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ABSTRACT 
In this paper, we present a morphological filter for 

lossless image subsampling for a given downsampling- 
upsampling strategy. This filter is applied in a multi- 
resolution decomposition and results in a more efficient 
scheme for image coding purposes than other lossy 
sampling schemes. Its main advantage is a greatly reduced 
computational load compared to multiresolution schemes 
performed with linear filters. 

1. INTRODUCTION 
In multiresolution image processing [ 11 a complete 

description of an image is obtained by analysis over a 
whole range of spatial scales. One of the most useful 
structures for multiscale analysis is a set of successive 
images, each one being a filtered and subsampled copy of 
its predecessor. The inherent decomposition (that of the 
filtering residues or level-to-level differences) is a non- 
redundant organization of data which has proven to be an 
efficient tool for coding purposes. 

The subsampling step is of prime importance for a 
good rendition of such coding schemes. At each level, a 
Simplification filter is applied before downsampling, so 
that the image components that can not be correctly 
represented in the subsampled image at the next level are 
removed. The filtering stage actually performs a decom- 
position of the original image into a simplified version, 
which may be downsampled, and a residual image (fig. 
1). The successive application of such decomposition 
results in the piramidal multiresolution scheme. If the 
residues can also be downsampled, then the decom- 
position is called a subband multiresolution scheme. 

In the linear case [2,3], the simplification filter is 
designed considering frequency criteria. According to the 
Nyquist theorem, an ideal low-pass filter is required to 
avoid aliasing effects. However, practical filters do not 
allow lossless subsampling due to their non-ideal fre- 
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quency response. A certain amount of aliasing is 
introduced by remaining frequency components in the 
stop band, while desired image components suffer some 
attenuation in the pass band. QMF filters were proposed 
to cancel out the aliasing effect of the filter transition 
band under some particular conditions [4, 33. 

I on .= If i l+ I rf 

Fig. 1. Decomposition performed by the simplification filter 

Non-linear filtering techniques have introduced a 
different approach in multiscale analysis. Relying on the 
principle that different resolution levels are perceived as 
objects of different sizes by the human visual system, 
size analysis is assumed to perform better than frequency 
analysis in order to obtain a visual-like decomposition. 
Mathematical Morphology allows this kind of geomet- 
rical analysis of the image components. Morphological 
filters [ 5 ]  are increasing and idempotent operators that 
perform as "sieves" for size and shape features. In 
addition, they preserve inclusion, which is much closer to 
the subjective perception of occlusion than the additivity 
property in the linear case. 

Morphological sampling has been formalized in [6,7] 
and used for coding applications in [8,91. Opening, 
closing or a combination of both filters are applied for 
the simplification stage. They remove from the original 
image bright or dark components smaller than the new 
grid spacing, in order to ensure preservation of the 
remaining components after downsampling. Nevertheless, 
as happens in the linear case, these morphological filters 
do not allow transparent (lossless) subsampling either. 

The target of this paper is to show that the use of a 
morphological lossless subsampling scheme yields better 
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results for coding purposes than other linear or non-linear 
lossy sampling schemes. 

The paper is organized as follows. Next section 
analyzes how subsampling losses are dealt with in 
multiresolution decompositions for image coding. The 
morphological filter for lossless image subsampling is 
presented in section 3 and applied to image coding in 
section 4. Finally, the coding results are discussed in the 
last section of the paper. 

2. LOSSY SUBSAMPLING SCHEMES 
Both linear and morphological techniques introduce 

losses in subsampling schemes. The filtered image can 
not be exactly reconstructed from its downsampled 
version trough any interpolation procedure. A limited 
amount of uncertainty in the interpolated image appears 
in the two cases but, while in the linear case this 
uncertainty affects the amplitude values (to a limited 
extent depending on the non-ideal response of the filter), 
in the morphological case the uncertainty appears as a 
positional inaccuracy bounded by the grid spacing at the 
lower level 161. 

For coding purposes, and in order to obtain a lossless 
decomposition, subsampling losses should be considered 
together with the filtering residues. For this reason, the 
interpolation procedure is also introduced in the analysis 
stage, as shown in fig. 2. If subsampling losses were not 
considered -as with the scheme presented in fig. 1- only 
a limited number of successive levels could be computed 
without noticeable errors in the reconstructed image. On 
the contrary, if these losses are considered, the coding of 
the decomposition becomes more difficult due to an 
increase in the entropy of the residual images at the 
different levels of the decomposition [9]. 

I 

Fig. 2. Lossless decomposition strategy for a lossy 
subsampling step 

Notice that the structure depicted in fig. 2 is of 
practical use but, somehow, in contradiction with the 
initial concept of an ideal subsampling step. Actually, 
the simplification filter is not able to perform the required 
control over the information -noted by I,, in fig. 2- that 
would be correctly represented in the subsampled image 
and the information that would be not: Irs. Therefore, part 

of the information content in the residual image (Ifil-Iss) 
will not be under the control of the filter. In some cases 
[lo], this information loss, I,,, due to the aliasing effect 
in the downsampling/upsampling step may be even more 
important than the information contained in the filtering 
residue, Irf. 

3. MORPHOLOGICAL FILTER FOR 
LOSSLESS SUBSAMPLING 

Let us consider a downsampling-upsampling strategy, 
where the downsampling step is assumed to rake every 
even grid sample from the filtered signal, while upsam- 
pling is performed by zero padding and morphological 
dilation. As the downsampling step is space-variant with 
the grid position, the morphological filter for 
simplification will also be variant in space. The basic 
filtering operator 6 for the one-dimensional signal 'x' 
taking values in the discrete locations 'k' is defined as 
follows: 

&A(Xk) if k=2i 
k(Xk) = {EA *(xk) if k=2i+l 

where E stands for morphological erosion and A is a 
two pixels wide flat structuring element (A* is its 
symmetric). 

The filter 6 may be characterized as an erosion because 
it commutes with the 'inf(l) operator. However, it is 
also idempotent and thus it is an algebraic opening, i.e. 
an increasing, idempotent and anti-extensive operator, 
that is a morphological filter [ 5 ] .  Its idempotency and 
increasing properties can been easily proven. The dual 
filter c, based on a space-variant dilation may also be 
deflnd 

c(xk) = &,A(xk) ifk=2i 

Moreover, the definition can be extended to two- 
dimensional signals by sepanbility. For image functions, 
the filters 4 and [ are able to remove those components 
from the original image that would be lost after 
downsampling because they are smaller than the new 
sampling interval. The dilation reconstruction of the fil- 
tered and downsampled image using the same structuring 
element gives exactly the filtered image, c(x) or c(x), 
without any amplitude or positional inaccuracy. 
Therefore, the decomposition performed by these filters is 
lossless and the information present in the residual image 
is accurately controlled by the filtering stage. 

The successive application of such subsampling step 
results in a decomposition of the image where the series 
of filtering residues contain the progressive differences to 
the smallest value in a square neighbourhood of side equal 
to two raised to the times that the basic step (filter 6 

{ '*(xk) if k=2i+l 

( l )  Note: The 'inf operator and the morphological 
erosion 'E' and dilation '6' are the usual definitions of [4]. 
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followed by downsampling) has been applied to the 
original image. If the filter c(x) is used, the residues will 
contain the differences to the largest value. Fig. 3 shows 
the block diagram of the size-multiresolution scheme for 
a lossless subsampling step. 

4. APPLICATION TO IMAGE CODING 
Apart from the interesting fact of being simultane- 

ously an erosion (dilation) and opening (closing) 
operator, the presented filter 5 (or c) is a useful tool for 
coding applications involving subsampling steps. In fig. 
4 we have applied a subband decomposition scheme based 
on the filter 4 to the original image “Lenna”. In order to 
downsample the residual images, two properties of the 
filter have been taken into account. The filtering residual 
is an unsigned function, due to the extensivity property. 
In addition, as morphological operators do not introduce 
new image values, a zero value of the residue is found for 
every pair of grid samples. Therefore, the sign has been 
used to code the position information of the non-zero 
residue sample: positive for increasing transitions in the 
directions left to right and top to bottom. 

The morphological decomposition can be compared to 
the linear case shown in fig. 5, where an 8-tap QMF 
filter has been used for the simplification step. It can be 
observed that the residual images in the morphological 
case are less noisy. As mentioned before, the filter 
follows a size criterion, so that the components smaller 
than the size of the new grid are present in the residual 
image. These components are mainly amplitude 
variations of 1 pixel size in visual edges and also small 
maxima or minima of the image. In figs. 6 and 7, the 
result of two iterative applications of the linear and 
morphological subband coding scheme is presented. 

rsN 
Iori” Irsl+ UPS(I rs2) + UPS(UPS(Irs3) + ... 

Fig. 3. Multiresolution decomposition with a lossless 
subsampling step. 

Fig. 4. Morphological subband decomposition (5 filter) Fig. 5 .  Linear subband decomposition (QMF filter) 
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Fig. 6. Morphological subband decomposition (2 iterations) 

5. RESULTS AND CONCLUSION 
When used for coding purposes, the residual images in 

a multiresolution decomposition are coded by means of 
some coding technique such as PCM, DPCM or vector 
quantization. We have coded the residual images using 
plain PCM quantization to perform the comparison 
between a linear decomposition using QMF filters and a 
morphological decomposition with the filters that have 
been presented. 

In the linear case, subband coding schemes benefit 
from the smaller amplitude resolution of the human 
visual system to high frequency image components so 
that a reduced number of quantization levels is used for 
the high frequency residuals. Bearing in mind the kind of 
information that can be found in the "small size" residual 
images of the morphological decomposition, we will 
apply the same technique. Therefore, it is assumed a 
poorer amplitude resolution for small size image 
components and so a coarser quantization is applied to the 
first obtained residuals. 

Coding results are shown in figs.8 to 11. As can be 
seen, for compression ratios around 10, the perceived 
qualities are similar for the linear and morphological 
coding schemes. For larger compressions the quality of 
the reconstructed image decreases quickly with both 
schemes. It is worth noticing that the quality of the coded 
reconstruction is better than the obtained with open-close 
filters in lossy subsampling schemes [8-101. 

The main advantage of the morphological scheme is 
its reduced computational load. With morphological 
filtering techniques, only comparisons are performed, 
whereas the linear filter involves convolution operations. 
Time comparisons between the linear 8-tap QMF filter 

Fig. 7. Linear subband decomposition (2 iterations) 

and the presented 5 or C, filters in a SUN Sparc station 
have shown that the morphological filtering is performed 
in only the 20% of the time of the linear filtering. 

In conclusion, a new morphological space-variant 
filter for lossless subsampling has been presented for a 
particular downsampling-upsampling strategy. Using this 
filter and its dual version, a lossless multiresolution 
decomposition can be computed with very low 
computational load. Such structures provide a special 
organization of image data which have proven to be 
useful for image coding applications, improving the 
results obtained in previous works also using non-linear 
filters. If more sophisticated downsampling-upsampling 
strategies were given, even including geodesic recon- 
struction to get smoother interpolated images, 
morphological filters for the simplification step could be 
designed in a similar way. This would allow improved 
quality in the progressive image reconstructions but 
poorer compression results. Two different applications of 
the presented filters are also under study for video 
sequence coding: interframe prediction error decom- 
position and 3D signal decomposition (for the spatial and 
temporal dimensions). The main point of the these 
algorithms for video coding is the low computational 
load when compared to linear subband decomposition 
schemes. 
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Fig. 8. Morphological subband coded image at 0.65 bpp Fig. 9. Linear subband coded image at 0.65 bpp 

Fig. 10. Morphological subband coded image at 0.8 bpp Fig. 11. Linear subband coded image at 0.8 bpp 
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