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Abstract. Applications of unsaturated soil mechanics often involve large deformations and displacements. This is the 

case of collapse behaviour of low density soils or the unrestrained swelling of expansive clays. Rain induced 

instability of unsaturated slopes is a further example of large displacements that cause important damages around the 

world every year. Since standard lagrangian Finite Element methods are not well suited to model large deformations, 

particle-based methods are under development. This is the case of the Material Point Method (MPM), which offers an 

interesting alternative. Recently, the MPM has been extended to model unsaturated soil problems, where the soil is 

understood as a unique medium integrated by three distinct phases (solid, liquid and gas). In this paper, the MPM 

computational cycle for unsaturated soils is described. In addition, a validation of the 3-phase MPM approach is 

presented by means of the modelling of a one-dimensional infiltration problem. Finally, the applicability of MPM to 

solve slope instabilities is presented. The simulation of the whole instability process of an embankment subjected to 

rain infiltration is analysed in detail.  

1 Introduction 

Many applications associated with unsaturated soils 

involve large deformations in history-dependent 

constitutive models. This is the case of landslides events 

and slope instabilities which are often triggered by heavy 

rainfall. They cause important damage around the world 

every year. Swelling problems in expansive clays or 

collapse behaviour of low density materials are other 

examples of problems involving large deformations. 

Since standard lagrangian Finite Element methods are 

not well suited to model large deformations due to 

limitations on mesh tangling, particle-based methods are 

under development. This is the case of the Material Point 

Method (MPM) [1], which offers an interesting 

alternative. MPM discretizes the media into a set of 

lagrangian material points which move attached to the 

material and carry all the soil properties. The governing 

equations are solved incrementally at the nodes of a 

computational grid that remains fixed throughout the 

calculation. This dual description of the media prevents 

mesh distortion problems hence re-meshing techniques 

are not required. 

Recently, Yerro et al. [2] extended MPM to model 

problems in unsaturated soils by means a coupled 

formulation that considers 3 phases (solid, liquid and gas) 

within each material point. In this work, the validation of 

such formulation in an infiltration problem is presented. 

Finally, the whole instability process (from failure 

initiation to final stabilisation) of an embankment slope 

subjected to rain infiltration will be analysed. 

2 Basis of MPM 

Material Point Methods (MPM) are rapidly evolving in 

the geotechnical field. This is due to their capability to 

analyse large deformation problems in a continuum 

framework. 

Inspired by particle methods, MPM [1] discretizes the 

media by means of a set of material points. Each point 

moves attached to the portion of continuum which carries 

all the material information such as strain, stress, and 

mass. The main governing equations are solved at the 

nodes of a computational mesh that covers the whole 

domain and it is maintained fixed throughout the 

calculation. Domain integration is very similar to the 

operational rules used in FEM but integration points are 

now the material points instead of the familiar Gauss 

points in FEM. Linear shape functions are typically used 

in order to transfer information between both spatial 

discretizations (nodes and material points). 

In this manner, most of the expertise learned from 

FEM can be extended to the MPM with the additional 

improvement that large deformations can be simulated 

without the requirement of re-meshing algorithms. 

MPM was initially developed for fluid mechanics [3]. 

However, the necessity of solving hydro-mechanical 

problems, such as undrained loading, consolidation or 

changes in water table, has prompted several authors to 

extend the method to solve multiphase problems. Two 

different approaches can be distinguished to solve the 

interaction between solid skeleton and fluids within a 
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porous media or even with free water. The first one is a 

“single-layer” strategy which is based on representing the 

porous medium as a unique continuum by means of one 

set of material points that moves attached to the solid 

skeleton. It has been adopted by several authors to solve 

geotechnical problems under saturated conditions (two-

phases) [4-6]. It has also been extended to unsaturated 

problems in [2] (three-phases). The information of pore 

fluids is carried as an internal variable at each material 

point. This approach is appropriate to simulate seepage 

problems but it is not suitable to model free liquid water. 

A second strategy was developed for modelling fully 

saturated soils [7,8]. It is a “multi-layer” approach in 

which each constituent -grains and water in saturated 

soils- is described separately by means of different sets of 

material points. This MPM formulation has the capability 

of modelling both water within the pores and free water 

as a unique continuum which allows the simulation of 

fluid-structure interactions. However, the number of 

material points is much higher and the approach requires  

an additional computational cost. 

3 MPM formulation for unsaturated soils 

This work is based on the MPM approach presented by 

Yerro et al. [2]. Here the soil, understood as a unique 

continuum, is a mixture of three distinct phases: solid (s), 

liquid (l) and gas (g) (Figure 1). In order to facilitate 

computations, only one component is considered within 

each phase (for instance, no air in liquid and no water in 

gas). 

 
Figure 1. Scheme of the MPM discretisation for unsaturated 

soils. 
The main governing equations are the momentum 

balances of the gas, the liquid and the mixture. These are 

integrated into the domain and discretised at the nodes of 

the computational mesh. At the beginning of each time 

step, information carried by the material points is mapped 

to the mesh in order to calculate nodal mass, nodal 

velocities, internal and external forces and dragging 

terms. Because it is a fully dynamic formulation, it leads 

to a system of equations in which liquid, gas and solid 

nodal accelerations are the principal unknowns of the 

problem. 

An additional term can be included in the system in 

order to reduce dynamic effects and numerical 

instabilities. This is defined as a damping force 

proportional to the corresponding unbalanced force (𝛼: 
proportional factor) and opposite to the phase velocity 

[2]. In dynamic problems, where the accelerations have 

an important role in the course of the calculation, this 

factor should be very small (𝛼 = 0-0.05). 

Once the nodal accelerations are calculated, an Euler-

Cromer scheme is used to update velocities, 

displacements and strains at the material points by means 

of shape functions. 

Afterwards, in order to ensure mass conservation of 

each phase, the mass balance equations for the solid, 

liquid and gas are imposed in the material points. 

Considering the solid grans incompressible, the mass 

balance of solid becomes the material derivative of the 

porosity n: 
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where t is time and vs is solid velocity of a material point. 

Taking into account (1) and assuming that liquid and 

gas pressures (Pl and Pg) are the state variables, liquid 

and gas mass balances can be written as follows,  
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vl and vg being liquid and solid velocities at a material 

point, Sl the degree of saturation, and ρl and ρg liquid and 

gas densities. 

Equations (2) and (3) provide the relationships to find 

liquid and gas pressures rates (dPl and dPg). 

This MPM approach is formulated in terms of two 

stress variables: net stress σ  and isotropic suction (s). 

Writing such variables in the following convenient 

manner (4) and (5), in which σ is the total stress tensor 

and I is the identity matrix, the general form of a suitable 

stress-strain relationship can be written incrementally as 

follows in equation (6): 
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s     σ D ε h                      (6) 
where Δε is the strain increment vector. D and h are, 

respectively, the tangent matrix and a constitutive vector. 

Then, the stress and also other soil properties are 

updated at the material points; for instance, the degree of 

saturation, intrinsic permeability and porosity. Finally, 

the material points carry all the updated information and 

time is updated.
 

4 Infiltration problem 

The equation that represents the movement of water in 

unsaturated soils is the Richard’s equation [9], which is 

derived from the water mass balance and the Darcy’s 

equation (quasi-static liquid momentum balance). 

However, because the nonlinearities of soil hydraulic 

parameters (for instance, permeability depends on degree 

of saturation, and degree of saturation depends on fluid 

pressures), it is not easy to obtain an analytical solution to 

describe the unsaturated flow. 
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With the aim of validating the hydro-mechanical 

MPM formulation outlined in the previous section, an 

analytical solution for the one-dimensional infiltration 

problem is required. To do that, and according to Alonso 

and Lloret [10], Richard’s equation has been simplified 

following these assumptions:  

• vertical liquid flow 

• deformability of the solid skeleton is neglected 

• incompressible solid grains 

• constant permeability 

• constant liquid density 

• constant total stress field 

• linear water retention curve 

Linearizing the retention curve according to (7), as 

being a constant, the mathematical expression which 

describes the vertical water flow within an unsaturated 

soil can be written as equation (8): 
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The previous expression is essentially the diffusion 

equation, where z is the infiltration direction and Ci 

corresponds to 
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kl and γl being the intrinsic permeability and specific 

weight of liquid, respectively. 

A dimensionless time T can be defined depending on 

Ci as follows, where h is the infiltration length: 
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At this stage, an MPM model has been developed in 

order to compare numerical and analytical solutions. A 

soil column 1 m high is considered. The material is linear 

elastic and all properties are summarised in Table 1. 

Whereas contours are permeable for gas, liquid can only 

flow vertically. Initially, the sample is unsaturated with a 

constant suction value (s0=0.5 MPa). Because the bottom 

is impervious for liquid, the infiltration length is 1 m. 

Gravity is neglected and the solid skeleton cannot 

deform. The wetting process starts when suddenly s=0 

kPa (saturation condition) is imposed at the upper 

boundary. This condition is maintained throughout the 

calculation. 

Table 1. Material properties. 

Material property Value 

Porosity [-] 0.3 

Solid density [kg/m3] 2700 

Liquid density [kg/m3] 1000 

Young’s modulus [MPa] 10 

Liquid bulk modulus [MPa] 80 

Liquid viscosity [kg/sm] 0.001 

Intrinsic permeability liquid [m2] 5·10-11 

as [kPa-1] 0.001 

Applying such boundary conditions, the analytical 

solution that comes out from equation (8) is equivalent to 

the one-dimensional consolidation problem in saturated 

media, the well-known Terzaghi’s solution [11]. 

The analytical solution for such problem is shown in 

Figure 2, in which the suction profile is presented along 

the depth z of the sample for different times during the 

infiltration process. It is clear that suction decreases as 

the sample gets wet. 

 
Figure 2. Analytical solution. Suction evolution along 

depth z. 

Different simulations have been carried out in order to 

analyse the effect of number of material points placed 

within each element. In Figure 3, the numerical results 

considering 1 and 4 material points are presented. In both 

cases, the numerical solution approaches the analytical 

solution. However, even if the case with 4 points fits 

perfectly well the analytical solution (Fig.3a), some 

numerical oscillations are observed when only 1 material 

point is considered (Fig.3b). Note that in this cases no 

artificial damping is considered (α = 0.0). 

On the other hand, two more calculations are 

presented in Figure 4, considering 4 points in each 

element and different damping factors: α = 0.05 (Fig.4a) 

and α = 0.75 (Fig.4b). See also Figure 5, in which the 

suction evolution of a material point located at z = 0.49 m 

is presented for different damping factors (α = 0, α = 

0.05, α = 0.75). 

From Figures 4 and 5, it is clear that the inclusion of 

artificial damping (α) has a direct effect on the infiltration 

rate. Large values of α lead to slowing the infiltration 

process. For small values, α = 0 and α = 0.05, numerical 

results fits the analytical expression (see Fig.3b and 

Fig.4a).  

Note that over-damping (α = 0.75) leads to a gross 

error in the calculated spatial and temporal evolution of 

suction. A small damping (α = 0.05) is able to stabilize 

the MPM solution and it reproduces accurately the 

analytical solution. 
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(a)

 
(b) 

Figure 3. Numerical results of suction evolution along depth z. 

Damping factor α = 0. (a) 1 material point in each element; (b) 4 

material points in each element. 

 
(a)

 
(b) 

Figure 4. Numerical results of suction evolution along depth z. 

4 material points are considered in each element. Comparison 

between different damping factors: (a) α = 0.05; (b) α = 0.75. 

 
Figure 5. Suction evolution in a material point located at z = 

0.49 m. Comparison between analytical solution and numerical 

results obtained different damping factors and 4 material points 

per element. 

 

Finally, two additional calculations have been carried 

out in order to emphasise the importance of taking 

adequate assumptions in the mass balance calculations 

when unsaturated fluxes are modelled. Consider, in 

particular, the hypothesis of neglecting the spatial 

variations of water and air masses. Assuming that 

gradients of liquid and gas masses can be neglected 

equations (2) and (3) can be rewritten as follows: 
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The results presented in Figure 6 have been calculated 

assuming that equations (11) and (12) are correct. In 

particular Figure 6a shows the results maintaining the 

same properties considered in Figure 3b. It is clear that 

for this analysis, numerical solution moves away from the 

analytical one, especially for T=0.2 and T=0.7, which 

means that spatial variations of fluid masses are relevant 

and cannot be neglected. 

One of the constitutive equations that play a 

significant role in the spatial distribution of the fluids 

masses is the water retention curve. In this example, it is 

a linear function that depends on as. According to 

equation (7), a small value of as implies that small 

changes in suction correspond to small change of Sl. All 

parameters used in calculating Figure 6a coincide with 

values listed in Table 1 (as = 0.001 kPa
−1

 in particular), 

whereas in Figure 6b as is a smaller value (as=0.0001 

kPa
−1

). Comparing these two plots, it can be concluded 

that the larger the as, the larger the committed error. 

Therefore, advective fluxes due to spatial variations of 

fluids masses cannot be neglected in materials such as 

sand, although such terms will be less relevant in clay. 

Another parameter that influences the spatial 

distribution of fluid mass is the porosity. If materials with 

very different porosities are in contact, the spatial 

gradients of fluid mass along the contact cannot be 

neglected. 
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(a)

 
(b) 

Figure 6. Numerical results when advective fluxes due to 

spatial variations of fluids masses are neglected. Comparison 

between different as values: (a) as=0.001 kPa−1; (b) as=0.0001 

kPa−1. 

4 Rainfall effects on an embankment 
slope 

The slope stability problem presented here is inspired by 

a real case in which several road embankments of 

medium height (6–8 m) became unstable and shallow 

failures developed after a heavy rainfall, immediately 

after the end of construction. The estimated run-out of the 

slides was 2–4 m. The embankments were built in 

summertime and the soil, a low to medium plasticity 

sandy clay, was compacted dry of optimum. 

The numerical model presented here is a 7 m high 

slope with an angle of 32.5º.  

The elastoplastic constitutive model presented in [2] 

is considered in this work to model the effect of suction 

in the stability of the embankment. The shear strength is 

written according to the Mohr-Coulomb criterion and 

strength parameters (c and φ) are be written as follows, 
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First terms (c’ and φ’) are the values for saturated 

conditions, which in this analysis are considered c’=1kPa 

and φ’=20º. Second terms in equations (13) and (14) 

introduce suction effects and provide an additional 

strength. It has been accepted that cohesion increases 

from c’ to a maximum value c’+Δcmax. Patm is the 

atmospheric pressure and B is a constant parameter that 

controls the rate of apparent cohesion. Although changes 

in friction angle are typically less relevant, it is 

considered that it has linear dependence with suction 

depending on A. In the model Δcmax=15 kPa, B=0.7 and 

A=0.1. 

The water retention curve considered in modelling is 

based on field measurements [12]. Other material 

properties are summarized in Table 2. 

Table 2. Material properties. 

Material property Value 

Porosity [-] 0.35 

Solid density [kg/m3] 2700 

Liquid density [kg/m3] 1000 

Gas density [kg/m3] 1 

Liquid bulk modulus [MPa] 100 

Gas bulk modulus [kPa] 10 

Liquid viscosity [kg/sm] 10-3 

Intrinsic permeability liquid [m2] 10-10 

Poisson ratio 0.33 

Young’s modulus [MPa] 10 

The computational mesh is formed by tetrahedrons. 

The initial distribution of material points is presented in 

Figure 7a. A damping factor α = 0.05 is adopted. 

The lower boundary is fixed and horizontal 

displacements along vertical contours are prevented. 

Lateral and bottom contours are impervious for the liquid 

phase. A constant zero gas pressure in excess of 

atmospheric pressure is prescribed in all the boundaries 

(Pg=0 kPa). 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Suction evolution at three different times: (a) t=0 s, 

(b) t=15 s, (c) t=200 s. The initial location of 4 control material 

points is indicated (S1, S2, D1, D2). 
The initial stresses and pore pressures of the slope are 

in equilibrium with the gravity force and the prescribed 

suction (s0=800 kPa) distributed along the slope surface, 
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which is in contact with the atmosphere (see initial 

suction distribution in Fig.7a)  

The heavy rainfall is modelled by applying a 

reduction of suction on the ground surface from 800 to 0 

kPa during 10 seconds. Afterwards, the saturated 

boundary condition is maintained constant during the 

entire simulation. 

The embankment response is presented in Figures 7, 8 

and 9 in terms of suction, deviatoric strain and total 

displacements respectively. Figure 7 shows the evolution 

of suction as a result of the imposed wetting at 3 different 

times. In Figure 8 the contours of deviatoric plastic strain 

at times t = 15s and t = 200s are plotted. High shear 

strains begin to develop at the slope toe soon after the 

beginning of wetting due to a strength softening. A shear 

band defining a potential shallow failure surface at an 

average depth of 1.5 m is already defined at t = 15s 

(Fig.8a), although the slope remains stable. A few 

seconds later, the slope becomes unstable, large 

deformations are involved and a failure mechanism is 

well defined. 

 
(a) 

 
(b) 

Figure 8. Deviatoric strain profiles at different times: (a) failure 

initiation t=15 s; (b) t=200 s.  
 

 
Figure 9. Total displacements of material points S1, S2, D1, 

D2. 

In Figure 9 the total displacements of 4 material 

points (indicated in Fig.7a) are presented. Material points 

located in the central part of the slope (S2, D2) slide 

down and pass over the material points located in the 

slope toe (S1) which experiences small displacements. 

The lowest point, D2, remains motionless because it is 

located below the shear band. 

The final run-out, defined as the distance between the 

initial toe of the slope and the toe of the final geometry, is 

2.5 m. 

4 Conclusions 

A three-phase formulation (solid, liquid and gas) of 

the MPM is described in the paper. Material points are 

assumed to carry all the necessary information for the 

three phases  

The MPM formulation for unsaturated soils presented 

in [2] has been validated by modelling an infiltration 

problem. A complete analysis has been carried out and 

the effect of some numerical aspects (number of material 

points, artificial damping term) and modelling 

assumptions was discussed. 

In the second part of the paper an embankment slope 

instability induced by heavy rains has been simulated. An 

elastoplastic suction dependent Mohr-Coulomb model 

formulated in terms of two stress fields (net stress and 

suction) has been used in order to model strength 

variations due to suction changes. Suction decrease in the 

slope results in a marked strength softening. The result is 

a complex motion, which simulates observations in 

rainfall-induced instabilities. 

Other large deformation problems, such as wetting 

induced collapse or swelling may be analysed by the 

same approach but they will require the consideration of 

a different constitutive model. However, the general 3-

phase MPM algorithm will remain unchanged. 
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