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Abstract—Nonconforming implementations of the Electric-

Field Integral Equation (EFIE), based on the facet-oriented 
monopolar-RWG set, impose no continuity constraints in the 
expansion of the current between adjacent facets. These schemes 
become more versatile than the traditional edge-oriented 
schemes, based on the RWG set, because they simplify the 
management of junctions in composite objects and allow the 
analysis of nonconformal triangulations. Moreover, for closed 
moderately small conductors with edges and corners, they show 
improved accuracy with respect to the conventional RWG-
discretization. However, they lead to elaborate numerical 
schemes because the fields are tested inside the body, near the 
boundary surface, over volumetric subdomains attached to the 
surface meshing. In this paper, we present a new nonconforming 
discretization of the EFIE that results from testing with RWG 
functions over pairs of triangles such that one triangle matches 
one facet of the surface triangulation and the other one is 
oriented perpendicularly, inside the body. This “tangential-
normal” testing scheme, based on surface integrals, simplifies 
considerably the matrix generation when compared with the 
volumetrically tested approaches. 

 
Index Terms—Basis functions, electric field integral equation 

(EFIE), integral equations, moment method 
 

I. INTRODUCTION 
RADITIONAL Method-of-Moment (MoM) schemes of 
discretization of the Electric-Field Integral Equation 

(EFIE) rely on divergence-conforming sets, such as the RWG 
set, which impose the normal continuity of the current across 
the edges arising from the discretization [1][2]. The resulting 
numerical implementations are little demanding in 
computational terms because the hypersingular Kernel 
contributions are cancelled out [2]. Recently, nonconforming 
schemes based on the facet-oriented monopolar-RWG set [3], 
with no interelement continuity constraint, have been 
developed for the discretization of the EFIE in the EM 
scattering analysis of closed conductors [4][5]. These 
implementations carry out the numerical evaluation of the 
hypersingular Kernel contributions by testing the fields over 
volumetric subdomains inside the body, tetrahedral elements 
[4] or wedges [5], attached to the surface triangulation. 
However, the generation of the impedance matrix elements 
becomes rather elaborate and more time-consuming than the 
conventional surface-tested Galerkin RWG-discretization. In 

this paper, we present a new nonconforming discretization of 
the EFIE with an RWG-based testing scheme, defined over 
pairs of connected triangles. We call this scheme “tangential-
normal” because one triangle, tangential to the boundary, 
matches a particular surface facet in the surface triangulation 
and the other triangle is oriented normally to the boundary 
surface, into the body. This nonconforming implementation 
simplifies considerably the matrix generation. Furthermore, 
the resulting impedance matrix, unlike the previous 
volumetrically tested schemes, can be made immune to the 
low-frequency breakdown through an easy-to-implement 
algebraic manipulation. 

II. TANGENTIAL-NORMAL SURFACE TESTING 
The monopolar-RWG set is defined like the RWG set inside 

facets but with no normal-continuity constraint across edges. 
Therefore, this set arises from grouping two subsets of basis 
functions, { }1nf , { }2

nf , associated with the two triangles at 

both sides of the Ne edges arising from the triangulation. The 
unnormalized definition of these functions becomes 
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where 1
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nr  denote the two opposed vertices to the nth edge 

and 1
nA , 2

nA stand for the areas of 1
nT , 2

nT , the corresponding 
triangles at both sides of the nth edge.  

The approximated scattered field at the point r  arising 
from the monopolar-RWG expansion of the current becomes 
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where{ }1
nc ,{ }2

nc denote the subsets of unknowns and G, k, 

η0  represent, respectively, the free-space Green’s function, the 
wavenumber and the free-space impedance. The terms 1

nΦ , 
2
nΦ  stand for the nth-edge monopolar-RWG contributions in 

the expansion of the scalar potential, which are defined as [4] 
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where 1
nT∂ , 2

nT∂  denote the closed line contours, 

respectively, around 1
nT , 2

nT . The unit vectors 1
,c nn , 2

,c nn are 

perpendicular to these contours (see Fig. 1). 
The tangential-normal scheme of testing leads to the 

following expression 
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where iE stands for the incident electric field and 1
mR , 2

mR  
denote RWG functions that straddle each of the two surface 

triangles 1
mT , 2

mT  at the mth edge, and N
mT , the isosceles 

triangle that evolves from the mth edge into the body over the 
direction resulting from averaging the normal directions at the 
adjacent facets (see Fig. 1). The testing functions in (4), which 
we name “tangential-normal”, are defined as 
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such that ( )mg r  yields  
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where N
mr represents the vertex in N

mT opposed to the mth 

edge and 
N
mA denotes the area of  N

mT . 
The tangential-normal monopolar-RWG discretization of 

the EFIE gives rise to the following matrix system  
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where, unlike the previous volumetrically tested schemes, the 
excitation vector and  matrix impedance elements are now 
computed with surface integrals, so that, in view of (4), 
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Thanks to the normal continuity across edges of the tangential-
normal testing functions, the scalar-potential contribution in 
(9) is simplified so that 
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and, in view of (3), yields 
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which becomes more compact and requires less computational 
effort than the analogous contributions arising from the 
volumetrically tested implementations [4][5]. 
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Fig. 1.  1

mT  and 2
mT  stand for the two triangles of the surface triangulation 

associated with the mth edge. The isosceles triangle N
mT  is defined over the 

plane that bisects the angle formed by 1
mT  and 2

mT .  

III. LOW-FREQUENCY STABILITY 
The monopolar-RWG space of current can be decomposed 

into two edge-oriented subspaces of current, such that the 
basis functions are defined in terms of the type of  transition of 
the normal component of the current across edges [4]: (i) the 
divergence-conforming RWG set, { }enb  , also called “even” 

monopolar-RWG set in [4][5], with continuous transition; (ii) 
the nonconforming “odd” monopolar-RWG set, { }o

nb  , with 

discontinuous, odd-symmetric, transition (see Fig. 2); 
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Similarly, the tangential-normal testing functions in (5) can 
also be decomposed into two even and odd contributions, 

{ }e
mt  and { }o

mt  at each edge, so that  
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where, just like in (12), { }e
mt  also represents the RWG set.  

A tangential-normal even-odd implementation of the EFIE 
equivalent to  the development described in section II can be 
then defined after rearranging the source and field quantities in 
(1) and (5) in terms of their even and odd contributions, 
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which, in view of (12)-(15), result from the subtraction or 
summation, respectively,  of the contributions at both sides of 
the edges. This change of testing and expansion bases involves 
easy-to-implement, row-wise or column-wise, algebraic 
manipulations. Conversely, the monopolar-RWG and 
tangential-normal functions at both sides (i=1,2) of the nth 
edge can be easily derived from their even- and odd- 
contributions  as  ( ( 1) ) / 2o i e

n n− −b b  (see Fig. 2). 
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Fig. 2.  Decomposition of the monopolar-RWG basis functions and tangential-
normal testing functions in terms of their even and odd contributions.  
 

The monopolar-RWG discretization of the EFIE, with 
tangential-normal testing, EFIE[TN][monoR], or with 
tetrahedral testing [4], EFIE[tet][monoR], suffers from the 
low-frequency breakdown (see Fig. 3). As traditionally done 
for the EFIE-implementations immune to the low-frequency 
breakdown, based on the frequency-normalized solenoidal-
nonsolenoidal rearrangement of the field-testing and current-
expansion subspaces, the low-frequency stable 
implementation of EFIE[TN][monoR], which we call 
EFIE[TN][Lp-St;o-monoR], is easily accomplished from the 
even-odd rearrangement. Indeed, the odd current-subspace 
generated in (13) and the tangential-to-the-surface component 
of the odd testing-subspace generated in (15) are 
nonsolenoidal [4]; the remaining RWG-subspaces, in (12) or 
(14), can be decomposed, as conventionally done,  into the 
Loop, solenoidal, and Star, nonsolenoidal, contributions [6].  
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Fig. 3.  Condition number over the low frequency regime of the impedance 
matrix resulting from the implementations EFIE[Lp-St], EFIE[TN][monoR], 
EFIE[tet][monoR], EFIE[TN][Lp-St;o-monoR] and EFIE[tet][Lp-St; o-
monoR] for a cube with side 0.1 m and meshed with 300 triangular facets. In 
the monopolar-RWG implementations, H=h/10 is set. 

 
As shown in Fig. 3, EFIE[TN][Lp-St;o-monoR] provides 

stable matrix condition numbers, in similar terms as the Loop-
Star discretization of the EFIE [6], EFIE[Lp-St], and the low-
frequency stable implementation of the even-surface odd-
volumetric monopolar-RWG discretization of the EFIE [4], 
EFIE[tet][Lp-St;o-monoR], where half of the field-
contributions are either surface-tested or volumetrically tested. 
Hence, this impedance matrix cannot be obtained from the 
algebraic manipulation of the fully volumetric implementation 
EFIE[tet][monoR]. This is disadvantageous when compared 
with EFIE[TN][Lp-St;o-monoR], which arises naturally from 
the algebraic manipulation of EFIE[TN][monoR]. 
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Fig. 4.  Relative error for several sharp-edged conductors of the backward 
scattered RCS versus the height H of the testing elements¸ defined as a 
fraction of the mesh parameter h, computed with several monopolar-RWG 
EFIE-implementations with tetrahedral or tangential-normal testing (λ=1m).  

IV. RESULTS 
In Figs. 4 and 5, we illustrate the observed improved 

accuracy of EFIE[TN][monoR] with respect to the RWG-
discretization of the EFIE [2], EFIE[RWG], for several closed 
sharp-edged objects: a cube with side 0.1λ, a square-pyramid 
with side 0.1λ and a regular tetrahedron with side 0.25λ 
(λ=1m). The improved accuracy observed for monopolar-
RWG implementations is particularly notorious for electrically 
small sharp-edged objects, because of the important sharp-
edge influence on the scattered fields [4]. For the sake of 
comparison, RCS results for monopolar-RWG discretizations 
of the EFIE, with tetrahedral volumetric testing [4], are also 
presented; namely, fully volumetric EFIE[tet][monoR], and 
even-surface odd-volumetric, EFIE[tet][e-o-monoR]. An x-
polarized z-propagating plane wave is impinging on the tested 
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conductors.  
In Fig. 4, we show the relative error of the backward RCS, 

in terms of the height (H) of the testing elements, which are 
defined with regard to the edge length at the matching surface 
facets (h) (see Fig. 1). The root-mean-square RCS error 
computed in all directions follows roughly the same trend as 
the backscattering RCS error, which is the dominant for the 
tested objects. For a fair comparison, the involved 
formulations handle similar numbers of unknowns (N) but 
different number of edges (Ne). The adopted triangulations for 
EFIE[RWG], with N=Ne, hence, need to be more finely 
meshed than the triangulations used for the monopolar-RWG 
implementations, where N=2Ne. The relative errors are 
referred to RCS-references computed with EFIE[RWG] and 
extremely fine meshes (around 70000 unknowns) [4]. The 
observed well-performing H-ranges of  EFIE[TN][monoR] for 
the tested conductors, between h and h/1000, are similar to the 
observed H-ranges of EFIE[tet][e-o-monoR], which turn out 
much broader than the H-ranges in EFIE[tet][monoR], where 
the well-performing H-range lies between h and h/10 [4][5].  
In Fig. 5, the RCS error against the number of unknowns of 
EFIE[TN][monoR], with H=h/10,  exhibits a faster speed of 
convergence than EFIE[RWG], as expected in view of Fig. 4. 
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Fig. 5. Relative error of the backward scattered RCS versus the number of 
unknowns computed with RWG and tangential-normal monopolar-RWG 
implementations of the EFIE for several sharp-edged objects (λ=1m).  

In Fig. 6, we show the RCS for the composite conductor 
arising from the juxtaposition of a rectangular prism on top of 
a cube. Two meshes are used with different number of 
triangles (Nt): a conformal mesh (Nt=1728) and a 
nonconformal mesh (Nt=1046). The RWG-discretization and 
the even-surface odd-volumetric monopolar-RWG 
discretization of the EFIE, edge-oriented, cannot handle the 
nonconformal mesh because some neighboring triangles have 
nonmatching edges. In contrast, the tangential-normal or the 
volumetric monopolar-RWG discretizations of the EFIE, facet 
oriented, become well suited. In light of Fig. 6, the RCS 
computed for the nonconformal mesh with EFIE[TN][monoR] 
and EFIE[tet][monoR] compares well with EFIE[RWG] and 
the conformal mesh. Moreover, our numerical tests show that 
the matrix generation for EFIE[TN][monoR] involves half of 
the time required for EFIE[tet][monoR] (with similar number 
of quadrature or cubature points). The testing entities in 

EFIE[TN][monoR] and EFIE[tet][monoR] are defined so that 
the information about the edges around each surface facet is 
ignored because they may be nonmatching with the edges of 
the adjacent triangles. The inner triangle in the tangential-
normal testing is therefore defined normal to the surface 
triangle and the tetrahedral testing is carried out with right 
triangular prisms (see Fig. 6). 
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Fig. 6.  xz plane cut of the RCS computed with several EFIE-implementations 
under an impinging  x-polarized z-propagating plane wave for an object 
composed of a rectangular prism on top of a cube. The observation angle θ=0 
corresponds with the backscattering direction. Two meshes are used: 
conformal, with 1728 triangles, or nonconformal, with 1046 triangles (λ=1m).  

V. CONCLUSION 

The monopolar-RWG EFIE-discretization with tangential-
normal testing is amenable to conformal and nonconformal 
meshes and gives rise to much smaller matrix generation times 
than the tetrahedral, volumetric or surface-volumetric, 
implementations. For the moderately small sharp-edged 
conductors tested, it offers similar RCS-accuracy as the even-
surface odd-volumetric implementation. Furthermore, unlike 
the fully volumetric implementation, it can be set free from the 
low-frequency breakdown through an algebraic manipulation.  
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