfer =
todos los bits = menos el mode) */
 MAP_DMA_setChannelTransfer(DMA_CH4_EUSCIB2TX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, sdtxData,
 (void *)
MAP_SPI_getTransmitBufferAddressForDMA(EUSCI_B2_BASE),

78

 MAP_SD_SPI_MSG_LENGTH);

 MAP_DMA_setChannelTransfer(DMA_CH5_EUSCIB2RX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC,
 (void *) MAP_SPI_getReceiveBufferAddressForDMA(EUSCI_B2_BASE),
 sdrxData,
 MAP_SD_SPI_MSG_LENGTH);
 }
}

/*-------------------------------- AUXILIAR SD FUNCTIONS -----------------------
----------------------------*/

void cs_enable(void){

 /* Put CS pin manually LOW */
 P5OUT &= ~BIT5;
 // P5.5 set LOW
}
void cs_disable(void){

 /* Put CS pin manually HIGH */
 P5OUT ^= BIT5;
 // P5.5 set HIGH
}
void send_sincro_comand(uint8_t sincro_data[10]){

 /* Charge Command to send into TX Array 512 Bytes */
 for (B_l=0;B_l<10;B_l++){
 sdtx_sincro_Data[10] = sincro_data[10];
 }
 UCB2IFG = 0x0002;
 MAP_DMA_enableChannel(5);
 MAP_DMA_enableChannel(4);
}
void send_command_sd(uint8_t CMD[16]){

 /* Charge Command to send into TX Array 8 Bytes */
 for (B_l=0;B_l<16;B_l++){
 sdtxData[B_l] = CMD[B_l];
 }
 clean_DMA();
 configure_DMA_TX(0);
 UCB2IFG = 0x0002;
 MAP_DMA_enableChannel(5);
 MAP_DMA_enableChannel(4);
}
void send_esp_command_sd(uint8_t CMD[531]){

 /* Charge Command to send into TX Array 8 Bytes */
 for (B_l=0;B_l<531;B_l++){
 sdtx_TOKEN_Data[B_l] = CMD[B_l];
 }
 clean_data_DMA();
 configure_DMA_TX(1);

79

 UCB2IFG = 0x0002;
 MAP_DMA_enableChannel(5);
 MAP_DMA_enableChannel(4);
}
void cmd_plus_data_creation(uint32_t lopos){

 pos_dec = (lopos)*512 + 8519680;

 pos_dec = pos_dec / 512;
 /* Convert decimal to Hex */
 dec_hex(pos_dec);
 /* Get Hex in parts to store it in pos_hex[0,1,2,3] */

 CMD24_PLUS_ARCHIVE_DATA[0] = 0x58;
 CMD24_PLUS_ARCHIVE_DATA[1] = pos_hex[0];
 CMD24_PLUS_ARCHIVE_DATA[2] = pos_hex[1];
 CMD24_PLUS_ARCHIVE_DATA[3] = pos_hex[2];
 CMD24_PLUS_ARCHIVE_DATA[4] = pos_hex[3];
 CMD24_PLUS_ARCHIVE_DATA[5] = 0xFF;
 CMD24_PLUS_ARCHIVE_DATA[6] = 0xFF;
 CMD24_PLUS_ARCHIVE_DATA[7] = 0xFF;
 CMD24_PLUS_ARCHIVE_DATA[8] = 0xFE;
 CMD24_PLUS_ARCHIVE_DATA[521]=0xFF;
 CMD24_PLUS_ARCHIVE_DATA[522]=0xFF;

 for(data_read=9; data_read<521; data_read++){
 CMD24_PLUS_ARCHIVE_DATA[data_read] = mychar_bit[(data_read-
9)+(lopos*512)];
 }

}
void dec_hex(uint32_t pos){

 pos_hex[0] = pos >> 24;
 pos_hex[1] = pos >> 16;
 pos_hex[2] = pos >> 8;
 pos_hex[3] = pos;

}
void clean_DMA(void){

 /* Clear interrupt flags */
 MAP_DMA_clearInterruptFlag(5);
 MAP_DMA_clearInterruptFlag(4);

 /* Disable Channels so they can be set up again */
 MAP_DMA_disableChannel(5);
 MAP_DMA_disableChannel(4);

 for (w_sd=0;w_sd<16;w_sd++){
 sdrxData[w_sd] == 0x00;
 }

}
void clean_data_DMA(void){

80

 /* Clear interrupt flags */
 MAP_DMA_clearInterruptFlag(5);
 MAP_DMA_clearInterruptFlag(4);

 /* Disable Channels so they can be set up again */
 MAP_DMA_disableChannel(5);
 MAP_DMA_disableChannel(4);

 for (w_sd=0;w_sd<531;w_sd++){
 sdrx_TOKEN_Data[w_sd] == 0x00;
 }

}
void configure_DMA_TX(int def){

 if (def == 0){
 /* Set Channel DMA Transfer now the length of the TX channel data will
be 8 Bytes*/
 MAP_DMA_setChannelTransfer(DMA_CH4_EUSCIB2TX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, sdtxData,
 (void *)
MAP_SPI_getTransmitBufferAddressForDMA(EUSCI_B2_BASE),
 MAP_SD_SPI_MSG_LENGTH);

 MAP_DMA_setChannelTransfer(DMA_CH5_EUSCIB2RX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC,
 (void *) MAP_SPI_getReceiveBufferAddressForDMA(EUSCI_B2_BASE),
 sdrxData,
 MAP_SD_SPI_MSG_LENGTH);
 }
 else{
 /* Set Channel DMA Transfer now the length of the TX channel data will
be 512 Bytes*/
 MAP_DMA_setChannelTransfer(DMA_CH4_EUSCIB2TX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, sdtx_TOKEN_Data,
 (void *)
MAP_SPI_getTransmitBufferAddressForDMA(EUSCI_B2_BASE),
 MAP_SD_SPI_TOKEN_LENGTH);

 MAP_DMA_setChannelTransfer(DMA_CH5_EUSCIB2RX0 | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC,
 (void *) MAP_SPI_getReceiveBufferAddressForDMA(EUSCI_B2_BASE),
 sdrx_TOKEN_Data,
 MAP_SD_SPI_RXT_LENGTH);
 }

}
int check_response (int type){

 if (type == 0){
 for (w_sd=0;w_sd<16;w_sd++){
 if(sdrxData[w_sd] == 0x00){
 w_sd = 16;
 return true;

81

 }
 }
 return false;
 }
 else if (type == 1){
 for (w_sd=0;w_sd<16;w_sd++){
 if(sdrxData[w_sd] == 0xE5){
 w_sd = 16;
 return true;
 }
 }
 return false;
 }
 else if (type == 3){
 for (w_sd=0;w_sd<16;w_sd++){
 if(sdrxData[w_sd] == 0x01){
 w_sd = 16;
 return true;
 }
 }
 return false;
 }
 else{
 for (w_sd=0;w_sd<16;w_sd++){
 if(sdrxData[w_sd] == 0xFF){
 w_sd = 16;
 return true;
 }
 }
 return false;
 }
}
int check_data_response (int type){

 if (type == 0){
 for (w_sd=0;w_sd<531;w_sd++){
 if(sdrx_TOKEN_Data[w_sd] == 0x00){
 w_sd = 531;
 return true;
 }
 }
 return false;
 }
 else if (type == 1){
 for (w_sd=0;w_sd<531;w_sd++){
 if(sdrx_TOKEN_Data[w_sd] == 0xE5){
 w_sd = 531;
 return true;
 }
 }
 return false;
 }
 else if (type == 3){
 for (w_sd=0;w_sd<531;w_sd++){
 if(sdrx_TOKEN_Data[w_sd] == 0x01){

82

 w_sd = 531;
 return true;
 }
 }
 return false;
 }
 else{
 for (w_sd=0;w_sd<531;w_sd++){
 if(sdrx_TOKEN_Data[w_sd] == 0xFF){
 w_sd = 531;
 return true;
 }
 }
 return false;
 }
}

83

Annex B: Matlab Code

% Create Auxiliar A Vector
A = cell(1600,1);
PQ1 = zeros(400,2);
PQ2 = zeros(400,2);
PQ = zeros(400,2);
P = zeros(400,1);
Q = zeros(400,1);
V = zeros(400,1);
Vnorm = zeros(400,1);
Z = zeros(400,1);
Zp = zeros(400,1);
Zq = zeros(400,1);
R = zeros(400,1);
C = zeros(400,1);
Znorm = zeros(400,1);
Alf = zeros(400,1);
K = zeros(400,1);
fe = zeros(201,1);

%Create Time Vector
x = zeros(400,1);

% Create Auxiliar Variables
temp =0;
upper_part = 0;
voltage=0;
v1=1;
v2=1;
v3=1;
v4=1;
aa=0;

% Calibrated Values
AlfCal = -0.397916437122059;
KCal = 0.002953152882812;

%Create Mean values
Vmean=0;
meanZ=0;
meanR=0;
meanC=0;

% Create Time vector
for i=1:400
x(i,1)= 0.025*(i-1);
end

84

fileID = fopen('D:\josemi\archivos\UPC\5B\Proyecte Final de
Carrera\Blocs\Bloc 8 - Calibration\Data 10K 98_655\DATA (9).txt','r');

% Define format String
formatSpec = '%s';
% Scan the File Line by Line and store the values in vector A
for i=1:1600
mychar = fgetl(fileID);
A{i,1} = cellstr(mychar);
BA = char(A{i,1});

 %Read First Bit Value and start processing
 if BA(1) == '0'
 %Process normal
 for e=2:24
 if BA(e) == '1'
 voltage = voltage + ((2^(23-(e-1)))*298.0232239*10^(-9));
 end
 end
 else BA(1) == '1'
 % 1st bit is a 1 so Process oposite
 for e=2:24
 if BA(e) == '0'
 voltage = voltage + ((2^(23-(e-1)))*298.0232239*10^(-9));
 end
 end
 voltage = 0-voltage;
 end

 switch(aa)
 case 0
 PQ1(v1,1)=voltage;
 v1=v1+1;
 aa=aa+1;
 case 1
 PQ2(v2,1)=voltage;
 v2=v2+1;
 aa=aa+1;
 case 2
 PQ1(v3,2)=voltage;
 v3=v3+1;
 aa=aa+1;
 case 3
 PQ2(v4,2)=voltage;
 v4=v4+1;
 aa=0;
 end
 voltage = 0;
end

% Create PQ(400,2) Vector without offset error
for i=1:400
PQ(i,1) = (PQ1(i,1)-PQ2(i,1))/2;
PQ(i,2) = (PQ1(i,2)-PQ2(i,2))/2;
end

85

for i=1:400
P(i,1) = PQ(i,1);
Q(i,1) = PQ(i,2);
end

% Calculate Module of V and Z from PQ vector pairs and store it in vector
for u=1:400
 V(u,1) = (sqrt((PQ(u,1))^2+(PQ(u,2))^2));
 K = V(u,1) / 44.993375369191;
 Alf(u,1) = atan((Q(u,1))/(P(u,1)));
end

% Calculate mean of K vector
Kmean= mean(K);
% Calculate mean of alpha vector
Alfmean = mean(Alf);
Alfus = Alfmean + 1,0972245569318724;

for u=1:400
% % Calculate Module of Z from PQ vector pairs and store it in Z
vector
 Z(u,1)= (sqrt((P(u,1))^2+(Q(u,1))^2))/(KCal);
% % Calculate in-Phase vector of Z from PQ vector pairs and store it
in Phase vector
 Zp(u,1)= Z(u,1)*cos(Alf(u,1)-AlfCal);
% % Calculate Quadrature vector of Z from PQ vector pairs and store
it in Phase vector
 Zq(u,1)= Z(u,1)*sin(Alf(u,1)-AlfCal);
% % Calculate Quadrature vector of Z from PQ vector pairs and store
it in Phase vector
 R(u,1) = (1+tan(Alf(u,1)-AlfCal)*tan(Alf(u,1)-AlfCal))*Zp(u,1);
 C(u,1) = -(tan(Alf(u,1)-AlfCal))/(2*pi*10000*R(u,1));
end

Vmean = mean(V);
meanZ = mean(Z);
meanR = mean(R);
meanC = mean(C);

for u=1:400
 Vnorm(u,1) = V(u,1) - Vmean;
 Znorm(u,1) = Z(u,1) - meanZ;
end

% Close File
fclose(fileID);

% Store Module of Z vector in a text file
fileID2 = fopen('D:\josemi\archivos\UPC\5B\Proyecte Final de
Carrera\Blocs\Bloc 8 - Calibration\Data 10K 98_655\10K_Z.txt','w');
fileID3 = fopen('D:\josemi\archivos\UPC\5B\Proyecte Final de
Carrera\Blocs\Bloc 8 - Calibration\Data 10K 98_655\10K_P.txt','w');
fileID4 = fopen('D:\josemi\archivos\UPC\5B\Proyecte Final de
Carrera\Blocs\Bloc 8 - Calibration\Data 10K 98_655\10K_Q.txt','w');

86

fileID5 = fopen('D:\josemi\archivos\UPC\5B\Proyecte Final de
Carrera\Blocs\Bloc 8 - Calibration\Data 10K 98_655\10K_V.txt','w');

for u=1:400
% Store Module of V vector in a text file 2
fprintf(fileID5,'%.10f\n',V(u,1));
% Store Module of Z vector in a text file 2
fprintf(fileID2,'%.10f\n',Z(u,1));
% Store in-Phase of Z vector in a text file 3
fprintf(fileID3,'%.10f\n',P(u,1));
% Store Quadrature of Z vector in a text file 4
fprintf(fileID4,'%.10f\n',Q(u,1));
end

%Close Files
fclose(fileID2);
fclose(fileID3);
fclose(fileID4);
fclose(fileID5);

figure(1);
plot(x,Vjiji);
title('Voltage Module')
xlabel('Sec')
ylabel('V')
figure(2);
plot(x,P);
title('Phase Voltage')
xlabel('Sec')
ylabel('V')
figure(3);
plot(x,Q);
title('Quadrature Voltage')
xlabel('Sec')
ylabel('V')
figure(4);
plot(x,Z);
title('Impedance Module')
xlabel('Sec')
ylabel('Ohms')
figure(5);
plot(x,Zp);
title('Impedance Real')
xlabel('Sec')
ylabel('Ohms')
figure(6);
plot(x,Zq);
title('Impedance Imaginary')
xlabel('Sec')
ylabel('Ohms')
figure(7);
plot(x,R);
title('Paralel Resistance Equivalent')
xlabel('Sec')
ylabel('Ohms')

87

figure(8);
plot(x,C);
title('Paralel Capacitance Equivalent')
xlabel('Sec')
ylabel('Farads')
figure(9);
plot(x,Vnorm);
title('Normalised Voltage Module')
xlabel('Sec')
ylabel('V')
figure(10);
plot(x,Znorm);
title('Normalised Impedance Module')
xlabel('Sec')
ylabel('V')

%Fourier Transform
Fs = 40; % Sampling frequency
T = 1/Fs; % Sampling period
L = 400; % Length of signal
t = (0:L-1)*T; % Time vector
figure(11);
Y= fft(Znorm);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
plot(f,20*log10(P1));
title('Spectrum of Normalised Impedance Module(t)')
xlabel('f (Hz)')
ylabel('|dB|')

N = 40; % Order
Fstop = 10; % Stopband Frequency
Astop = 80; % Stopband Attenuation (dB)

% Construct an FDESIGN object and call its CHEBY2 method.
h = fdesign.lowpass('N,Fst,Ast', N, Fstop, Astop, Fs);
Hd = design(h, 'cheby2');

Fstop2 = 0.5; % Stopband Frequency

% Construct an FDESIGN object and call its CHEBY2 method.
h2 = fdesign.highpass('N,Fst,Ast', N, Fstop2, Astop, Fs);
Hd2 = design(h2, 'cheby2');

Zefe = filter(Hd,Znorm);
Zfiltered = filter(Hd2,Zefe);
figure(12);
plot(x,Zfiltered);
title('Filtered Impedance Module')

88

xlabel('Sec')
ylabel('V')

Y= fft(Zfiltered);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
figure(13);
plot(f,20*log10(P1))
title('Spectrum of Filtered Normalised Impedance Module(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

Y= fft(V);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
figure(14);
plot(f,20*log10(P1))
title('Spectrum of Voltage Module(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

Y= fft(Vnorm);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;
figure(15);
plot(f,20*log10(P1))
title('Spectrum of Normalized Voltage Module(t)')
xlabel('f (Hz)')
ylabel('|dB(f)|')

	1. Introduction
	1.1. Background and Motivation
	1.2. State of the Art
	1.3. Goals of Present Work

	2. Principles of the Bioimpedance
	2.1. The Bioimpedance
	2.2. The IPG

	3. Principles of Quadrature Synchronous Sampling
	3.1. Basis
	3.2. Frequency Requirements
	3.3. Timing Requirements

	4. Analog Front End
	4.1. Generating Circuit
	4.1.1. Requirements
	4.1.2. Design
	4.1.3. Implementation
	4.1.3.1. Active Filtering
	4.1.3.2. Howland Current Pump

	4.2. Acquiring Circuit
	4.2.1. Requirements
	4.2.2. Design
	4.2.3. Implementation
	4.2.3.1. Differential Electrode Buffers and High Pass Filter
	4.2.3.2. Differential Amplifier and Low Pass Filter

	4.3. Power Circuit
	4.3.1. Requirements
	4.3.2. Design and Implementation

	5. Digital Back End
	5.1. Generating
	5.1.1. Requirements
	5.1.2. Design

	5.2. Acquiring
	5.2.1. Requirements
	5.2.2. Design

	5.3. Processing
	5.3.1. Requirements
	5.3.2. Design

	6. Software Implementation
	6.1. MCU algorithm
	6.2. The Configuration
	6.2.1. System’s Clock
	6.2.2. GPIO
	6.2.3. NVIC
	6.2.4. SPI
	6.2.5. DMA
	6.2.6. Timer A & Timer 32

	6.3. The Start-Sleep-End
	6.4. The Storing
	6.5. The Active phase: Sample
	6.6. Matlab Algorithm

	7. Experimental Results
	7.1. Calibration
	7.2. IPG

	8. Conclusions and future work
	8.1. Conclusion
	8.2. Future Work

	9. Bibliography
	Annex A: MCU Code
	Annex B: Matlab Code

