
Abstract
The speculative multithreading paradigm (speculative thread-
level parallelism) is based on the concurrent execution of
control-speculative threads. The efficiency of
microarchitectures that adopt this paradigm strongly depends
on the performance of the control and data speculation
techniques. While control speculation is used to predict the
most effective points where a thread can be spawned, data
speculation is required to eliminate the serialization imposed
by inter-thread dependences.

This work studies the performance of different value
predictors for speculative multithreaded processors. We
propose a value predictor, the increment predictor, and
evaluate its performance for a particular microarchitecture
that implements this execution paradigm (Clustered
Speculative Multithreaded architecture).

The proposed trace-oriented increment predictor clearly
outperforms trace-adapted versions of the last value, stride
and context-based predictors, specially for small-sized history
tables. A 1-KB increment predictor achieves a 73% prediction
accuracy and a performance that is just 13% lower than that
of a perfect value predictor.

1. Introduction

Current superscalar microarchitectures suffer from some
important constraints that may prevent them from exploiting
large amounts of instruction-level parallelism (ILP), even with
the much larger transistor budget that will be available in the
near future (an increase by a factor of about 25 in the next 10
years is expected, according to the SIA technology roadmap
[14]).

The size of the instruction window is one of these crucial
constraints to attain high ILP. As several studies have shown
(see [19] among others), to achieve a high IPC rate (instructions
committed per cycle), a large instruction window is required.
However, the average size of it is basically determined by the
performance of the control speculation approach. One of the
most severe limitations of the control speculation approach
implemented in superscalar processors relies on the fact that
branches are predicted in sequential order, and as soon as a
single branch is mispredicted, all instructions after it are
squashed.

Some alternative microarchitectures have been recently
proposed to avoid such a limitation in control speculation. The
basic idea is to have a two-level speculation approach: on top
of the conventional control speculation of a superscalar
processor, these new microarchitectures also try to predict

certain points in the control flow that are very likely to be
visited in the future, regardless of the outcome of the
forthcoming branches. The microarchitecture spawns
speculative threads starting from such control-flow points. We
refer to such points in the control flow as control quasi-
independent points.

Speculative threads together with the non-speculative one
are executed concurrently since the processor provides support
for multiple hardware contexts. Each thread has its local
instruction window built in the same way as superscalar
processors do. This type of execution model was proposed in
the Expandable Split Window paradigm [4] and the Multiscalar
microarchitecture [15]. Recent microarchitecture proposals
that are also based on this generic execution model are: SPSM
[3], Superthreaded [17], Trace Processors [11], Speculative
Multithreaded [9][10], Dynamic Multithreaded [1], and
extensions to multiprocessor architectures ([7][16] among
others).

A critical issue of such architectures is the approach to
identify the most effective points where speculative threads can
be spawned. In addition to being highly predictable from the
point of view of the control flow, the speculation mechanism
should consider the data dependences among concurrent
threads. For non-numeric codes with limited amount of ILP
such as the SpecInt95, threads are very likely to be dependent,
and thus, the microarchitecture should provide mechanisms to
ensure that all dependences among threads (inter-thread
dependences) are obeyed. Note that constraining the thread-
level speculation just to data independent threads would result
in almost no parallel threads for most SpecInt95 programs.

The performance of speculative multithreaded architectures
is very dependent on the approach to dealing with inter-thread
dependences. A simple approach is to force a serialization
between the producer and the consumer of every dependence,
for instance, through the re-execution of instructions when a
dependence violation is detected. However, data value
speculation can significantly boost the performance by
predicting those values that flow through such dependences. If
values are correctly predicted, dependent threads are executed
as if they were independent.

In this paper, we study the performance of data value
speculation for this type of microarchitectures. In particular, we
focus on Clustered Speculative Multithreaded processors and
present a comparative study of the performance of value
predictors previously proposed in the literature. We also
present a new predictor that is oriented to estimate the outputs
of a thread based on its inputs. We refer to it as increment

Value Prediction for Speculative Multithreaded Architectures

Pedro Marcuello, Jordi Tubella and Antonio González

Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya,

Jordi Girona 1-3, Edifici D6, 08034 Barcelona, Spain
e-mail: {pmarcue,jordit,antonio}@ac.upc.es

predictor. We show that an increment predictor provides the
best performance among single predictors. It can achieve a 73%
accuracy with a table of just 1 KB for the SpecInt95. In
addition, its performance can be increased when combined with
a context-based value predictor to form a hybrid predictor. In
this case, an 16-KB predictor has a 80% prediction accuracy
and provide a 45% speed-up over a single-threaded execution.

The rest of this paper is organized as follows. Section 2
reviews the Clustered Speculative Multithreaded architecture.
Section 3 describes different value predictors and evaluates
their prediction accuracy. Performance figures obtained by a
timing simulator are presented in section 4. Section 5 reviews
some related work and finally, section 6 summarizes the main
conclusions of this work.

2. Clustered Speculative Multithreaded
Architecture

This work focuses on the potential of value prediction to boost
the performance of processors that exploit speculative
multithreading. As a case study, we have considered the
Clustered Speculative Multithreaded microarchitecture. This
processor architecture (shown in Figure 1), is made up of
several thread units interconnected by means of a ring
topology, being each thread unit similar to a superscalar core.

The thread speculation logic of a Clustered Speculative
Multithreaded processor is responsible for detecting those parts
of a sequential program that can be executed by different
threads. This architecture considers the beginning of loops as
control quasi-independent points, since when these points are
visited, they are very likely to be visited again in the near future
(regardless of most of the branches inside the loop bodies).
Thus, each speculative thread corresponds to a different
iteration of an innermost loop. We will refer to the code
executed by a speculative thread as a loop trace. The thread
speculation logic also provides support for predicting the trace
input/output data values and inter-thread memory dependences.
If a value cannot be predicted by this logic, the threads are
spawned anyway, but all the instructions that are dependent of
the non-predicted value wait for the completion of the
producer, which will store the value in a special register file
(live-in register file) so that the following thread can read it.
This architecture uses the MultiValue Cache to deal with
memory dependences. More details about this
microarchitecture can be found elsewhere [9][10].

2.1. The Performance Potential of Value
Prediction

The main functionality of value prediction in a multithreaded
environment is its ability to transform dependent threads into
pseudo-independent ones. This ability becomes more important
if the processor has a clustered architecture since these pseudo-
independent instructions of speculative threads do not compete
for the available resources.

Dependences among threads can be through registers and
memory. We have evaluated than inter-thread register
dependences are much more abundant that memory ones. On
average, for the SpecInt95 suite, we have measured that a loop
trace has 3.1 and 0.6 register and memory inputs respectively
that are written by any of the previous 3 loop traces (see Figure
6). Figure 2 shows the speed-ups achieved by a Clustered
Speculative Multithreaded processor with perfect register value
prediction and perfect register and memory value prediction
against the same clustered processor when it does not include
any value predictor and it has to synchronize dependent
instructions. On average, the speed-up achieved by predicting
register values is quite important (close to 40%) and the
improvement provided by predicting memory values is small in
comparison with predicting only register values (only a 4%
increase). Therefore, in this work, we focus on predicting
register values, even though we consider that predicting
memory values can also be important for the performance of
some other codes.

3. Value Predictors

Value prediction is a technique that tries to exploit the fact that
values tend to repeat or follow a known pattern over a large
fraction of time. Therefore, values may be predicted correctly
if an appropriate mechanism is used. These mechanisms are
based on tables that store information reflecting the history that
has been observed in the recent past.

This section is devoted to analyze the accuracy of value
prediction in the context of a Clustered Speculative
Multithreaded processor. The performance of this type of
architecture strongly depends on the ability to predict the input
or output values of speculative threads. As seen in the previous
section, speculative threads correspond to loop iteration traces.
In this way, we define a trace input as a value (in a register or

Figure 1: A Clustered Speculative Multithreaded
processor with three thread units.

Icache thread
speculation

Rmap

instr.
queue

local
regs.

func
units

local
mem. TU2

Rmap

instr.
queue

local
regs.

func
units

local
mem. TU0

Rmap

instr.
queue

local
regs.

func
units

local
mem. TU1

to T
U

0fr
om

 T
U

2

multi-value cache

live-in
regs.

live-in
regs.

live-in
regs

Figure 2: Speed-up for a perfect predictor of values that
flow through inter-thread dependences, either in
registers or memory.

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rte

x

Hm
ea

n

SpecInt95

0

20

40

60

80

Sp
ee

d-
Up

 (%
)

Register
Reg&Mem

158% 167%

memory location) that is live at the beginning of the trace (the
trace uses it without having been computed by the same trace).
In the same manner, we define a trace output as a value (in a
register or memory location) that is computed by the trace.
Thus, the analysis of value prediction focuses on trace input or
output values, since these are the values that flow through inter-
thread dependences.

The following subsections describe the value predictors
investigated in this work. We classify the predictors into those
that exploit correlation with past values of the same instruction
operand and those that exploit correlation with values of the
same trace. The former are called instruction-based predictors
while the latter are called trace-based predictors.

Some of the predictors (last value, stride, context and hybrid
predictors) have been thoroughly studied in the context of a
superscalar and VLIW processors, but their performance for
speculative multithreaded processors is unknown. In addition,
we propose a new value predictor, the increment predictor,
which is shown to have extremely high accuracy with very low
cost.

3.1. Instruction-Based Value Predictors

These predictors have in common that their history tables store
information about the values seen by individual instruction
operands. Well-known predictors are the last value (LV) [8],
stride (STR) [5][12], context-based (FCM) [13] and hybrid
schemes such as the stride-context (HYB-S) predictor.

The LV predictor assumes that the next value an instruction
operand is the value in its previous execution. The STR
predictor speculates that the new value seen by an instruction is
the sum of the last value and a stride, which is the difference
between two consecutive values. The predicted stride is
replaced when a new stride has been seen twice in a row. The
FCM predictor considers that values follow a repetitive
sequence, and thus, estimates the new value based on the
sequence of previous values of the same instruction operand.
The HYB-S predictor is composed of a stride predictor and a
context-based predictor. In this case, the choice between both
predictors is guided by confidence counters.

Typically, a FCM predictor uses a Value History Table
(VHT) containing the last n values seen by each instruction
operand. These values are hashed to form an index to a Value
Prediction Table (VPT). In all figures presented for FCM
predictors (included the hybrid version) we have considered
that the VHT contains the last 3 values and these values are 0-
bit, 2-bit and 4-bit shifted, respectively, before xor-ing them in
order to obtain the index to the VPT [13]. We also assume that
the number of entries in each table is the same.

3.2. Trace-Based Value Predictors

The performance of instruction-based predictors can be
improved if information about the trace to which the instruction
operand to be predicted belongs is also included in the history
tables. This gives way to the so-called trace-based value
predictors. Traces being considered in this paper are the loop
traces that the thread speculation unit of the Clustered
Speculative Multithreaded architecture delimits for
speculation. Nevertheless, this kind of predictors can be used
for other types of traces.

Let us see a common case where instruction-based value
predictors fail. The instruction-based stride predictor behaves
badly when consecutive loop traces correspond to different
paths of the same loop. Figure 3 shows an example where traces
TA, TA, TB and TA are consecutively executed and Ri is the
destination operand produced by instructions at PCA and PCB.
Consider also that these instructions compute an output trace
value. The stride predictor would speculatively compute the
value of Ri in the last trace (Ri4) as the last value produced by
the same instruction (Ri2) plus the stride computed for that
instruction operand. This may give an incorrect value since
trace TB modifies the value of Ri.

3.2.1. Increment Predictor (INCR)

A stride predictor computes a difference between two
consecutive values of an operand at the same instruction
address. Writes to the same storage location produced between
these two instructions affect the accuracy of the predictor.
Instead, it may be better to base the value prediction of a storage
location on the difference (the increment) of its value between
two given points of the execution that always correspond to the
same high-level structure, such as the beginning and the end of
a loop trace [10].

The increment predictor predicts every trace output value as
the value of that storage location at the beginning of the trace
plus an increment. This increment is computed as the value at
the end of the trace minus the value at the beginning of the trace
in previous executions of the same trace. The predicted
increment is updated when a new increment has been seen
twice in a row.

Regarding Figure 3, note that the value of Ri3, which is an
output value of trace TB is also the value of register Ri at the
beginning of the fourth trace (TA). In this way, the value Ri4 is
predicted as Ri3 plus the increment observed for this register in
trace TA in the past. Ri3 may in turn contain a predicted value,
which was computed as Ri2 plus the increment observed for
this register in trace TB in the past. This scheme may be more
accurate than an instruction-based predictor, since different
traces are considered to update operands in a different way.

3.2.2. Other Trace-Based Predictors

Note that the instruction-based predictors presented in the
previous section can be extended to correlate their predictions
with previous instances of the same instruction operand in the

TA

TB

TA

Ri2 <- ...

Ri3 <- ...

Ri4 <- ...

Ri4 = Ri2 + STRIDE(PCA)

Ri4 = Ri3 + INCREMENT(TA,Ri)

Figure 3: Stride and increment predictors: a) 4 consecutive
traces (TA, TA, TB and TA) which reference
register Ri; b) predicted value of Ri4 using a stride
predictor; c) predicted value of Ri4 using the
increment predictor.

PCA

PCB

PCA

{
(a)

(b)

(c)

TA Ri1 <- ...PCA

{

{
{

same trace. This extension to convert them into trace-based
predictors only requires minor modifications in the
implementation, namely, the indexing function in the history
table should consider both the instruction address and the trace
identifier.

3.2.3. Hybrid Increment-Context Predictor (HYB-I)

A hybrid scheme composed of the proposed increment
predictor and a context-based predictor (HYB-I) will also be
analyzed. For hybrid predictors, the choice between the two
predictions is guided by confidence fields located in each
individual predictor, which are implemented by means of 3-bit
up/down saturating counters.

3.3. Indexing Schemes

For instruction-based predictors, the history tables are indexed
through the instruction address of the operand to predict. If a
source operand is to be predicted, a bit is appended to the
instruction address in order to identify each source operand. A
destination operand is directly identified by its instruction
address. We refer to this indexing scheme as PC-based
indexing.

Trace-based value predictors access the history tables
through a trace identifier and a operand identifier (e.g. register
identifier). For traces, we have considered a pseudo-identifier
that consists of the instruction address of the first instruction of
the trace along with a bit vector with the result of all conditional
branches in the trace. It is not a unique identifier because a trace
can have indirect unconditional branches, and their target
branch addresses are not considered. We refer to this indexing
scheme as trace-based indexing.

Note that trace-based predictors could alternatively index
the history tables based on the instruction address of the
producer (resp. first consumer) of the output (resp. input) value.
Both types of indexing, PC- and trace-based indexing, are
considered for trace-based predictors.

3.4. Prediction Accuracy

This section analyzes the accuracy of the different value
predictors for the two indexing functions and different table
capacities. The differences in predictability of inputs and
outputs is also investigated. The objective is to devise the
configurations with most potential, whose impact on IPC will
be later analyzed in section 4.

In this section we use a trace-driven simulation of the
SpecInt95 benchmark suite. The programs were compiled with
the Compaq/Alpha compiler for an AlphaStation 600 5/266
with full optimization (-O4), and instrumented by means of the
Atom tool. Programs used the reference input data during 200
millions of instructions after skipping the first 500 millions of
instructions.

Loop traces being considered in this analysis are on average
36 instruction-length. Moreover, instructions belonging to loop
traces represent almost the 62% of total instructions. Individual
data for every program is depicted in Table 1.

3.4.1. Predicting Register Values through PC-Based
Indexing

A proper selection of the values to be predicted may have an
important impact on the performance of data value speculation

techniques [2]. We first compare the difference in predictability
between trace input and output values. Note that predicting the
outputs of previous loop traces is another way to obtain the
input values of a loop trace. Value predictors being analyzed
here use a PC-based indexing mechanism.

Figure 4.a shows the prediction accuracy for trace input
register values whereas trace output register values are
analyzed in Figure 4.b. The impact of the capacity of the history
tables on the prediction accuracy is depicted along the X-axis.
The INCR and HYB-I predictors are not depicted for input
values since they only predict trace output values.

As observed for superscalar processors [13], a FCM can
achieve a high prediction accuracy but it requires very large
history tables. LV and STR predictors can achieve a better
accuracy for small-sized ones. For large tables, the LV
predictor is the least accurate. A remarkable result is that input
values are more predictable than output values (70% of inputs
for a 64-KB table using a STR predictor and 60% of outputs
using a HYB-I predictor with the same capacity). Another
important result is that a STR predictor outperforms an INCR
predictor by around a 10%. The difference in performance of
the respective hybrid predictors is not so high; in fact, HYB-I
has a slightly advantage over HYB-S which suggests that the
type of patterns predicted by the STR and the FCM have more
overlap than those predicted by the INCR and the FCM.

Nonetheless, among all the inputs or outputs of a trace, only
the prediction accuracy of those that are used speculatively will
have an impact on performance. In other words, if a given input
or output is already available at the time it is used, or an output
is never utilized, the performance of the processor will be the
same regardless of the result of its prediction. To estimate this

instr in loop traces instr / loop trace

go 44.30 % 40.57

m88ksim 83.00 % 54.26

gcc 54.36 % 32.09

compress 74.99 % 16.19

li 38.82 % 25.87

ijpeg 81.93 % 43.38

perl 52.19 % 50.90

vortex 75.75 % 247.33

AVERAGE 61.73 % 36.13

Table 1: Loop trace statistics.

Figure 4: Predicting register values of loop traces using PC-
indexed predictors: a) trace input values; b) trace
output values.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

HYB-I
HYB-S
INCR
STR
FCM
LV

(a) (b)

effect, we compute the prediction accuracy for those input
values produced by any of the previous 3 traces and those
output values consumed by any of the following 3 traces. We
refer to these values as distance-3 inputs and outputs
respectively.

For distance-3 inputs (see Figure 5.a), the prediction hit rate
diminishes when compared with that of predicting all values (it
goes from 70% for a 64-KB HYB-S predictor as it can be seen
in figure 4.a, to 60%). However, for distance-3 output values
(see Figure 5.b), this trend is reversed. A 64-KB HYB-I
predictor increases the prediction accuracy by 20% when
compared with its accuracy for all outputs.

This is due to the fact that traces have in average more
register outputs than inputs (8.2 vs 5.0), as shown in Figure 6.
However, the average number of distance-3 register outputs is
lower than distance-3 register inputs. The figure also includes
statistics for memory values, showing that the average number
of distance-3 memory inputs and outputs are rather low.

Another remarkable fact is that the INCR predictor
outperforms the STR predictor by about 10% for distance-3
output values. This is explained by the fact that the stride
predictor suffers from interferences from other instructions
with different addresses that write to the same storage location,
as discussed in section 3.2, whereas these interferences are
avoided by a trace-based predictor such as the INCR, even if
the indexing function uses only the instruction address.

As conclusions up to this point, for a speculative
multithreaded architecture based on loop traces, the most
predictable values are trace outputs. Moreover, the INCR
predictor for small sized tables and its hybrid version, the HYB-
I predictor, for larger tables outperform the other value
predictors. An increment predictor can achieve a quite high hit
rate with very small tables (73% for a 1 KB table).

3.4.2. Trace-Based Indexing

For trace-based predictors, the trace identifier can be included
in the indexing function. Figure 7 shows the prediction
accuracy for distance-3 input/output vales. It can be observed
that the hit rate for input values decreases when compared with
PC-based indexing (60% for a 64-KB PC-indexed HYB-S
versus 50% for the trace-indexed version of the same
predictor). However, the performance for output values
increases. Although the INCR predictor obtains a similar
performance (73% hit rate for the whole range of table
capacity), the HYB-I predictor can achieve a 80% hit ratio with
relatively small tables (16 KB in total). This is mainly caused
by the significant performance boost of trace-based indexing
for the FCM predictor, which is due to the benefits of using
different value sequences for different traces.

As conclusions of this analysis on prediction accuracy, the
four selected predictors for a further analysis in the context of a
cycle-based timing simulator are those with the highest
prediction accuracy for a moderate-sized history table (16 KB):
HYB-I, INCR, HYB-S and FCM, with a trace-based indexing
function.

For this four predictors, Figure 8 shows the percentage of
traces whose all distance-3 outputs are correctly predicted. This
gives an estimation of the percentage of traces that can be
executed as if they were parallel. Note that many traces can be
parallelized due to value prediction, even with small predictors
(50% for 1-KB INCR predictor). With large history tables, this
percentage can be as much as 70% (with a HYB-I predictor).

4. Performance Evaluation

In this section, we present performance figures that show the
impact of different value predictors on the performance of a

Figure 5: Predicting distance-3 values of loop traces using
PC-indexed predictors: a) input values; b)
output values.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

p
re

d
ic

ti
on

 a
cc

u
ra

cy

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

p
re

d
ic

ti
on

 a
cc

u
ra

cy

HYB-I
HYB-S
INCR
STR
FCM
LV

(a) (b)

Figure 6: Average number of inputs/outputs and distance-3
inputs/outputs per trace.

all
 in

puts

all
 outputs

dist
an

ce-
3 in

puts

dist
an

ce-
3 outputs

0.0

2.0

4.0

6.0

8.0

10.0

nu
m

be
r o

f v
al

ue
s

memory
register

Figure 7: Predicting distance-3 values of loop traces using
trace-based indexing: a) input values; b) output
values.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

pr
ed

ic
ti

on
 a

cc
ur

ac
y

HYB-I
HYB-S
INCR
STR
FCM
LV

(b)(a)

Figure 8: Percentage of traces that have all their distance-
3 output values correctly predicted.

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
0.0

20.0

40.0

60.0

80.0

100.0

co
rr

ec
tl

y
pr

ed
ic

te
d

lo
op

 tr
ac

es

HYB-I
HYB-S
INCR
FCM

Clustered Speculative Multithreaded processor. The predictors
with most potential according to the analysis of section 3 are
considered: increment (INCR), context-based (FCM), hybrid of
increment and context-based (HYB-I) and hybrid of stride and
context-based (HYB-S). All of them use a trace-based indexing
scheme.

4.1. Experimental Framework

The performance of the value predictors on a Clustered
Speculative Multithreaded processor was evaluated through
timing trace-driven simulation of the SpecInt95 benchmark
suite. The programs were compiled with the Compaq/Alpha
compiler for an AlphaStation 600 5/266 with full optimization
(-O4) and instrumented by means of the Atom tool. They were
run until completion with the train input data sets.

The baseline Clustered Speculative Multithreaded processor
has 4 thread units. The fetch bandwidth of the architecture is up
to 4 instructions per cycle or up to the first taken branch,
whichever is shorter, and the fetch policy for threads with
different control flow is round-robin. The MultiValue cache,
which is responsible of serializing memory-dependent
instructions from different threads, has 128 entries and a 64-KB
non-blocking, 2-way set-associative L1 cache with an 32-byte
block size and up to 4 outstanding misses. The L1 latency is 3
cycles for a hit and 7 for a miss. An ideal L2 cache memory is
considered. The Loop Iteration Table (LIT) has 8 entries and a
perfect trace predictor is assumed. Each thread unit has the
following features: issue up to 4 instructions per cycle, 64-entry
reorder buffer, local 214-entry gshare and the following
funtional units (latency in brackets): 2 simple integer (1), 1
integer multiplication (4), 2 simple FP (4), 1 FP multiplication
(6), and 1 FP division (17).

The size of the value predictors has been approximately
limited to 16 KB. In particular, each table of the FCM predictor
has 1024 entries, while the table of the INCR predictor has
4096 entries. For the hybrid predictors, each table of the HYB-
S predictor has 512 entries, whereas for the HYB-I they have
1024 entries. Note that the size of the INCR predictor could be
significantly reduced without affecting performance, according
to the analysis presented in section 3. Output values are always
predicted, and in case of misprediction, in addition to wait for
the correct value to be produced, a 1-cycle penalty is assumed.

4.2. Performance Figures

Figure 9 shows the instructions committed per cycle (IPC) for
each SpecInt95 benchmark and each value predictor. We can
see that the IPC for the different predictors is correlated with
their prediction accuracy (see Figure 7). The HYB-I predictor
outperforms the others for the whole range of applications.
However, we can see that the differences between the HYB-I
and the INCR predictors are rather low. We can also observe
that the HYB-S predictor does not substantially improve the
performance in comparison with the FCM predictor except for
several benchmarks such as li, ijpeg and perl.

As it was shown in Figure 7, the shape of the curve that plots
prediction accuracy versus table capacity for the INCR
predictor is almost flat beyond 1 KB. In addition, it is much
simpler than the other three predictors. Thus, we can conclude
that the INCR predictor is the most cost-effective predictor.

Figure 10 shows the speed-up achieved by a Clustered
Speculative Multithreaded processor with an increment
predictor against the single-threaded execution of the code. The
maximum performance for a perfect value predictor is also
shown for comparison. Note that the average speed-up is over
40%, which is quite significant for a benchmark suite that is
very hard to parallelize. For ijpeg, which is the program with
more parallelism, the IPC is twice that of a single-threaded
execution. Moreover, the performance provided by the INCR
predictor is close to that of a perfect value predictor. On
average it is just 13% lower and in some programs such as gcc
it is almost the same (just 3% lower).

5. Related Work

Several value predictors have been proposed in the past. The
first proposal was the last value predictor, presented by Lipasti,
Wilkerson and Shen [8]. Afterwards, more complex value
predictors have been proposed such as the stride predictor
[5][12] and the FCM [13] context-based value predictor among
others, and some combinations of them to obtain hybrid value
predictors [18].

These predictors, as well as variations of them, have been
studied for superscalar processors. González and González [6]
pointed out that value prediction had more potential in
multithreaded processors, but they just evaluated a stride
predictor in an ideal machine with unlimited resources in most
of its components.

On the other hand, several works proposing multithreaded
architectures which provide support for speculative threads

Figure 9: IPC for the different value predictors.

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rte

x

Hm
ea

n

SpecInt95

0

2

4

6

8

IP
C

FCM
HYB-S
INCR
HYB-I

Figure 10: Speed-up versus single-thread execution for the
INCR predictor and a perfect predictor.

go

m
88

ks
im gc

c

co
m

pr
es

s li

ijp
eg pe
rl

vo
rte

x

Hm
ea

n

SpecInt95

0

20

40

60

80

Sp
ee

d-
Up

 (%
)

INCR
Perf. Prediction

171% 227%

have recently appeared. Pioneer work on this topic was the
Expandable Split Window paradigm [4] and the follow-up
work on Multiscalar processors [15]. Other proposals are the
SPSM architecture [3], the Superthreaded architecture [17], the
Trace Processor [11], the Clustered Speculative Multithreaded
architecture [9][10] and the Dynamic Multithreaded processor
[1].

The Multiscalar, SPSM and Superthreaded architectures do
not have any mechanism for data value speculation and data
dependences are always enforced by executing the producer
instruction before the consumer one.

The Dynamic Multithreaded, the Clustered Speculative
Multithreaded architectures and Trace Processors provide
support for value speculation. Whereas the mechanism
provided in the Dynamic Multithreaded is very simple since the
register file of the parent is copied into the child register file, the
Trace Processor and the Clustered Speculative Multithreaded
architecture use more complex and suitable predictors like
context-based and the increment.

Moreover, several works have studied the effectiveness of
speculative threads on multiprocessor platforms ([7][16]
among others), but they do not provide any mechanism for
predicting data values.

6. Conclusions

We have studied the performance of value prediction for
speculative multithreaded architectures and have presented a
new value predictor targeted to this type of architectures, which
is referred to as increment predictor. The increment predictor
computes a new value for a trace output as its value at the
beginning of the trace plus an increment.

Experimental results have shown the importance of
choosing the correct values to be predicted. Output trace values
are more predictable than inputs. Moreover, trace-based
indexing outperforms PC-based indexing. We have also shown
that the increment predictor obtains the highest prediction
accuracy with small-sized history tables. This accuracy is
increased for larger history tables by means of a hybrid
predictor that combines an increment and a context-based
predictors. Average accuracy for SpecInt95 ranges from 73% to
84% depending on the capacity of the history table.

A Clustered Speculative Multithreaded processor with a 16-
KB increment predictor achieves an average IPC of 3.61, which
is 9% higher than the IPC of a hybrid stride/context predictor.
The speed-up over a single-threaded execution is over 40%.

We can conclude that predicting the values that flow through
inter-thread dependences is crucial for the performance of
processors that exploit speculative thread-level parallelism.

7. Acknowledgments
This work has been supported by grants CICYT TIC 511/98, ESPRIT
24942 and AP96-52274600. The research described in this paper has
been developed using the resources of the European Center for
Parallelism of Barcelona (CEPBA).

8. References
[1] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading

Processor”, in Proc. of the 31st. Int. Symp. on Microarchitec-
ture, 1998.

[2] B. Calder, G. Reinman and D.M. Tullsen, “Selective Value
Prediction”, in Proc. of the 26th. Int. Symp. on Computer

Architecture, 1999.

[3] P.K. Dubey, K. O’Brien, K.M. O’Brien and C. Barton, “Sin-
gle-Program Speculative Multithreading (SPSM) Architec-
ture: Compiler-Assisted Fine-Grained Multithreading”, in
Proc. of the Int. Conf on Parallel Architectures and Compila-
tion Techniques, pp. 109-121, 1995.

[4] M. Franklin and G. Sohi, “The Expandable Split Window Par-
adigm for Exploiting Fine Grain parallelism”, in Proc. of the
Int. Symp. on Computer Architecture, pp. 58-67, 1992.

[5] F. Gabbay and A. Mendelson, “Speculative Execution Based
on Value Prediction”, Technical Report, Technion, 1997.

[6] J. González and A. González, “Data Value Speculation in
Superscalar Processors”, in Microprocessors and Microsys-
tems, 22(6), pp. 293-302 November 1998

[7] L. Hammond, M. Willey and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor”, in Proc. Int. Conf. on
Architectural Support for Prog. Lang. and Op. Systems, 1998

[8] M.H. Lipasti, C.B. Wilkerson and J.P. Shen, “Value Locality
and Load Value Prediction”, in Proc. of the 7th. Conf. on
Architectural Support for Programming Languages and Oper-
ating Systems, pp. 138-147, Oct. 1996.

[9] P. Marcuello, A. González and J. Tubella, “Speculative Multi-
threaded Processors”, in Proc. of the 12th Int. Conf. on Super-
computing, pp. 77-84, 1998.

[10] P. Marcuello and A. González, “Clustered Speculative Multi-
threaded Processors”, in Proc. of the 13th Int. Conf. on Super-
computing, 1999.

[11] E. Rotenberg, Q. Jacobson, Y. Sazeides and J.E. Smith, “Trace
Processors”, in Proc. of 30th. Int. Symp. on Microarchitecture,
pp. 138-148, 1997.

[12] Y. Sazeides, S. Vassiliadis and J.E. Smith, “The Performance
Potential of Data Dependence Speculation & Collapsing”, in
Proc. of the 29th. Int. Symp on Microarchitecture, Dec. 1996.

[13] Y. Sazeides and J.E. Smith, “Implementations of Context-
Based Value Predictors”, Technical Report #ECE-TR-97-8,
University of Wisconsin-Madison, 1997.

[14] SIA Semiconductor Industry Association, The National Tech-
nology Roadmap for Semiconductors, 1997.

[15] G. Sohi, S.E. Breach and T.N. Vijaykumar, “Multiscalar Pro-
cessors”, in Proc. of Int. Symp. on Computer Architecture, pp.
414-425, 1995.

[16] J. Steffan and T. Mowry, “The Potential of Using Thread-
Level Data Speculation to Facilitate Automatic Paralleliza-
tion”, in Proc. 4th Int. Symp. on High-Performance Computer
Architecture, pp. 2-13, 1998

[17] J.Y. Tsai and P-C. Yew, “The Superthreaded Architecture:
Thread Pipelining with Run-Time Data Dependence Checking
and Control Speculation”, in Proc. of the Int. Conf. on parallel
Architectures and Compilation Techniques, 1996.

[18] K. Wang and M. Franklin, “Highly Accurate Data Value Pre-
diction Using Hybrid Predictors”, in Proc of the 30th Int.
Symp. on Microarchitecture, pp. 281-190, 1997.

[19] D.W. Wall, “Limits of Instruction-Level Parallelism”, Tech.
Report WRL 93/6, Digital Western Research Lab., 1993.

