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Abstract—In this letter we focus on the uplink offloading with
IP Flow Mobility (IFOM). With IFOM a User Equipment (UE)
is able to maintain concurrently two data streams, one through
LTE and the other through WiFi. We consider the existence of
malicious UEs that aim to exploit the WiFi bandwidth against
their truthful peers, in order to upload less data through the
energy demanding LTE uplink and a reputation based method is
proposed to combat the selfish operation. The WiFi bandwidth is
allocated based on weighted proportional fairness and the LTE
rate is defined through an exponential pricing algorithm. We
theoretically analyse our approach and evaluate the performance
of the malicious and the truthful UEs in terms of energy efficiency
and throughput, through simulations. We show that while the
malicious UEs present better energy efficiency before being
detected, their performance is significantly degraded with the
proposed reaction method.

Index Terms—Resource allocation, Heterogeneous networks,
Misbehavior.

I. INTRODUCTION

THE relatively low deployment cost of WiFi Access Points
(APs) has led the providers and the research community

to investigate offloading techniques for the cellular networks
through WiFi. With the release-10 of 3GPP, a UE in LTE
networks is able to concurrently maintain connections with
the cellular network and a WiFi AP, in order to offload part of
its traffic. The scheme that allows this connectivity is named
IP Flow Mobility (IFOM) [1]. This technology allows an
operator or a UE to shift an IP flow to a different radio access
technology. A UE may shift a file upload on the WiFi network
and, when it moves out of the AP coverage, it will make a
seamless shift back to the cellular network. Another case is
the division of a UE’s data flow into two sub-flows and the
service of each sub-flow by different radio access technologies,
as proposed in [2]. Previous offloading research has focused
on the downlink traffic offloading and do not consider the
increasing tendency of uploading user created content. In [3],
methods for session continuity are proposed for non-seamless
WiFi offloading in LTE networks. Taking into consideration
the shared nature of WiFi resources, the access algorithms for
uplink offloading need to be fair. Namely, the UEs must be
truthful when declaring their uplink data needs. In [4] and
[5] selfish detection mechanisms are proposed for WLAN and
WiFi tethering respectively.

In this letter we assume the existence of malicious UEs that
try to exploit resources against their peers and we propose
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a reaction method to combat this malicious operation. We
focus on the uplink traffic offloading with IFOM and its
impact on the energy efficiency and throughput of modern
mobile communication devices. We propose a reputation based
technique and we evaluate the performance of malicious and
truthful UEs, before and after the misbehavior detection.
The WiFi access is based on weighted proportional fairness
which is affected by the malicious operation and the LTE
access on exponential pricing, for which we provide a detailed
mathematical analysis. In [6], the same system model was
studied without malicious UEs and in [7], a mathematical
proof was provided for the weighted proportionally fair WiFi
bandwidth allocation.

II. SYSTEM MODEL

We consider an LTE eNodeB with its coverage area partially
covered by several WiFi APs of the same LTE provider. We
focus on N LTE UEs that are under the concurrent coverage
of the eNodeB and one of the deployed APs. All UEs are
equipped with WiFi network interface, in addition to their
LTE connectivity, and conform to IFOM. An IP flow can be
divided into two sub-flows and the UEs can define their size.
One sub-flow is directed through LTE and the other through
WiFi. Each UE

i

needs to upload a file of size equal to K

i

,
where i = (1, ..., N). K

i

takes values between K

min

and
K

max

. When a UE wants to upload a file, it informs the
eNodeB for its data needs and this information is disseminated
to the corresponding AP for the WiFi bandwidth allocation.
The described scheme is applied to each one of the WiFi APs
and we investigate the uplink data offloading for time horizons
of duration equal to �T .

We consider the existence of L untruthful UEs that declare
upload needs equal to K

max

, which is more than their real
needs, aiming to gain more WiFi bandwidth to offload, while
the rest of the UEs are truthful. The WiFi bandwidth is
allocated based on weighted proportional fairness, and the
upload needs of the users are part of the weighting factor.
Hence, the more the declared upload data needs, the more
WiFi bandwidth is allocated to a UE. After the end of
each offloading period, the LTE Evolved Packet Core (EPC),
where the packet filtering operation is being done, is able
to identify a malicious operation and inform the WiFi AP
for future allocation. We define a reputation vector v

j

, with
v
j

(i) 2 (0, 1] to represent the truthfulness of the UEs during
the j

th offloading period of duration equal to �T . At the start,
every UE

i

is considered truthful and its reputation value is
equal to v

1

(i) = 1. After an offloading period j, the reputation
vector is updated as follows

v
j+1

(i) = 1, if UE
i

truthful in j

th period
v
j+m

(i) = K

i

/K

max

, if UE
i

untruthful in j

th period
(1)

Where m = 1, ...,M . A UE
i

that is untruthful during the of-
floading period j is punished according to (1) for the following
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M offloading periods. After these periods, the reputation of
the untruthful UE

i

is reset to v
j+M+1

(i) = 1. Truthful UEs
maintain their reputation value equal to one. Each UE

i

offloads
part of its data needs K

i

and the rest is uploaded through its
LTE connection. We assume that the channel characteristics
between each UE

i

and the LTE eNodeB are described by a
normalized spectrum efficiency ✓

i

2 [0, 1], such that for a
bandwidth allocation that gives to UE

i

the ability to upload
with an uplink rate equal to R

LTE

i

, the actual achieved uplink
rate is equal to ✓

i

R

LTE

i

.
A. LTE Uplink Power Model

Regarding the LTE uplink power level of the UEs, we adopt
the energy model proposed by Huang et al. in [8]. According
to this model the power level of the UE

i

’s LTE interface during
uplink transmission is expressed as

P

LTE

i

= ↵

u

R

LTE

i

+ � [mW] (2)
where ↵

u

is the uplink transmission power per Mbps, RLTE

i

is the LTE uplink rate of UE
i

(in Mbps) and � is the base
power of the LTE card.
B. IEEE 802.11 DCF Energy Consumption in the Uplink

Following Bianchi’s analysis [9] for saturated traffic con-
ditions and ideal channel conditions, we notice that the
throughput of a user that tries to upload data through WiFi
is significantly affected by the number of users that are under
the coverage of the same AP. The per user uplink throughput
is denoted by S(N) (in Mbps), where N is the number
of contending users. A user’s energy efficiency EE(N) (in
bits/Joule), is also a function of the number of contending
users N and we assume that the WiFi interface operates
with power levels denoted by P

WiFi

Tx

, PWiFi

Rx

and P

WiFi

idle

for
transmit, receive and idle modes respectively.
C. Uplink Offloading Energy Consumption

Every UE under the concurrent coverage of the two access
technologies will have the opportunity to offload w

i

K

i

bits
through the WiFi AP, where w

i

2 [0, 1] for i = (1, ..., N).
The remainder data volume (1�w

i

)K

i

is transmitted through
the LTE connection of each UE. Every UE

i

with data needs
equal to K

i

that offloads its uplink according to w

i

will present
energy consumption EC

i

(N) as a function of the number of
contending UEs N , which is expressed as

EC

i

(N) = (1� w

i

)K

i

P

LTE

i

R

LTE

i

+ w

i

K

i

1

EE(N)

[Joule] (3)

III. WEIGHTED PROPORTIONALLY FAIR WIFI ACCESS

The UEs offload part of their data needs through the
WiFi according to the Proportionally Fair Bandwidth (PFB)
allocation algorithm that we hereby analyse. Each UE

i

is
allocated bandwidth equal to r

i

, i = (1, ..., N), such that
NP
i=1

r

i

 R

WiFi

i

. The allocation during the offloading period

j is proportionally fair over the ratio ⇢

i

= v
j

(i)K

i

/✓

i

, where
v
j

(i) is the reputation value that corresponds to UE
i

. The
proportionally fair allocation is represented by a rate allocation

vector r = (r

1

, ..., r

N

) for r � 0 and
NP
i=1

r

i

 R

WiFi

i

,

where:
r

i

=

⇢

i

NP
i=1

⇢

i

R

WiFi (4)

We aim to allocate exclusive access periods to each UE
i

equal to t

i

, for i = (1, ..., N). In these periods the UEs will
be able to transmit through the WiFi AP with throughput
R

WiFi

= S(1). We transform the proportionally fair band-
width allocation into proportionally fair airtime allocation by
having r

i

�T = t

i

S(1). Hence, the weighted proportionally
fair airtime allocation is equal to

t

i

=

⇢

i

NP
i=1

⇢

i

�T (5)

Regarding the implementation of the PFB algorithm we
adopt the idea of unsolicited Clear To Send (CTS) frames
initiated by the AP that was proposed in [10].

IV. LTE PRICING SCHEME
The LTE uplink power of a UE

i

, following the power model
of (2), is a function of its LTE uplink transmission rate, RLTE

i

.
Following, we propose a two-stage LTE pricing scheme, where
the LTE operator in the first step decides the price p per unit
of transmit rate and in the second step the UEs decide the
rate for which they intend to pay as a function of the price
and the spectrum efficiency they experience. We approach the
pricing problem using backward induction, examining first the
UEs’ demands (Stage II) and then the operator’s decision on
the price (Stage I).

Stage II: The payoff function of a UE
i

, for acquiring R

LTE

i

quantity of uplink rate, with a price p per unit of rate, following
the exponential pricing model, is expressed as

U

exp

i

(R

LTE

i

) = ln(1 + ✓

i

R

LTE

i

)� p(e

R

LTE
i � 1) (6)

This payoff function of a UE
i

under exponential pricing, with
normalized spectrum efficiency ✓

i

, is equal to the logarithmic
utility function, that expresses the diminishing return of getting
additional resources, minus the exponential price that the UE

i

has to pay for acquiring R

LTE

i

quantity of rate. We notice that
U

exp

i

(R

LTE

i

) is a concave function, since U

exp

i

(R

LTE

i

)

00
=

�
�
✓

i

/(1 + ✓

i

R

LTE

i

)

�
2 � pe

R

LTE
i

< 0. Thus, it has only one
maximum, and therefore the local maximum is also the global
maximum. Differentiating (6) we have

@U

exp

i

@R

LTE

i

=

✓

i

1 + ✓

i

R

LTE

i

� pe

R

LTE
i

= 0 (7)

We need to solve this non-linear equation with respect to
R

LTE

i

. (7) can be rewritten as

ln

✓
1

p

◆
+

1

✓

i

=

✓
R

LTE

i

+

1

✓

i

◆
+ ln

✓
R

LTE

i

+

1

✓

i

◆
(8)

For x = R

LTE

i

+

1

✓i
and y = ln

⇣
1

p

⌘
+

1

✓i
, (8) becomes

y = x+ lnx (9)
which after some straight forward mathematical manipulations
can be written as

xe

x

= e

y (10)
Taking the value of the Lambert W function [11] of each part
of (10) and using the Lambert W function identity W (xe

x

) =

x we have x = W (e

y

). Replacing x and y we have

R

LTE

i

= W

 
e

1

✓i

p

!
� 1

✓

i

(11)

Stage I: The price p that the provider decides in the
exponential pricing model is such, that the UE with the
max(✓

i

) is allocated the maximum value of the LTE uplink



3

rate R

LTE

max

. The price is formed according to (12).

p =

max(✓

i

)

(1 + max(✓

i

)R

LTE

max

) e

R

LTE
max

, i = (1, ..., N) (12)

In order for a UE
i

under the coverage of the AP to have
the opportunity to upload part of its data needs through the
eNodeB, its allocated uplink LTE rate has to be positive.
Namely, the following condition needs to stand:

W

 
e

1

✓i

p

!
� 1

✓

i

> 0 (13)

Otherwise, UE
i

will only upload through the WiFi AP. The
allocated rate to each UE

i

, that satisfies (13), following the
exponential pricing model is expressed as

R

LTE

i

= W

 
(1 + max(✓

i

)R

LTE

max

)e

R

LTE
max

+

1

✓i

max(✓

i

)

!
� 1

✓

i

(14)

V. ENERGY EFFICIENCY

Following we provide analytical expressions for the average
energy consumption of the offloading UEs for both truthful
and malicious UEs.
A. Energy Efficiency of the Truthful UEs

The average per truthful UE energy consumption of the
WiFi network interface, while uploading, is expressed as

EC

WiFi

Tx

=

1

N � L

0

BB@
N�LX

i=1

K

i

/✓

i

NP
i=1

⇢

i

�T

S(1)

EE(1)

1

CCA [Joule]

(15)
The average per UE energy consumption of the LTE network

interface card is equal to

EC

LTE

=

1

N � L

N�LX

i=1

✓
(K

i

� t

i

S(1))

P

LTE

i

✓

i

R

LTE

i

◆
[Joule]

(16)
Combining (15) and (16) the average per UE energy efficiency
of IFOM offloading under the PFB algorithm is expressed in
(17).

E

PFB

eff

=

1

N�L

N�LP
i=1

K

i

EC

WiFi

Tx

+ EC

LTE

[bits/Joule] (17)

B. Energy Efficiency of the Malicious UEs
The average per malicious UE energy consumption of

its WiFi network interface, during the uploading phase, is
expressed as

EC

WiFi

Tx,mal

=

1

L

LX

i=1

0

BB@
v
j

(i)K

i

/✓

i

NP
i=1

⇢

i

�T

S(1)

EE(1)

1

CCA [Joule]

(18)
The malicious UE’s energy consumption of the LTE network

interface card is equal to

EC

LTE

mal

=

1

L

LX

i=1

✓
(K

i

� t

i

S(1))

P

LTE

i

✓

i

R

LTE

i

◆
[Joule] (19)

Combining (18) and (19) the malicious UEs’ energy efficiency
of IFOM uplink offloading under the PFB algorithm is

E

PFB

eff,mal

=

1

L

LP
i=1

K

i

EC

WiFi

Tx,mal

+ EC

LTE

mal

[bits/Joule] (20)

VI. NUMERICAL RESULTS

We evaluate the system under consideration by running
extensive simulations using MATLABTM. We present the
performance of malicious UEs in comparison to truthful UEs
which are situated under the concurrent coverage of the same
eNodeB and WiFi AP for 10 offloading UEs in total. We
examine the system performance under the existence of one
to ten malicious UEs. We compare the performance of the
malicious to truthful UEs, in terms of energy efficiency and
throughput, before and after the update of the reputation vec-
tor. The simulations are repetitively conducted for offloading
time periods of �T = 5 sec, chosen arbitrarily, and for
M = 1, 2, ..., 10 consecutive punishment periods. For M � 3

there is no incentive for a malicious UE to be untruthful from
the energy efficiency perspective. We present our results for
M = 7 consecutive punishment periods to represent the policy
of a strict provider towards malicious operation. The data
volume needs of the UEs are assumed to follow a uniform
distribution of file sizes between 5�15 MB. These data needs
represent the volume of a photo to a small video, created by
contemporary smartphones. The UEs that operate in malicious
mode declare their data volume equal to K

max

= 15 MB.
The uplink power level of UE

i

’s LTE interface card, PLTE

i

,
is assumed to follow (2) as a function of its LTE uplink
rate, which is defined by the exponential pricing algorithm.
We perform the simulations for ✓

i

2 [0.8, 1]. The IEEE
802.11 network interface card power levels P

WiFi

Tx

, P

WiFi

Rx

and P

WiFi

idle

are assumed to follow the measurements provided
in [12]. The numerical values of the simulation parameters are
presented in Table I.

In Fig. 1(a) we present the energy efficiency results for one
to ten malicious UEs and for spectrum efficiency ✓

i

2 [0.8, 1]

and we can see that analysis and simulations perfectly fit. It
is notable that the malicious UEs perform better compared to
the average energy consumption of truthful UEs ranging from
15.5% for one malicious UEs to 8.4% for nine malicious UEs.
This happens because the malicious UEs, by declaring more
uplink data volume needs than their real, more WiFi bandwidth
is allocated to them and they upload less data through their
LTE connections, which are more energy consuming. In Fig.
1(b), we can see that after the update of the reputation vector
the energy efficiency of the malicious UEs is deteriorated as
the punishment rule applies. This deterioration varies from
7.5% for eight UEs to 19% for one to nine malicious UEs
compared to truthful UEs. We also notice that the truthful
UEs present better performance for larger number of punished

TABLE I
SIMULATION PARAMETERS

Parameter Value
LTE max uplink rate RLTE

max

5 Mbps
LTE uplink power per Mbps ↵

u

438.39 mW/Mbps
LTE base power � 1288.04 mW
WiFi packet payload 1500 bytes
WiFi Data(RWiFi) / Ctrl. transmission rate 54/ 6 Mbps
PWiFi

Tx

/ PWiFi

Rx

/ PWiFi

idle

1900/ 1340/ 1340 mW
SIFS/ DIFS 10/ 50 µsec
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Fig. 1. Energy efficiency for different number of malicious UEs.

UEs. This happens because the WiFi bandwidth that is not
allocated to the malicious UEs is proportionally allocated to
the truthful UEs, helping them upload less data through their
LTE connections. In Fig. 2(a), we present an energy efficiency
comparison for long term system performance, for the cases
of one to nine UEs. We notice that a malicious UE presents
from 4.7% to 16.4% less energy efficiency compared to a
truthful UE. In Fig. 2(b), we present a throughput comparison
for long term system performance for the case of a truthful
and nine malicious UEs, assuming they experience the same
channel conditions ✓

i

2 [0.8, 0.1] with a step equal to 0.02.
We notice that in long term a malicious UE presents from
14.1% to 11.9% less throughput compared to a truthful UE.

VII. CONCLUSION

In this letter we focus on the uplink offloading with IFOM,
with the existence of malicious UEs where the WiFi access
is based on weighted proportional fairness and the LTE rate
allocation on exponential pricing. We propose a reputation
based reaction method to combat the malicious operation and
we present comparison results on the energy efficiency and
throughput of the malicious and the truthful UEs.
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