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Abstract

The flow in a rapidly rotating cylinder forced to precess through a nutation angle α is investigated

numerically, keeping all parameters constants except α, and tuned to a triadic resonance at α = 1◦.

When increasing α, the flow undergoes a sequence of well-characterized bifurcations associated with

triadic resonance, involving heteroclinic and homoclinic cycles, for α up to about 4◦. For larger

α, we identify two chaotic regimes. In the first regime, with α between about 4◦ and 27◦, the

bulk flow retains remnants of the helical structures associated with the triadic resonance, but

there are strong nonlinear interactions between the various azimuthal Fourier components of the

flow. For the larger α regime, large detuning effects lead to the triadic resonance dynamics being

completely swamped by boundary layer eruptions. The azimuthal mean flow at large angles results

in a large mean deviation from solid-body rotation and the flow is characterized by strong shear

at the boundary layers with temporally chaotic eruptions.
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I. INTRODUCTION

Precessing flows consist of a fluid-filled body rotating about an axis with rotation vector

ω0 that is itself rotating (precessing) about another rotation vector ωp, where the angle

between the two rotation vectors is α. Examples of precessionally forced flows are plentiful

in astrophysics and geophysics [1, 2], as well as in spinning space-crafts with liquid fuels

[3, 4]. Furthermore, Earth-based rotating flow experiments can be impacted by precessional

forcing if their length scale is sufficiently large and their rotation axis is not aligned with

the Earth’s rotation axis [5]. Since weak precessional forcing can sustain “turbulence” (or

at least spatio-temporally complex flows with desirable mixing properties), precession opens

up a number of possible applications in chemical engineering [6, 7].

Weakly precessing flows tend to be dominated by triadic resonances; these have been

observed experimentally [8–11], analyzed theoretically [12–14], and simulated numerically

[15, 16]. For the most part, these investigations in cylindrical geometries have used small

nutation angles α in order to be in the weak precessional forcing regime. Alternatively,

α = 90◦ with very small precession rates also leads to the weak precession regime where

triadic resonances have also been observed experimentally [17]. However, those experiments

with α = 90◦ did not detect triadic resonances when the precession rate was too fast. Exper-

imentally, as α is increased above about 4◦, the system is observed to suffer a catastrophic

transition to small scale apparently disorganized flow, usually reported as being turbulent

[8–11]. This regime, and the transition to it, has not been accessible using existing theories,

and flow visualization experiments have been inadequate for examining the flow dynamics.

More quantitative experimental measurements suffer from not being able to resolve the dis-

parate spatial and temporal scales that are dynamically important. Despite over a century

of study, the saturation amplitude of instabilities, the conditions for the apparition of in-

termittent cycles, the type of turbulence and its associated spectra, and the clarification of

the bifurcation sequences leading to turbulence are all still open questions [2, 18]. However,

with recent advances in numerical simulations of the full governing equations, insight into

some of these intriguing problems has become accessible.
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FIG. 1: Schematic of the precessing cylinder, with the axis fixed in a table rotating with angular

speed Ωp. The cylinder rotates about its axis relative to the table with angular speed Ω0. The eye

of an observer standing on the rotating table indicates the perspective view used for rendering 3D

plots of the flow, with the two rotation vectors in the line of view.

II. GOVERNING EQUATIONS AND NUMERICAL TECHNIQUE

The problem under consideration consists of a cylinder of height H and radius R filled

with an incompressible fluid of kinematic viscosity ν and rotating about its axis with angular

velocity Ω0. The cylinder is mounted at the center of a horizontal table that rotates with

angular velocity Ωp around the vertical axis, as shown in Fig. 1. The cylinder axis is tilted an

angle α relative to the vertical, and is at rest relative to the table, therefore the cylinder axis

precesses with angular velocity Ωp with respect to the laboratory inertial reference frame.

All variables are non-dimensionalized using the cylinder radius R as the length scale and the

viscous time R2/ν as the time scale, as in [16]. The non-dimensional governing parameters

are:

cylinder rotation ω0 = Ω0R
2/ν , (1)

precession rate ωp = ΩpR
2/ν , (2)

aspect ratio Γ = H/R , (3)

nutation angle α . (4)

It is convenient to also introduce the Poincaré number, Po = ωp/ω0, which provides a

viscosity-independent measure of the precessional forcing.

The governing equations are written using cylindrical coordinates (r, θ, z), fixed in the

(rotating) table frame of reference, with the z direction aligned with the cylinder axis, and
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the origin O at the center of the cylinder:

∂tv + (v · ∇)v = −∇p− 2ωp × v + ∆v, ∇ · v = 0. (5)

Note that the theoretical study of inertial waves is usually conducted in a frame of reference

that is rotating with the background rotation. In the case of a precessing cylinder flow,

this frame is the one in which the cylinder is stationary, i.e. the cylinder frame of reference.

This introduces a three-dimensional time-periodic body force, whereas in the table frame of

reference the body force is steady (but also three-dimensional) [16]. In the cylinder frame the

velocity boundary conditions are zero, whereas in the table frame ω0 appears in the boundary

conditions for the velocity, which correspond to solid-body rotation: v|∂D = (0, rω0, 0). The

solid-body rotation is a large component of the velocity field, which makes it difficult to

visualize deviations from it. Therefore, we have used the deviation field u with respect

to the solid-body rotation component in order to visualize and study the properties of the

solutions: v = vSB + u. In cylindrical coordinates, vSB = (0, rω0, 0) and the deviation

velocity field is u = (u, v, w).

The L2-norms of the azimuthal Fourier components of a given solution are

Em =
1

2

∫ z=Γ/2

z=−Γ/2

∫ r=1

r=0

um · u∗m r dr dz , (6)

where um is the mth azimuthal Fourier components of the deviation velocity field and u∗m is

its complex conjugate. The solid-body rotation of the cylinder in the table reference system

is given by uSB = rω0θ̂ and the corresponding kinetic energy is ESB . It is convenient to

introduce the modal kinetic energies of the deviation relative to the solid-body rotation

kinetic energy, and as they can be time dependent, its maximum value over an appropriate

large time interval is used:

em = max
t
Em(t)/ESB , ESB =

1

8
Γω2

0. (7)

These provide a convenient way to characterize the different states obtained. Other useful

variables are the vorticity field ∇ × u = (ξ, η, ζ), and the helicity H = u · (∇ × u), both

defined in terms of u, the deviation of the velocity field with respect to solid-body rotation,

in the table reference frame.

The governing equations have been solved using a second-order time-splitting method,

with space discretized via a Galerkin–Fourier expansion in θ and Chebyshev collocation
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in r and z. The spectral solver is based on that described in [19], and we have added

in the inertial body force. This code, with slight variations, has already been used in a

variety of fluid problems [16, 20–23]. For the solutions presented in this study, we have used

nr = nz = 64 Chebyshev modes in the radial and axial directions and nθ = 130 azimuthal

Fourier modes. The number of Chebyshev spectral modes used provides a good resolution

of the boundary layers forming at the cylinder walls; the solutions have at least four orders

of magnitude of decay in the modal spectral energies.

The cylindrical container is invariant under the action of rotations Rφ about the cylinder

axis and the reflection Kz about the cylinder mid-plane z = 0. However, the body force is

equivariant only under the combined action of Rπ and Kz, i.e. the action of the inversion

I = KzRπ, which is the only spatial symmetry of the system. As the governing equations (5)

do not depend explicitly on time, they are equivariant under time translations Tτ . Therefore,

the precessing cylinder system in the rotating table frame of reference is equivariant under

the group Z2 ×RT , where I and Tτ are the corresponding generators. As a result, the base

state is steady and invariant under inversion. The action of the inversion symmetry I on the

position vector is Ir = −r, and on the cylindrical coordinates it is (r, θ, z) 7→ (r, θ+π,−z).

Its action on the velocity and vorticity components and the helicity is

A(I)(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ + π,−z, t), (8a)

A(I)(ξ, η, ζ)(r, θ, z, t) = (−ξ,−η, ζ)(r, θ + π,−z, t), (8b)

A(I)H(r, θ, z, t) = −H(r, θ + π,−z, t). (8c)

The change of sign in the helicity is due to the fact that the helicity is a pseudo-scalar since

it is the dot product of a polar and an axial vector [24].

It is also convenient to introduce a symmetry parameter

S = ‖u−A(I)u‖2, (9)

where ‖ · ‖2 is a discrete L2 norm defined in [16]. It is zero for I-invariant solutions,

and positive for non-symmetric solutions. For time-dependent solutions, the symmetry

parameter is also time dependent, and we will use its maximum value over an appropriate

large time interval, SM = max
t
S(t), in order to characterize the lack of symmetry of the

solutions.
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III. BACKGROUND

Many theoretical studies on inertial waves consider a cylinder rotating about its axis

with angular velocity Re ẑ, subjected to infinitesimal perturbations. The linearized invis-

cid equations in the cylinder reference frame admit wavelike solutions (Kelvin modes) of

temporal frequency σ if σ < 2Re. The group velocity of these waves propagates along a

direction that makes an angle β with the cylinder mid-plane, given by the dispersion relation

2 cos β = σ/Re [25]. The Kelvin modes are characterized by three integers (k,m, n), where

m is the azimuthal wavenumber, and k and n are related to the number of zeros in the

radial and axial directions respectively. In the rotating and precessing cylinder considered

here, σk,m,n/ω0 depends on Γ , α and the Poincaré number Po; the details can be found in

[16, 23]. The Kelvin modes do not satisfy the no-slip boundary conditions, zero velocity at

the walls, but only the weaker condition of zero normal velocity. The zero viscosity limit is

singular, and any physical solution resembling Kelvin modes must include boundary layers

in order to adjust the velocity to the physical boundary conditions [16, 26].

The Kelvin modes are damped by viscosity, and their physical realization with finite

viscosity requires an external forcing to sustain them. In precessing flows, the forcing is

provided by the Coriolis body force. In the rotating and precessing cylinder (Fig. 1), the

total angular velocity of the cylinder is given by

ωC = ωp + ω0 = ω⊥ + Re ẑ. (10)

In the table reference frame this is a constant vector. Its axial component (in the direction

of the cylinder axis ẑ) is Re = ω0 + ωp cosα, and provides the solid-body rotation of the

cylinder around its axis. The orthogonal component ω⊥, of modulus |ωp| sinα, is constant

in the table reference frame, and rotates around the cylinder axis with angular velocity ω0

in the cylinder reference frame. This orthogonal component provides the forcing that may

sustain inertial waves. We define the forcing amplitude as

Af = |ω⊥|/ω0 = |Po| sinα. (11)

Dividing by ω0 makes the amplitude independent of viscosity, and it is the appropriate

definition in the inviscid limit. Although the amplitude of the forcing is independent of the

sign of Po, the resulting flow is not.
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The precessional forcing is able to excite inertial waves as long as ω0 ≤ 2Re. The body

force −2ωp × v depends explicitly on the azimuthal coordinate θ, ωp = ωp(sinα sin θ r̂ +

sinα cos θ θ̂ + cosα ẑ), due to the nonzero nutation angle α, and therefore has azimuthal

wavenumber m = 1. The body force is independent of z. Therefore, it excites the

(k,m, n) = (1, 1, 1) mode, and the base flow of the viscous nonlinear system (5) resem-

bles the (1, 1, 1)-Kelvin mode, as long as the forcing frequency ω0 coincides with σ1,1,1. This

gives a relationship between Γ , α and Po, i.e. for a fixed geometry Γ and α, we must use

a specific value of the Poincaré number, Pores, in order to excite the (1, 1, 1)-Kelvin mode.

Of course, if one uses a forcing frequency σk,1,n, then a (k, 1, n)-Kelvin mode (with k and

n not necessarily equal to 1) will be resonantly excited, and this has been demonstrated

experimentally [8, 12]. All of this is according to linear inviscid theory. In practice, due to

viscous and nonlinear effects, and the presence of boundary layers, there is a range of values

of Po for which the base flow of the precessing rotating cylinder resembles the (1, 1, 1)-Kelvin

mode. The response function, which is a delta function δ(Po − Pores) for the linear inviscid

problem, becomes a finite resonance peak when viscosity is present. The width of the peak

depends on viscosity, i.e. the Reynolds number Re, and the height of the peak depends on

the amplitude of the forcing Af .

It is also possible to find resonances between different Kelvin modes. As shown in [11, 13],

triadic resonances between the (1, 1, 1)-Kelvin mode and two additional modes (k1,m1, n1)

and (k2,m2, n2) are possible when |n2±n1| = 1, |m2±m1| = 1, and |σk2,m2,n2±σk1,m1,n1| = ω0.

Therefore, by fine-tuning the aspect ratio Γ and the Poincaré number Po (for a given

nutation angle α) it is possible to obtain a variety of triadic resonances. For example, the

1:5:6 resonance between the Kelvin modes (1, 1, 1), (1, 6, 2) and (1,−5, 1), for a nutation

angle α0 = 1◦, takes place for Γ = 1.62 and Po = −0.1525. There has been extensive

theoretical, experimental and numerical work on this particular resonance [11, 13, 15, 16],

and we continue exploring it in the present paper. In particular, in [16] the forcing was

increased by varying ω0 and ωp while keeping α, Γ and Po constant, so that the flow was

always very close to the 1:5:6 triadic resonance. A complex transitional process through a

variety of increasingly complex flows was obtained.
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IV. RESULTS

Since the forcing amplitude is given by Af = |Po| sinα, one can obtain the same forcing

amplitude for different α by adjusting Po. Based on this fact and limited nonlinear viscous

numerical simulations, it has been suggested that α does not seem to play an important role

in the dynamics of precessing flows [27, 28]. This is in sharp contrast with the experimental

observations mentioned above [8–11], and motivates our exploring the flow in a precessing

cylinder varying the nutation angle α. As mentioned in the previous section, we shall focus

on the 1:5:6 triadic resonance regime, keeping H/R = 1.62, ω0 = 4000 and Po = −0.1525

fixed, and consider variations in α ∈ (0.1◦, 47◦). In this way, the forcing is increased and

the system remains close to the triadic resonance 1:5:6 whilst α is not too large. Such

an approach is often used experimentally [8, 10]. The effects of α on the dynamics are

ascertained, while still being able to compare with previous studies. For large enough α,

there will be detuning effects, and these are also explored. Numerically, we start with a

very small α = 0.1◦ to obtain the base state, starting from solid-body rotation as the initial

condition. Then, simulations with small increments in α are conducted with the solution at

the smaller α as the initial condition. When a qualitative change in behavior is observed,

the same type of parameter continuation to lower values of α is implemented to check for

multiplicity of states and hysteresis.

The conditions that must be satisfied in order to have a resonant (1, 1, 1)-Kelvin mode,

and to also have the 1:5:6 triadic resonance, are that the ratios

σ1,1,1
ω0

=
σ1,−5,1
ω0

+
σ1,6,2
ω0

=
1 + Po cosα

1 + Po cosα0

= 1 + δ (12)

be equal to one, i.e. that the detuning parameter δ = 0. Fixing Γ = 1.62, ω0 = 4000 and

ωp = −610 (corresponding to Po = −0.1525), the exact resonance conditions are obtained

only for α = α0 = 1◦. Keeping Γ , ω0 and ωp fixed and varying α, three different regimes have

been identified from the Navier–Stokes simulations, described in the following subsections.

A. Weakly nonlinear resonant regime: α . 4◦.

When the nutation angle is small, α . 1◦, only the forced (1, 1, 1)-Kelvin mode is suffi-

ciently excited by the Coriolis forcing, and the flow in the table frame of reference corresponds

to the steady basic state BS, consisting primarily of flow up one side of the cylinder and
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FIG. 2: BS at α = 1.146◦: isosurfaces of (a) w and (b) H at levels w = 40 & H = ±1.5× 105, and

contours of (c) axial velocity at mid-height z = 0, and (d) helicity in (θ, z) at r = 0.97.

down the other. It is illustrated in the first row of Fig. 2, which shows isosurfaces of the axial

velocity, w, and the helicity, H, at α = 1.146◦ (0.02 rad). The flow is completely dominated

by the overturning flow, as shown by the axial velocity isosurface, and the boundary layers

are very smooth and almost axisymmetric, as shown in the helicity isosurfaces. Only the

positive w isosurface is shown, corresponding to the upward moving flow. The downward

flow is the I-reflection of the upward flow, as BS is I-symmetric, located in the other half

of the cylinder, and it is not shown for clarity. In the view shown, the axis of the cylinder

ω0 and the axis of the table ωp are both in the meridional plane orthogonal to the page,

as shown schematically in Fig. 1. Figure 2(c) shows contours of axial velocity w in a plane

at mid-height, z = 0, showing the upward and downward components of the overturning

flow. Figure 2(d) shows the helicity of this solution on a cylindrical surface, θ ∈ [0, 2π] and

z ∈ [−0.5Γ, 0.5Γ ] at r = 0.97, essentially at mid-thickness of the sidewall boundary layer.

Here, the helicity is positive in the bottom half of the cylinder and negative in the top half,
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FIG. 3: LC at α = 1.432◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 50 &

H = ±2× 105 (see the online movie [URL will be inserted by publisher]), and contours of (c) axial

velocity, (d) axial vorticity, and (e) helicity, at mid-height z = 0; there are 20 equispaced contours

between the minimum and maximum values in the section. Helicity contours in (θ, z) at (f) r = 0.6

and (g) r = 0.97; there are 20 contours equispaced between H ∈ [−5× 105, 5× 105].
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and modulated away from being axisymmetric by the m = 1 influence of the Coriolis force.

The helicity of BS is essentially confined to the boundary layers of the top and bottom

endwalls and the sidewall.

The base state BS loses stability when α is increased beyond α ≈ 1.26◦, in a supercritical

Hopf bifurcation induced by the 1:5:6 resonance. This results in a limit cycle LC, which

is time-periodic in the table frame of reference. This is the same I-symmetric LC solution

branch that is obtained by fixing α = 1◦, Γ = 1.62 and Po = −0.152 53, and increasing

ω0 & 4777 (see Figs. 3 and 10 in [16]).

The LC solution for α = 1.432◦ (0.025 rad) is shown in Fig. 3. The first row shows iso-

surfaces of the axial velocity and the helicity. Comparing with BS in Fig. 2, the overturning

flow in LC has small distortions compared with BS, but the main change is in the helicity.

The boundary layers are more complex, and the bulk flow is dominated by helicity columns

that are the manifestation of the resonant m = 5 and 6 modes. Figure 3(c) shows contours

of axial velocity w, and the presence of 5 or 6 perturbations inside the overturning flow are

apparent. As was shown in [16], the contours of axial vorticity ζ and helicity H at mid-

height, shown in Fig. 3(d,e), highlight the structure of the m = 5 and 6 modes that appear

at the Hopf bifurcation. Figure 3(f) shows contours of H at r = 0.6, where the m = 5 and

6 modes are most intense. These modes consist of columnar vortices with a well defined

helicity, that emerge from the strong top and bottom endwall boundary layers. Figure 3(g)

shows contours of H at r = 0.97, essentially in the middle of the sidewall boundary layer.

Here, the helicity is positive in the bottom half of the cylinder and negative in the top

half, as was the case for BS, but with perturbations induced by the 1:5:6 triadic resonance,

with a distinct m = 5 oscillation at the mid-plane; see Fig. 3(e). The LC solutions are I-

symmetric, as illustrated in the r-constant contours, and quantified by SM = 0. The online

movie corresponding to Fig. 3(b) illustrates the spatio-temporal helical structure of LC.

By increasing the nutation angle up to α = 4◦, a variety of complex flows are obtained

as LC becomes unstable. Figure 4 shows how the energies em of the Fourier components of

the velocity field vary with α. Note that for BS and LC, the modal energies Em are time

independent (for BS because it is a steady state, and for LC its Fourier components are

like rotating waves whose structure are time independent but drift in azimuth, so that their

energies are time-independent). However, for the states that result from the instability of

LC, their energies are time dependent, and their maxima em (defined in (7)) are plotted
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FIG. 4: Variation of em with α for the states dominated by the triadic-resonance-induced dynamics.

Energies em with m > 6 are plotted in gray. The symbols correspond to the different states obtained

in this α range, described in the text.

in Fig. 4. A good measure of the strength of the overturning flow is given by e1, and e0

measures the m = 0 azimuthal mean flow departure from solid-body rotation and is a good

proxy measure of the flow nonlinearity [16]. Figure 4 shows that the relevant components of

the flow are the m = 1, 5 and 6 Fourier modes corresponding to the 1:5:6 triadic resonance,

along with the m = 0 component. The remaining modal energies are at least one order of

magnitude smaller than e5 or e6, and therefore the dynamics are dominated by the triadic

resonance mechanism. Approaching α = 4◦, the remaining Fourier components start to grow,

particularly the leading harmonics of the m = 1 overturning flow. As a result of nonlinear

interactions, the triadic resonance modes m = 5 and 6 become increasingly modified, but

are still clearly dominant over the harmonics of the forced m = 1 flow. We call this α-regime

the weakly nonlinear resonant regime.

The complex flows, whose em are shown in Fig. 4, consist of states with either two or

three incommensurate temporal frequencies, as well as a state which intermittently alternates

between being quasiperiodic and temporally chaotic. Moreover, some of these states preserve

I-symmetry while others break it. Specifically, LC loses stability subcritically at α ≈ 1.862◦,

and for slightly larger α the flow evolves to a quasiperiodic I-symmetric state, QPs, which

12



2.5 3.0 3.5 4.0

α (deg.)

0

1

2

3

4

5

S
M

VLFs

VLFa

IC

FIG. 5: Variation of the symmetry parameter SM with α for the states dominated by the triadic-

resonance-induced dynamics.

is basically a slow modulation of LC (see [16] for details). The QPs solution branch can be

traced to lower α, and it loses stability at α ≈ 1.748◦, forming a hysteretic loop with LC for

α ∈ (1.748◦, 1.862◦).

The QPs solutions lose stability for α & 1.942◦. The resulting flow is a very slow modu-

lation of QPs, the new frequency being an order of magnitude smaller than the frequencies

associated with QPs. This new very-low-frequency state, VLFs, is also I-symmetry, and its

spatio-temporal characteristics show it to be a slow drift in phase space between BS, LC and

QPs (see [16] for details). VLFs undergoes a supercritical symmetry-breaking bifurcation

at α ≈ 2.82◦, leading to VLFa. For α values near the bifurcation, the degree of symmetry

breaking, as measured by SM, is relatively small (see Fig. 5), and the overall spatio-temporal

features of VLFa are very similar to those of VLFs. With increasing α, VLFa becomes more

asymmetric, and when SM ≈ 3.5, the quasiperiodic VLFa becomes irregular, consisting of

alternating episodes of chaotic and quasiperiodic temporal behavior. These intermittent

chaotic states, IC, are found for α ∈ (3.610◦, 3.753◦), and for larger α the VLFa state is

recovered and has SM reducing slowly with increasing α, as shown in Fig. 5. These various

states have also been obtained by fixing α = 1◦ while increasing ω0, [16], but the order in

which they appear with increased forcing is different.

The results discussed so far for increasing α are consistent with the single-point LDV

measurements of [29], that reported a single peak at the forcing frequency (plus harmonics)
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FIG. 6: Variations of em with α. The two vertical lines at α = 4◦ and 27◦ demark three regimes

of differing dynamics.

corresponding to the m = 1 Kelvin mode for α ∈ (1◦, 2.5◦), and for α ∈ (2.5◦, 3.5◦) the

temporal spectra included a very-low-frequency component. For α ∈ (3.5◦, 5◦), a subhar-

monic component emerged (very likely related to the I-symmetry-breaking process). Those

experimentally observed temporal characteristics were reported to be consistent with the

earlier flow visualizations of [8].

B. Strongly nonlinear resonant regime: 4◦ . α . 27◦.

Increasing α & 4◦ results in an abrupt transition to a sustained temporally chaotic state,

SC1, consistent with the observations of [8]. This abrupt transition between VLFa and

SC1 has a small region of hysteresis, α ∈ (4.097◦, 4.125◦). Figure 6 shows the variations in

energies em with the nutation angle over the range α ∈ [0.05◦, 47◦]. The figure is plotted

with a logarithmic scale for α in order to better view the details for small α. There are three

clearly distinct regimes: for α ≤ 4◦, the dynamics were analyzed in the previous section

and are dominated by the 1:5:6 triadic resonance. In the second regime, α ∈ (4◦, 27◦),

the azimuthal Fourier components from m = 2 to 6 have comparable energies em, indicating
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FIG. 7: SC1 at α = 8.6◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 100 &

H = ±2× 106 (see the online movie [URL will be inserted by publisher]), and contours of (c) axial

velocity, (d) axial vorticity, and (e) helicity, at mid-height z = 0; there are 20 contours equispaced

between the minimum and maximum values in the section. Helicity contours in (θ, z) at (f) r = 0.6

and (g) r = 0.97; there are 20 contours equispaced between H ∈ [−4× 106, 4× 106].

that the 1:5:6 resonance is still at play, but that nonlinear interactions between these Fourier

components and the m = 0 and 1 components are important. This regime is referred to as

the strongly nonlinear resonant regime. In the third regime, α ≥ 27◦, the triadic resonance
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FIG. 8: Variations of SM with α. The two vertical lines at α = 4◦ and 27◦ demark three regimes of

differing dynamics. Included are the variation of the amplitude of the forcing Af and the detuning

parameter δ with α (right vertical axis).

no longer plays any significant role, and will be described in the following section, §IV C.

Figure 7 shows a typical SC1 solution corresponding to α = 8.6◦ (0.15 rad). The m = 1

overturning flow is twisted in the positive azimuthal direction with respect to the BS and

LC laminar states, but remains mostly vertical (see Figs. 7a and 7c). The bulk flow still has

helicity columns associated with the triadic resonance modes, clearly illustrated in the axial

vorticity and helicity contours in the figure. However, these columns are no longer evenly

distributed in azimuth. They span the whole height of the cylinder for a short time before

breaking up into smaller pieces, followed by the formation of new columns, all in a spatio-

temporally complex fashion (see the online movie associated with Fig. 7b). The structure of

the sidewall boundary layer is still similar to the structure in the weakly nonlinear resonant

regime, with positive helicity in the bottom half of the cylinder boundary layer and negative

helicity in the top half, but the oscillations in the helicity at the mid-plane are more irregular.

C. Chaotic non-resonant regime: α & 27◦.

When α & 27◦, there is an abrupt change in the flow dynamics. Figure 6 shows that the

energies of the Fourier components of the flow essentially become harmonics of the m = 1

overturning flow, which is now spatio-temporally complicated. Note in particular that the

energies of m = 5 and 6, which for α . 27◦ were dominated by the triadic-resonance-excited
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FIG. 9: SC2 at α = 32◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 100 &

H = ±1.2× 107, and contours of (c) axial velocity, (d) axial vorticity, and (e) helicity, at mid-

height z = 0; 20 contours equispaced between the minimum and maximum values in the section

for w and ζ. Helicity contours in (θ, z) at (f) r = 0.6 and (g) r = 0.97. 20 contours equispaced

between H ∈ [−6× 107, 6× 107] for (e), (f) and (g).

Kelvin modes (1, 6, 2) and (1,−5, 1), are now merely associated with the fifth and sixth

harmonics of m = 1, and are significantly smaller. This abrupt change is also present in the

degree of asymmetry of the flow, as quantified by SM. Figure 8 shows how in the mid-α
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FIG. 10: SC2 at α = 32◦ in orthogonal meridional planes; the plane θ = 70◦ separates approxi-

mately the up and down parts of the overturning flow. There are 20 contours equispaced between

the minimum and maximum values in the section for w, ζ and H. For the enstrophy, there are 15

contours quadratically spaced in E ∈ (0, 8× 109).

regime, SM for SC1 increases essentially monotonically with α, whereas in the high-α regime

(α & 27◦), SM makes a sudden jump, reaches a maximum at α ≈ 32◦ that is about twice

as big as the largest SM value for SC1, and then drops back to about the SC1 level. The

flow in the high-α regime, SC2, is also spatio-temporally complicated, but of a very different

nature compared to SC1.

Figure 9 shows various aspects of the SC2 state at α = 32◦ (0.56 rad), where SC2 is

most asymmetric. One change in SC2 compared to all the other states obtained in the

two lower α regimes, is that the flow is strongly skewed. This is particularly evident in

the sidewall boundary layer structure, where in the other states, the top half had negative

helicity and the bottom half had positive helicity, while SC2 has an oblique plane separating

the positive and negative H boundary layer, oriented at roughly 45◦. Another difference

is that the interior flow is devoid of helical structures; the H-columns that were associated

with the triadic resonance modes and predominant in LC, QPs, VLFs, VLFa, and SC1,

are completely absent. In SC2, the H-structures in the interior are instead associated with

shear layers separating from the side and endwall boundary layers. These are more readily
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FIG. 11: SC2 at α = 47◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 100 &

H = ±2× 107 (see the online movies [URL will be inserted by publisher]), and contours of (c) axial

velocity, (d) axial vorticity, and (e) helicity, at mid-height z = 0; there are 20 contours equispaced

between the minimum and maximum values in the section for w and ζ. Helicity contours in (θ, z)

at (f) r = 0.6 and (g) r = 0.97; there are 20 contours equispaced between H ∈ [−6× 107, 6× 107]

for (e), (f) and (g).

seen in the meridional plots shown in Fig. 10. The two meridional planes used in the figure

correspond to the orientation of the overturning flow. The θ = 70◦ plane roughly separates
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FIG. 12: SC2 at α = 47◦ in orthogonal meridional planes; the plane θ = 70◦ separates approxi-

mately the up and down parts of the overturning flow. There are 20 contours equispaced between

the minimum and maximum values in the section for w, ζ and H. For the enstrophy, there are 15

contours quadratically spaced in E ∈ (0, 8× 109).

the upward flow from the downward flow, and the θ = −20◦ plane is orthogonal to the

θ = 70◦ plane. The variables plotted are w, ζ and H, as in the earlier plots, along with

the enstrophy, E = 1
2
|∇ × u|2. All plots show, at this instant, strong separations at the

top boundary layer, and a shear layer extending between the top and sidewall layers. The

eruptions from the boundary layer observed in Fig. 10 (first row) are located at the top and

left sidewall, and are almost absent at the bottom and right sidewall. This strong asymmetry

results in a large value of SM. Of course, the eruptions illustrated in Fig. 10 are an event

at a given instant; these events change in an irregular way with time, appearing in different

boundary layers erratically. There are no hints of the columnar structures associated with

the m = 5 and 6 Kelvin modes.

The SC2 flow at the largest α considered in this study, α = 47◦, is shown in Figs. 11

and 12. The overall flow structure has not changed. It is still predominantly an m = 1

overturning flow with a twisted sidewall boundary layer structure which has an oblique

orientation, and the interior only has intermittent structures associated with boundary layer

separations. However, there is a substantial decrease in the flow asymmetry as illustrated
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in Fig. 8. This is due to the boundary layer eruptions being more prevalent than they were

for α < 40◦ and being more symmetrically distributed amongst the boundary layers. The

overturning flow becomes oblique, following the oblique plane separating the positive and

negativeH parts of the sidewall boundary layer (see Fig. 12a at θ = −20◦), and the eruptions

from the boundary layer take place mainly around the corners where the overturning flow

is strongest (see Fig. 12c). The spatio-temporal structure of this state is illustrated in the

online movie associated with Fig. 11(b).

V. DISCUSSION AND CONCLUSION

The main goal of the present study is the understanding of the influence of the nutation

angle α on the precessing cylinder flow, and the sudden transitions to turbulence observed

in experiments. Keeping Γ = 1.62, ω0 = 4000 and ωp = −610 fixed, and varying α from

0.5◦ to 47◦, three different dynamic regimes have been identified from the Navier–Stokes

simulations.

The main differences in these three regimes are illustrated in Fig. 8 in terms of the

symmetry parameter SM, that also includes the variation of the forcing amplitude Af and

the detuning parameter δ with α, and in Fig. 6 in terms of the energies of the relevant

Fourier components of the flow. Note that e0 and e1 represent features that are present in

all three regimes: the deviation from solid body rotation and the overturning flow, and we

will focus on en for n ≥ 2 in order to better emphasize the differences.

In the low-α regime (α . 4◦), detuning effects are negligible, the precessional forcing is

weak, and the dynamics are dominated by the triadic resonance. The m = 5 and 6 Fourier

components of the flow have much larger energies than the other components with m > 1,

as predicted by the weakly nonlinear theory [13]. However, additional bifurcations leading

to quasiperiodic and weakly chaotic solutions occur for small increases in α. The inversion

symmetry of the flow is broken at the bifurcation to VLFa, although the bifurcated solutions

retain this I-symmetry when averaged in time [16]. The boundary layers are very similar to

the boundary layers of the steady base state solution, and the bulk of the flow is dominated

by columnar vortices due to the triadic resonance mechanism.

In the mid-α regime (4◦ . α . 27◦), the detuning effects are still weak, the forcing

is stronger, and the dynamics are spatio-temporally complex due to nonlinear interactions
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FIG. 13: Time series of SM for the states indicated.

between the triadic resonance driven flow components and the nonlinear harmonics of the

m = 1 overturning flow. As shown in Fig. 6, the energies ei, i ∈ [2, 6], have very similar

levels. This is a clear indication of the strong interaction between the triadic resonance

mechanism and the nonlinear effects. The symmetry parameter SM increases steadily with

α in this regime. The boundary layers are still similar to the boundary layers of the base

state solution, but with larger deformations, and the columnar vortices in the bulk of the

flow are still present, but they are no longer uniformly distributed in azimuth, and undergo

break-up and reformation in a spatio-temporally complex fashion.

Figure 13 shows time series, over one fifth of a viscous time, of the symmetry parameter

SM for flows in each of the three α-regimes. Figure 13(a) corresponds to VLFa in the low-α

regime at α = 3.5◦. This state periodically approaches an unstable symmetric state (at the

minima of SM), moves away from it, and returns. The flow is periodic with three frequencies,

the very-low frequency that is clearly apparent in the figure, a small modulation with much
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larger frequency that is barely appreciable in the figure, and an azimuthal drift frequency

which disappears in SM because SM is a global measure, and a rotation of the flow pattern

does not modify SM [16]. The other three states, in the mid- and high-α regimes, are

clearly erratic in time, and we have called them sustained chaotic solutions, SC1 and SC2,

respectively.

In the large-α regime (α & 27◦), the detuning is no longer negligible, and the amplitude

of the forcing is larger than in lower-α regimes. Over a narrow interval in α, centered at

α = 27◦, the flow undergoes dramatic changes, as illustrated in Fig. 6. The energies of the

Fourier modes m = 2 to 6, that were of comparable strength in the mid-α regime, change

abruptly: all the energies em now decrease with increasing m, spread over more than a

decade in energy levels. The Fourier components of the flow essentially become harmonics

of the m = 1 overturning flow, and the triadic resonance mechanism does not play any

significant role. There is also an abrupt increase in the flow asymmetry: SM almost doubles

and remains very high up to α . 40◦. This is due to asymmetric eruptions from the boundary

layers, that occur erratically with time and location in the various boundary layers. The

sidewall boundary layer structure is also completely different to that in the lower-α regimes,

with an oblique plane separating the positive and negative helicity parts of the boundary

layer. The flow in the interior of the cylinder is devoid of helical columns, and the only

structures that are apparent are related to the boundary layer eruptions forming short-lived

internal shear layers that are predominantly located near the boundary layers. Increasing

the nutation angle above 40◦ results in a decrease in the asymmetry of the flow. This is

due to the boundary layer eruptions being more symmetrically distributed. The eruptions

from the boundary layer take place mainly around the corners where the overturning flow

is strongest. The interior of the cylinder does not exhibit any large scale structure.

The numerical simulations presented in this study show that the flow undergoes dramatic

changes as the nutation angle α is increased while the remaining parameters are held fixed.

The fixed parameters represent the geometry (Γ), the cylinder and table angular velocities

and the fluid viscosity (ω0 and ωp). Of course, increasing α results in an increase in the

amplitude of the forcing Af (because the component of the rotation orthogonal to the

cylinder axis (11) increases), and also produces a detuning away from the strict triadic

resonance condition (12). There are various characteristics of the resulting flows that are

directly associated with α: the distortion of the sidewall boundary layer, with an oblique
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plane separating its positive and negative helical parts and the subsequent distortion of the

overturning flow are clearly associated with the flow trying to accommodate to a total angular

velocity that is widely misaligned with the cylinder axis for large α. In this high-α regime,

e0 is as much as 0.25, i.e. E0 ≈ 0.25ESB . There is a massive disruption to the solid-body

rotation associated with the cylinder rotation around its axis, on which the linear inviscid

theory of Kelvin modes is based: the Kelvin eigenmodes from an infinitesimal perturbation

to solid-body rotation around the cylinder axis. So, in this sense it is not surprising that

Kelvin mode triadic resonance effects are not present in this high-α regime.
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