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Abstract

The release of industrial contaminants into the subsurface has led to a
rapid degradation of groundwater resources. Contamination caused by Dense
Non-Aqueous Phase Liquids (DNAPLs) is particularly severe owing to their
limited solubility, slow dissolution and in many cases high toxicity. A greater
insight into how the DNAPL source zone behavior and the contaminant re-
lease towards the aquifer impact human health risk is crucial for an appropri-
ate risk management. Risk analysis is further complicated by the uncertainty
in aquifer properties and contaminant conditions. This study focuses on the
impact of the DNAPL release mode on the human health risk propagation
along the aquifer under uncertain conditions. Contaminant concentrations
released from the source zone are described using a screening approach with
a set of parameters representing several scenarios of DNAPL architecture.
The uncertainty in the hydraulic properties is systematically accounted for
by high-resolution Monte Carlo simulations. We simulate the release and
the transport of the chlorinated solvent perchloroethylene and its carcino-
genic degradation products in randomly heterogeneous porous media. The
human health risk posed by the chemical mixture of these contaminants is
characterized by the low-order statistics and the probability density function
of common risk metrics. We show that the zone of high risk (hot spot) is
independent of the DNAPL mass release mode, and that the risk amplitude
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is mostly controlled by heterogeneities and by the source zone architecture.
The risk is lower and less uncertain when the source zone is formed mostly
by ganglia than by pools. We also illustrate how the source zone efficiency
(intensity of the water flux crossing the source zone) affects the risk posed by
an exposure to the chemical mixture. Results display that high source zone
efficiencies are counter-intuitively beneficial, decreasing the risk because of
a reduction in the time available for the production of the highly toxic sub-
species.

Keywords: Dense Non-Aqueous Phase Liquids, Source-Zone, Mass Release
Mode, Aquifer heterogeneity, Probabilistic Human Health Risk,
Degradation-related Chemical Mixture

1. Introduction1

Contaminant source zones are often complex and subject to uncertainty.2

The uncertainty arises from our lack of knowledge of the solute distribution3

in the contaminated area and of the volumetric discharge crossing the source4

zone (e.g. Jarsj et al., 2005; Troldborg et al., 2010; Koch and Nowak, 2015).5

It is well known that source zone architecture and the hydraulic conditions in6

its vicinity have a significant impact on the down-gradient solute transport7

(de Barros and Nowak, 2010; Brusseau, 2013). Understanding the release8

conditions of a contaminant into the subsurface and how it affects the po-9

tential exposure of humans to noxious chemicals is essential for an accurate10

polluted groundwater management.11

In this paper, we focus on the effects of Dense Non-Aqueous Phase Liquids12

(DNAPLs) source characterization on transport and related human health13

risk propagation into heterogeneous porous media. Subsurface contamina-14

tion by Dense Non-Aqueous Phase Liquids (DNAPLs) constitutes a major15

environmental issue given its frequency and the spatiotemporal complexity16

of its transfer into the groundwater (Cohen and Mercer, 1993). DNAPLs are17

quasi-immiscible fluids with a density exceeding that of water. These specific18

properties are often synonymous with a slow release of mass into the aquifer19

due mainly to a slow dissolution process. The rate of mass transferred from20

a source zone into the solute plume is controlled by a complex set of param-21

eters, such as the specific chemico-physical characteristics of the DNAPL,22

the heterogeneity in the local water flux and the DNAPL spatial distribution23

and saturation (Pankow and Cherry, 1996; Brusseau, 2013).24
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The spatiotemporal behavior of DNAPL mass discharge has been doc-25

umented and different approaches have been adopted to link source zone26

architecture metrics to mass discharge behavior (e.g. Fure et al., 2006; Page27

et al., 2007; Liu et al., 2014). Because of the multiprocess nature of DNAPL28

problems, complex multi-phase numerical methods are commonly used to29

simulate the dissolution of DNAPL and the intensity of its release into the30

groundwater (Abriola and Pinder, 1985; Kueper et al., 1989; Kokkinaki et al.,31

2013; Koch and Nowak, 2015). However, their application has been limited32

to purely theoretical purposes because of their computational cost associated33

with complex non-linear equations and the need for a fine characterization of34

the source zone spatial variability. From a practical point of view, it is help-35

ful to make use of the low computational cost of integrative and empirical36

upscaled mass transfer relationship tested in the literature (Rao et al., 2001;37

Rao and Jawitz, 2003; Parker and Park, 2004; Zhu and Sykes, 2004; DiFil-38

ippo and Brusseau, 2008; Kokkinaki et al., 2014). These methods highlight39

the main characteristics of DNAPL mass discharge by linking the DNAPL40

source strength to the DNAPL mass remaining in the source zone (Falta41

et al., 2005). The simplicity of this approach lies in the conceptualization42

of the source zone as a control plane from which the temporal evolution of43

the contaminant fluxes is simulated using integrative parameters in line with44

the architecture of the DNAPL. Moreover, in accordance with Soga et al.45

(2004), this screening approach seems to be more suited to evaluating the46

risk down-gradient when compared with a management strategy based on47

source zone monitoring.48

DNAPLs are in most cases chemically complex industrial compounds that49

cause proven or suspected deterioration of human metabolisms (Pankow and50

Cherry, 1996). The specific risk management related to this type of subsur-51

face contamination demands the evaluation of their consequences on health.52

The management of contaminated aquifers is often based on maintaining an53

estimated risk to health below an acceptable or legally mandatory thresh-54

old. However, subsurface pollution, because of its multi-parameter nature, is55

complex to characterize and is markedly affected by several sources of uncer-56

tainty. Probabilistic risk assessment methods for groundwater contamination57

incorporate hydrogeological uncertainty in the threat quantification (e.g. An-58

dričević and Cvetković, 1996; Maxwell and Kastenberg, 1999; de Barros and59

Rubin, 2008; Andricevic et al., 2012; Tartakovsky, 2013). This constitutes a60

robust support for risk assessors, i.e. (1) to quantify the aquifer locations and61

temporal windows where the risk to health is mostly expected to exceed a reg-62
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ulatory threshold (Tartakosky, 2007; Henri et al., 2015); (2) to optimize the63

location of necessary monitoring intensification (James and Gorelick, 1994;64

Maxwell and Kastenberg, 1999; Fernàndez-Garcia et al., 2012); and (3) to op-65

timize the allocation of resources for uncertainty reduction (de Barros et al.,66

2009). The impact of chemical reactions on the risk to health has recently67

been assessed (Benekos et al., 2006; Siirila and Maxwell, 2012; Atchley et al.,68

2013; Henri et al., 2015). However, the influence of source zone behaviors on69

health risk propagation remains to be investigated in depth. The works of70

de Barros and Nowak (2010) and Troldborg et al. (2010) have established a71

strong correlation between the mode of the source zone release condition and72

the uncertainty of plume predictions. Henri et al. (2015) showed furthermore73

that mass injection modes have a significant effect on human health risk es-74

timations. There is therefore a need to allocate research efforts to improve75

our understanding of the significance of source zone release conditions on the76

risk to human health.77

Our work seeks to characterize the impact of DNAPL mass release on the78

spatiotemporal evolution of the threat to health expressed in terms of the79

most frequently used risk metrics. To this end, a consequent computational80

effort was produced to simulate the transfer, transport and fate of a DNAPL81

into a finely discretized three-dimensional aquifer. Furthermore, we utilized a82

stochastic framework to incorporate the effects of uncertainty in the hydraulic83

properties of the aquifer. Sections 2 and 3 detail, respectively, the problem84

and the methods adopted to solve the reactive transport and to simulate the85

DNAPL mass release. Section 4 analyzes the impact of the DNAPL mass86

release on the human health risk through the spatial characterization of its87

lower-order statistics and probability density functions. To conclude, we show88

that the water flux crossing the source zone exerts a strong influence on the89

effective health risk due to a mixture of interdependent reactive chemicals.90

2. Problem Statement91

The study focuses on a subsurface contamination by the chlorinated sol-92

vent perchloroethylene (PCE), a well-known DNAPL that is responsible for93

considerable groundwater contamination in industrialized societies (Fay and94

Mumtaz, 1996; McGuire et al., 2004). The chlorinated solvent is origi-95

nally trapped and is dissolved and transferred into the aquifer from a source96

zone. Interestingly, the solute form of PCE initiates a successive dechlorina-97

tion under the anaerobic conditions assumed in our synthetic aquifer (Jain98

4



and Criddle, 1995; McCarty, 1997). This will lead to the formation of the99

degradation product trichloroethylene (TCE), which will be transformed into100

dichloroethylene (DCE), which will be successively reduced into vinyl chloride101

(VC), which will finally lose the remaining chloride atom to become the non-102

toxic ethene. The decontamination of the site is then achieved when the re-103

ductive dechlorination chain is completed. However, the parent species PCE104

and its three sub-products TCE, DCE and VC present a potential risk to hu-105

man health that needs to be monitored (Environmantal Protection Agency,106

1997). PCE, TCE and DCE are indeed suspected of being carcinogenic and107

VC is a confirmed carcinogenic agent. When dechlorination is initiated, the108

parent and daughter species form a chemical mixture composed of chemicals109

with different toxicities (Environmantal Protection Agency, 2000). The risk110

management of the contaminated aquifer must therefore consider the spa-111

tiotemporal behavior of the four compounds that can be simulated under112

the form of the sequential reaction PCE → TCE → DCE → VC → ethene.113

The potential risk to human health due to this chemical mixture (effective114

risk) was characterized statistically and accounts for uncertainties in the hy-115

draulic conductivity fields through a Monte Carlo scheme. This probabilistic116

approach of human health risk estimation was adopted for different modes117

of DNAPL mass release.118

2.1. Flow and Reactive-Transport Model119

In this paper, we modeled flow and reactive transport numerically. We120

considered a three-dimensional (3D) confined aquifer. The flow in the syn-121

thetic aquifer was constrained by a constant head at the longitudinal ends,122

and no-flow at the top and bottom of the domain. Steady state flow con-123

ditions were assumed. The spatially variable 3D flow field was solved by124

applying Darcy’s law:125

q(x) = −K(x)∇h(x), (1)

where q [m d−1] is the specific discharge, h [m] is the hydraulic head and K126

[m d−1] is the locally isotropic hydraulic conductivity at the given location127

x. The spatial variability of K, consequently the specific discharge, was128

regarded as uncertain.129

The sequential reductive dechlorination of the solvents PCE, TCE, DCE130

and VC was approximated by a serial first-order decay reaction network131

(Clement, 2001; Cunningham and Mendoza-Sanchez, 2006). Earlier research132

has shown that this system is able to approximate more complex biodegra-133

dation models such as the Michaelis-Menten model when concentrations are134
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lower than the Michaelis-Menten rate. The serial network can be mathemat-135

ically expressed by the following system of partial differential equations136

φR1
∂C1

∂t
−∇ · (φD∇C1) +∇ · (qC1) = −k1φC1 + s(x, t),

φRi
∂Ci
∂t
−∇ · (φD∇Ci) +∇ · (qCi) = yiki−1φCi−1 − kiφCi, ∀i = 2, 3, 4,

(2)
where φ is the porosity, and D [m2 d−1] is the hydrodynamic dispersion137

tensor. For each species i (i=1:PCE; i=2:TCE; i=3:DCE and i=4:VC), Ri138

[−] is the retardation factor, Ci [g.m−3] is the resident concentration in the139

liquid phase, ki [d−1] is the first-order decay rate constant, and yij [mol.mol−1]140

is the effective yield coefficient for any reactant or product pair, i.e. the ratio141

of mass of species i generated to the amount of mass of species j consumed.142

Sorption reactions were assumed to be in local equilibrium and to follow143

a linear sorption isotherm. The concentration temporal evolution of the144

parent species PCE is affected by a degradation term (decay) and by the145

source term s(x, t) [g·m−3·d−1], reflecting the mass of dissolved contaminant146

released from the source zone. This source dissolution rate can be derived147

from cs, the concentration of the released contaminant (here PCE) as148

s(x, t) = qszcs(t)δ(x− xinj)Ω(x ∈ Asz), (3)

where qsz = Qsz/Asz, when Qsz is the total flow passing through the source149

zone area Asz. Ω(x ∈ Asz) is a binary indicator function that equals one if150

x ∈ Asz and zero otherwise. In case of DNAPL contamination, the key point151

of a good predictive model is to accurately represent the source dissolution152

rate cs(t).153

2.2. DNAPL Mass Release Models154

As mentioned in the introduction, the intrinsic complexity of the spa-155

tiotemporal behavior of DNAPLs mass depletion can be conceptualized by156

diverse methods. In this study, we used upscaled models to simulate to de-157

pletion of PCE. These methods simplify the complex joint interplay between158

aquifer and source architecture, flow velocity and mass flux by assuming a159

complete mixing of the DNAPL plume leaving the downstream edge of the160

source zone. By their conceptual simplicity and low computational cost, up-161

scaled models represent a practical alternative to computationally demanding162

multiphase and more finely resolved models (e.g. Koch and Nowak, 2015).163
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A simple mass transfer model. We made first use of the commonly employed164

power law empirical model proposed by Rao et al. (2001) and Parker and Park165

(2004). This method describes the temporal evolution of the normalized flux-166

averaged concentrations of the contaminant leaving a control plane located167

at the edge of the source zone as a power law of the normalized mass of168

DNAPL remaining in the source zone (see Figure 1). Mathematically, this is169

expressed as:170

cs(t)

c0

=

(
m(t)

m0

)Γ

, (4)

where c0 is the initial flux-averaged concentration of the released contami-171

nant (here PCE), m is the mass of DNAPL remaining in the source zone172

with initial value m0. The temporal evolution of the DNAPL discharge in173

the aquifer is controlled by the empirical power exponent Γ. This integrative174

exponent reflects the shape of the source discharge response to a changing175

source mass, which is controlled by the DNAPL architecture, the heterogene-176

ity of the flow field and by the correlation between heterogeneity and DNAPL177

saturation (Rao and Jawitz, 2003). Typically, a Γ lower than one is related to178

a source discharge increasing rapidly for small increases in the source mass.179

This large initial mass transfer is characteristic of the prominence of pool and180

lenses in the DNAPL source zone. By contrast, a Γ larger than one demands181

a large decrease in mass to significantly increase the source concentration,182

which reflects the prominence of finger or ganglia characterized by a small183

initial mass transfer coefficient.184

For a flow rate passing through the source zone assumed to be constant,185

the time dependence of the source concentration can be expressed as (Falta186

et al., 2005):187

cs(t) =
c0

mΓ
0

{
−Qszc0

λsmΓ
0

+

(
m1−Γ

0 +
Qszc0

λsmΓ
0

)
e(Γ−1)λst

} Γ
1−Γ

, (5)

where λs is the biodegradation rate observed in the source zone.188

A two-domain mass transfer model. Field experiments have shown that the189

prior conceptualization of the source zone by either pool or ganglia can be190

oversimplified and inaccurate (Anderson et al., 1992; Sale and McWhorter,191

2001). Indeed, in many cases the two kinds of DNAPL architecture may be192

present in the source zone and may significantly affect the contaminant mass193
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transfer into the solute plume. A more appropriate mixture of low saturation194

ganglia and high-saturation pools would lead to (1) an intense mass release195

at short times due to the characteristic high initial mass transfer of pools and196

(2) to a subsequent mass release of moderate intensity due to the presence197

of ganglia. As introduced by Christ et al. (2010), this particular behavior198

can be conceptualized by a two-domain style model. The respective source199

concentration related to both ganglia and pool in the source zone is expressed200

as201

c
(g)
s (t)

c
(g)
0

=

(
m(g)(t)

m
(g)
0

)Γg

, and
c

(p)
s (t)

c
(p)
0

=

(
m(p)(t)

m
(p)
0

)Γp

, (6)

where the superscript (g) and (p) of the source flux-averaged concentration202

(cs), remaining masses (m), and power law exponent (Γ) refer, respectively,203

to the ganglia and pools.204

The relative mass leaving the source due to pools and ganglia is mainly205

controlled by the proportion of water flux crossing the two types of DNAPL206

architecture. The effective source concentration will evolve in time following:207

cs(t) =
Q

(g)
sz c

(g)
s +Q

(p)
sz c

(p)
s

Q
(g)
sz +Q

(p)
sz

, (7)

where Q
(g)
sz and Q

(p)
sz are the flow passing through the ganglia and pools form-208

ing the source zone area (i.e., Qsz = Q
(g)
sz + Q

(p)
sz ). Thus, the source concen-209

tration can be expressed as a function of the fraction of pool (fp) and ganglia210

(fg) within the source zone:211

cs(t) ≈ c(g)
s fg + c(p)

s fp, (8)

where fp + fg = 1.212

While conceptualizing the source zone as a mixture of pools and ganglia,213

it is useful to express the fraction of pool and ganglia in the source zone in214

terms of their ratio, i.e. GTP ≡ fg/fp = fg/(1 − fg) (Christ et al., 2005).215

The temporal evolution of the source concentration (8) is then expressed as216

a function of a single metric by:217

cs(t) ≈
c

(g)
s GTP + c

(p)
s

GTP + 1
. (9)
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2.3. Human Health Risk Metrics218

Stake-holders and regulators often base remediation monitoring and pop-219

ulation protection on maintaining the estimated risk below a threshold with220

respect to the metric used. We analyzed two frequently employed metrics221

for decision making: (1) the Increased lifetime Cancer Risk (ILCR), and (2)222

the exceedance of Maximum Contaminant Levels (MCL). As explained in223

de Barros et al. (2012), multiple risk metrics are needed to better inform224

decision makers and define clean-up strategies.225

ILCR for an Exposure to a Chemical Mixture. This work seeks to quantify226

the risk of cancer from a long-term exposure to the mixture of chlorinated227

solvents along the contaminated aquifer after a DNAPL spill and reactive228

transport within a heterogeneous aquifer. The threat to human health was229

evaluated from the temporal evolution of the contamination concentrations230

through integrated breakthrough curves obtained at a series of control planes231

at different longitudinal distances from the source zone. The quantification232

of the human health risk follows the guidance of the Environmantal Protec-233

tion Agency (1989) that describes the carcinogenic health risk as a stochastic234

Poisson model for individual cancer occurrence. Our analysis focuses exclu-235

sively on the effective threat posed by exposure to the chemical mixture of236

chlorinated solvents (RT) that can be approximated by a simple addition of237

the individual cancer risk associated with each of these compounds (PCE,238

TCE, DCE and VC) (Speek, 1981), i.e.239

RT(x) =
4∑
i=1

Ri(x). (10)

where Ri(x) is the incremental lifetime cancer risk (ILCR) due to the expo-240

sure to the chemical i at a given longitudinal position of the control plane x.241

The individual ILCR due to the ingestion pathway is given mathematically242

by243

Ri(x) = 1− exp[−ADDi(x)× CPFi]. (11)

The ILCR considers the toxicity of the contaminant i through the metab-244

olized cancer potency factor CPFi [kg d/mg], and the exposure by direct245

ingestion of the contaminant i through the average daily dose ADDi [mg/(kg246

d)], given by247

ADDi(x) = c̄i(x)

[
IR

BW

]
ED × EF

AT
, (12)

9



where IR is the ingestion rate of water [L/d], BW is the body weight [kg],248

AT is the expected lifetime [d], ED is the exposure duration [y], and EF249

is the daily exposure frequency [d/y]. We assume these behavioral and ex-250

posure parameters to be constant and define them in Table 1. We focused251

more specifically on c̄i [mg/L], the critical (flux-averaged) concentration of252

the pollutant i. This key factor of the average daily dose can be regarded253

as a critical maximum running averaged concentration of the concentration254

breakthrough curve obtained at the control plane located in x over the expo-255

sure duration ED (Maxwell and Kastenberg, 1999). Formally, c̄i is estimated256

by257

c̄i(x) = max
t>0

{
1

ED

∫ t+ED

t

ci(τ ;x)dτ

}
. (13)

In case of uncertain hydraulic properties of the aquifer, c̄i is described as258

a random function that controls the resulting ILCR distribution.259

Exceedance of MCLs. When the quantification of the risk of cancer occur-260

rence is not mandatory, stake-holders can base the remediation effort on261

maintaining concentrations below MCLs, i.e. the legal threshold limit of262

a contaminant concentration permitted in groundwater intended for human263

consumption. Under uncertain conditions, the monitoring of the threshold264

satisfaction is described stochastically through the estimation of the proba-265

bility to exceed the MCLs associated with the chemical species i, i.e.266

ξci(x, t) = Prob[ci(t, x) > MCLi]. (14)

One of the main goals of the risk assessor is to locate areas of elevated risk.267

These areas will be denoted as hot spots. While the ILCR is a temporally268

integrative metric (see eqs. (10)-(13)), ξci preserves the temporal dynamics269

of the problem. In this case, a hot spot will indicate the longitudinal interval270

in which the probability of exceedance reaches a large value at a given time.271

In addition, we define the temporal windows of persistence of the elevated272

exceedance values as hot moments.273

The statistical analysis of the two human health risk metrics spatial (for274

RT) and spatiotemporal (for ξci) propagation was performed for a set of275

scenarios. This allowed us to study the joined impact of (1) the degree of276

heterogeneity in the uncertain hydraulic conductivity field, (2) the presence277

of reactive toxic daughter products and (3) the DNAPL source zone discharge278

behavior.279
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3. Methodology280

Stochastic Framework. The uncertainty in the hydraulic conductivity was281

considered through a stochastic framework, with the K-field regarded as a282

random space function. The stochastic estimation of the human health risk283

has been evaluated using analytical methods in order to consider uncertain284

hydrogeological characteristics (e.g., Andričević and Cvetković, 1996; de Bar-285

ros and Rubin, 2008; de Barros and Fiori, 2014). However, no existing ana-286

lytical approach is applicable to reactive chemical mixtures in highly hetero-287

geneous 3D aquifers. In the present study, human health risk was evaluated288

through numerical Monte Carlo simulations. This enabled us to characterize289

the ILCR by its statistical moments and probability density functions (pdf s),290

and the determination of the exceedance of MCLs in a probabilistic manner.291

Random Hydraulic Conductivity Field. The spatial structure of the log-conductivity,292

Y (x) = lnK(x), was described by its random space function. Without loss of293

generality, the Y -field follows a multi-Gaussian random space function model294

with an isotropic Gaussian covariance function characterized by a zero mean295

and an integral scale λ of 14.18 m. The impact of the degree of heterogeneity296

was investigated considering four variances of Y : σ2
Y = {1.0, 2.0, 4.0, 8.0}.297

We generated 500 Y-fields to be used in the Monte Carlo framework. The298

3D aquifer was conceptualized by a rectangular prism with length Lx = 1600299

m, width Ly = 800 m, and height Lz = 400 m. The domain was finely dis-300

cretized into 8 million cells, (400 × 200 × 100), each cell being a cube of 64301

m3 (4.0× 4.0× 4.0 m). The steady state flow was assumed to be driven by302

a mean horizontal hydraulic gradient of 0.07. See Table 2.303

Flow and Reactive Transport. For each of the 500 stochastically pre-generated304

equiprobable Y -fields, the Monte Carlo scheme consisted of three main steps:305

(1) solving the flow problem; (2) solving the reactive-transport problem (Eq.306

2); and (3) estimating the corresponding RT and spatiotemporal windows of307

exceedance of the MCLs. The flow equation (Eq. 1) was solved by means308

of the finite difference code MODFLOW (Harbaugh et al., 2000). The309

reactive-transport of the four reactive compounds PCE, TCE, DCE and VC310

was then solved making use of the efficient random-walk particle-tracking311

code rw3d developed by Fernàndez-Garcia et al. (2005) and subsequently312

adapted to first-order decay network simulation by Henri and Fernàndez-313

Garcia (2014).314
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The numerical method splits the reactive plumes into a large number of315

moving particles. Each particle is associated with a species state that evolves316

in time in accordance with the biochemical conditions. It uses the velocity317

field previously resolved to advectically move particles, and disturbs the mo-318

tion by a random displacement in order to simulate dispersion (Salamon319

et al., 2006). Henri and Fernàndez-Garcia (2014) contains more information320

on numerical details, model efficiency and accuracy. Transport was controlled321

by a spatially homogeneous porosity φ of 0.3 and a longitudinal, horizontal322

transverse and vertical transverse dispersivity of 0.4 m, 0.04 m and 0.01 m,323

respectively (Table 2). Our selected values for the reaction rates (ki) are324

within the range of first-order decay rates recorded by the (Environman-325

tal Protection Agency, 1999). The retardation factors were chosen according326

to the differences in mobility between the four chlorinated solvents (Lu et al.,327

2011) (see Table 3).328

Source Zone. A large number of PCE particles (105) was uniformly and in-329

stantaneously released from a rectangular 2D source area Asz of dimension330

6.8λ × 3.4λ (in the y-z plane). This source area is perpendicular to the331

mean flow. From this pulse injection, the first arrival time of particles pass-332

ing through a set of control planes were recorded to estimate cumulative333

breakthrough curves of the flux-averaged concentrations, chi (t;x).334

The flux-averaged concentrations resulting from the release of DNAPL335

expressed in (Eq. 5) were simulated using the principle of superposition that336

states that337

ci(t;x) =

∫ t

0

cs(τ)cδi (t− τ ;x)dτ, (15)

where cδi is the Dirac-input solution of the flux-averaged concentrations for
species i. For numerical purposes, the source term can be discretized in step
functions to give

cs(t) = c0H(t) +
∑
j=1

∆cs,jH(t− tj),

when ∆cs,j = cs,j − cs,j−1 and H(t) is the Heaviside step function. The prin-338

ciple of superposition (Eq. 15) can now be written in terms of the estimated339

cumulative breakthrough curves as340

ci(t;x) = c0c
h
i (t;x) +

tj<t∑
j=1

∆cs,jc
h
i (t− tj;x). (16)
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The initial concentration of PCE in the source zone was fixed at 0.1 g.m3,341

for an initial total mass of 300 kg. Moreover, the chlorinated solvent was342

affected by an in-situ biodegradation fixed at the rate of 5×10−5 d−1. Source343

zone parameters are shown in Table 4. The paper analyzes the human health344

risk sensitivity to the power exponent of the mass transfer model (Eq. 4) and345

to the fraction of ganglia and pools in the two-domain mass transfer model346

(Eq. 6). The impact of these two parameters on the source concentration is347

shown in Figure 2.348

4. Statistical Assessment of the Impact of the DNAPL Mass Re-349

lease on the Human Health Risk350

Results from the simulations are displayed in this section with regard to
the following organization: First, the observed impact of the power expo-
nent of the DNAPL source-zone mass-transfer model (reflecting the DNAPL
architecture) is shown both on the probability of exceedence of the MCLs
(in section 4.1) and on the expected value and the pdf of the total ILCR
(in section 4.2). Secondly, the potential impact of a two-domain style mass
release model (Eq. 8) on the total ILCR is described (in section 4.3). Results
are presented in terms of dimensionless spatial and temporal variables. We
normalize the longitudinal distance from the injection by the integral scale
as

ζ =
x− xinj

λ
,

and the elapsed time by an approximate advective time needed to travel an
integral scale, i.e.

τ =
tKG J

λφ
,

where KG is the geometric mean of the hydraulic conductivity and J is the351

hydraulic gradient.352

4.1. Impact of a Power Mass Transfer on the Probabilities to Exceed MCLs353

The first risk metric that we analyze is the probability of exceedence of354

the Maximum Concentration Levels, i.e. ξci(x; t) = Prob[ci(t;x) > MCLi].355

The hot spots e.g. spatial ranges in which high values of ξci are predicted356

and their temporal persistence (hot moments) are identified through a use-357

ful visualization tool introduced in Henri et al. (2015). Hot spots and hot358

moments are shown in Figures 3 and 4. This visualization tool displays the359
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spatiotemporal propagation of the risk by contour-mapping ξci with the nor-360

malized longitudinal distances in the horizontal-axis and the normalized time361

in vertical-axis.362

It should be noted that despite the lower concentrations expected for the363

last subspecies of the reaction chain, the probability that VC concentrations364

exceed the MCL is high over a considerable distance and period of time (see365

Figures 3 and 4, frames d,h,l) because of the low concentration regulatory366

threshold. Results show that the DNAPL source zone architecture (or power367

exponent of mass-transfer) exerts a significant influence on the magnitude of368

the probability of exceedance for any species of the mixture. An increase in369

the power exponent (Γ) is translated into a reduction of the global threat370

where hot spots are less spread and hot moments are less persistent. In other371

words, an underestimation of the pooling process of the DNAPL (increased372

Γ exponent) in the source zone leads to an underestimation of the threat373

posed by the contamination. It is interesting to note that despite a change374

in the risk amplitude the location of the peak of ξci appears to be retained375

for all Γ values.376

As expected, and as shown in Henri et al. (2015), the degree of hetero-377

geneity in K plays a major role in risk dilution. Comparison between Figures378

3 and 4 illustrates how ξci(ζ; τ) varies from a mildly (σ2
Y = 1.0) to a highly379

heterogeneous (σ2
Y = 4.0) Y -field. It may be observed that the magnitude of380

ξci decreases when σ2
Y increases due to the interplay between heterogeneity381

and dilution. However, in this scenario, a non-negligible risk is observed over382

a large portion of aquifer due to an increased macrodispersion effect. We383

note the importance of capturing low ξci values since they correspond to rare384

events. In other words, hot spots are wider and hot moments are longer for385

a low degree of heterogeneity, but this intense and spatiotemporally focused386

risk becomes rapidly negligible when the plume moves downstream of the hot387

spots.388

4.2. Impact of a Power Mass Transfer on the Total ILCR389

Expected Total ILCR. Let us now focus on the second risk metric: the In-390

crease Life Time Cancer Risk, with effective value RT. For the record, the391

ILCR is a temporally integrative risk metric, i.e. only its spatial propagation392

is analyzed. Figure 5 displays the evolution of the expected (i.e., ensemble393

average of the) total ILCR along the aquifer longitudinal profile as a result394

of the simulations with σ2
Y of 1.0 and 4.0 and using a set of 16 Γ values395

ranging from 0.25 to 4.0. Moreover, the profile of RT is shown for a temporal396
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evolution of the DNAPL source zone concentrations following a Heaviside397

step function, i.e. cs(t) = c0 until the exhaustion of the initial mass. Note398

that this Heaviside function can be regarded as a result of the power mass399

depletion model with a Γ exponent tending to 0.400

The longitudinal profile of the expected RT displays a two-phase (first401

ascending and then descending) behavior characteristic of a chemical mix-402

ture with subproducts presenting a higher toxicity than the parent species403

(see Figure 5). The total ILCR increases first in the subspecies zones of pro-404

duction, reaches a peak when the rate production/destruction is similar, and405

then decreases when the toxic subspecies are mostly destroyed (see Henri406

et al. (2015)). Regardless of the degree of heterogeneity in the flow field,407

the mass release coefficient Γ is shown to control the amplitude of the total408

risk (compare frames a and b of the Figure 5). Here again, the presence of409

ganglia (increased Γ) is shown to be beneficial by decreasing the amplitude of410

the total risk signal along the aquifer profile. In global terms, increasing the411

degree of heterogeneity in the hydraulic conductivity field tends to decrease412

this magnitude of the threat.413

On the other hand, it is interesting to observe that the exponent Γ does414

not have an impact on the critical distance xc, i.e. the distance from the415

injection where the maximum risk is observed (hot spot). As shown in Henri416

et al. (2015), for a first-order decay network, the peak of expected total417

ILCR is predictable when a predefined toxicity-based Damköhler number418

(DR) reaches 1. This useful metric is defined as the ratio between t̄, the419

average time needed for a conservative tracer to reach an environmentally420

sensitive location, and t̄c, a mean arrival time needed for a tracer to attain421

the critical distance (where the total ILCR is expected to reach a maximum422

value), i.e.423

DR =
t̄

t̄c
. (17)

The critical time t̄c depends on risk parameters (toxicity, exposure du-424

ration and frequency, physiological properties in individuals) and reaction425

parameters (decay, retardation) and can be evaluated analytically, as426

t̄c = arg max

{
IR× ED × EF
BW × AT

4∑
i=1

4∑
j=1

CPFi Sije
−kj t̄Re

i (t̄)/RjS−1
j1

}
, (18)

where Re
i is a time dependent effective retardation factor related to a species427

transition PCE→ species i, and S is a matrix composed of the eigenvalues of428
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a predefined reaction matrix. Readers are referred to Henri and Fernàndez-429

Garcia (2014) for more information on the analytical expression of effective430

retardation factors and eigensystems of serial reaction systems.431

As stated in Henri et al. (2015), the critical distance and time t̄c can be432

solved from a Dirac-input source (or pulse injection) as the source term is433

assumed not to affect the critical distance. This statement is confirmed by the434

present results. The expected value of the toxicity-based Damköhler number435

corresponding to the control plane located at the x position is shown in the436

upper axis of Figure 5. It may be observed that the peak of the expected437

total ILCR is reached when DR approaches 1, which is independent of the438

value given to σ2
Y or to the PCE mass transfer power exponent Γ.439

Scaling Factor. When the ascending and descending phases of the risk signal440

along the aquifer longitudinal profile are explained (and even well predicted)441

by the biochemical and toxicological conditions, the changes of amplitude442

seem to be a more complex phenomenon depending inter alia on the mass443

depletion mode (Γ) and on the degree of heterogeneity in the flow field. The444

dependence of the total ILCR amplitude on the DNAPL mass release mode445

can be investigated by observing the scaling factor (χ) between R
(H)
T , the total446

ILCR value obtained for a mass release following a Heaviside step function447

(Γ ≈ 0), and R
(Γ)
T , the total ILCR value obtained for a given mass depletion448

power exponent, i.e.449

χ =
RT

(H)

RT
(Γ)
. (19)

The Heaviside function is an easily conceptualized model to describe the450

temporal evolution of the source zone concentration that produces the highest451

cancer risk values (“worst-case scenario”) owing to the release of mass at452

constant maximum rate until the exhaustion of the initial mass.453

Interestingly, χ seems to be relatively constant all along the aquifer lon-454

gitudinal profile. The scaling factor is calculated for each simulation. Figure455

6 shows its ensemble mean (frame a) and coefficient of variation (frame b) as456

a function of the source discharge for different variances of the Y -field. The457

more the power exponent of the mass transfer model increases, the more the458

total ILCR deviates from the risk signal obtained for a step injection mode.459

Figure 6b depicts a lower variability over all realizations of the scaling factor460

for high Γ values. On the other hand, the sensitivity of the scaling factor461

to the source zone mass release decreases with the degree of heterogeneity.462
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These observations can be expressed by the following regression model ob-463

tained over all realizations with equal σ2
Y464

χ = a1Γ + a2(exp(−Γ/a3)− 1) + ε, (20)

where a1, a2 and a3 are fitting parameters depending on σ2
Y , and ε reflects465

the perturbation around the mean behavior. This dependence is illustrated466

in Figure 6c. The same Figure 6c shows that the coefficient of determination467

of the regression r2 decreases with the degree of heterogeneity, but remains468

acceptable in all cases (> 0.6). Interestingly, the regression model fits per-469

fectly (i.e.,r2 = 1) the ensemble mean behavior, which reflects a symmetrical470

disturbance ε around the mean. Moreover, note that the relationship be-471

tween χ and Γ follows a simple linear regression model: χ = aΓ− b+ ε when472

Γ > 1 (ganglia).473

Probability Density Functions of RT. The total risk is now characterized by474

its empirical pdf s for a set of mass depletion exponents and two different de-475

grees of heterogeneity (σ2
Y = 1.0 and 4.0) at three normalized distances from476

the source zone (ζ = 3.5, 25.0 and 60.0) as shown in Figure 7. The positive477

skewness observed near the source zone (Figure 7a,d) is a typical asymmetry478

of total risk pdf s in case of chemical mixtures. This is caused by the high479

probability of occurrence of arrival times lower than the characteristic time480

required for the production of the highly toxic subspecies at short distances481

(Henri et al., 2015).482

More importantly, the results depicted in Figure 7 demonstrates the sub-483

stantial impact of the source zone architecture on the risk-pdf s shape. The484

presence of pools in the source zone (low Γ exponents) tends to stretch the485

pdf s, increasing both the mean and the variance of the risk distribution. This486

effect seems more pronounced at mid-distance (around ζ = 25), where total487

ILCRs are the highest (Figure 7b,e). These observations are true for both488

degrees of heterogeneity in the K-field. The global impact of σ2
Y produces489

an increase in the dilution of the risk, i.e. an apparent increase in the total490

risk variance (compare frames a-c and d-f in Figure 7).491

4.3. Impact of a Two-Domain Style Mass Release Model on the Total ILCR492

Expected RT. Next, we focus on the second mass depletion model accounting493

for the presence of both ganglia and pools in the source zone (eq. 6 in494

subsection 2.2). Figure 8 shows the effect of applying different fractions of495

ganglia (fg) on the propagation of the expected total ILCR along the aquifer496
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longitudinal profile. Typically, by increasing fg, the total risk moves linearly497

from the risk signal corresponding to the sole presence of pools (R
(Γg)
T ) in the498

source zone to the risk signal corresponding to the sole presence of ganglia499

(R
(Γp)
T ). The following simple additive relation is then observed:500

RT = R
(Γg)
T fg + R

(Γp)
T fp. (21)

Using this relation, a large number of ganglia/pool fractions can be tested501

without significant computational cost when R
(Γg)
T and R

(Γp)
T are known.502

Ganglia to Pool Ratio and Probability Density Functions of RT. This useful503

observation (eq. 21) allows us to easily translate the expression of ganglia504

and pool fractions in terms of the more concise ganglia to pool (GTP) ratio505

from the pre-estimation of R
(Γg)
T and R

(Γp)
T . Figure 9 shows the impact of506

the GTP ratio on the total risk pdf s. The more the GTP ratio tends to507

zero (i.e., the sole presence of pools in the source zone), the more the typical508

pdf s asymmetry is accentuated, with an increased tailing towards high risk509

values, especially near the source zone (Figure 9d). Once more, this spreading510

phenomenon is logically exaggerated by the heterogeneity in the flow field.511

The GTP ratio can be treated as a random variable owing to the low512

computational cost of a total risk profile evaluation while using the linear513

relation expressed in Eq. 21. A total of 105 random values of GTP ratio514

were therefore randomly generated from a normal and a uniform distribution,515

both using a mean of 5.0. Figure 10 displays the resulting total risk pdf s.516

The randomization of the ganglia to pool ratio does not seem to have an517

impact on risk distributions, adding a simple noise around the mean risk.518

5. Source Zone Efficiency519

The above results highlight the temporal evolution of the contaminant520

mass release as a clear controlling factor of the human health risk. However,521

the source zone characterization involves additional complex processes such522

as the hydraulic conditions in its vicinity. In this section we investigate the523

potential impact of the water flux passing through the source zone. For each524

realization ir, we defined the corresponding source zone efficiency ηir as the525

ratio between the volumetric water flux crossing the source zone Qsz,ir and526

an expected flow rate 〈Qsz〉 defined as the average over all realizations, i.e.527

ηir =
Qsz,ir

〈Qsz〉
. (22)
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Introduced by de Barros and Nowak (2010), the metric above (Eq. 22) is an528

indicator of the relative flux intensity passing through the source zone in a529

2D flow system. Figure 11 displays this potential relationship between the530

total risk and the source zone efficiency.531

Interestingly, an apparent power law correlation (RT = α ηβ) can be532

observed. The negative correlation implies a beneficial effect of η on the533

system, i.e. the total ILCR decreases when the source efficiency increases.534

Intuitively, a large η, enhancing flow focusing effects at the source zone,535

might limit dilution and therefore lead to higher concentration values (and536

consequently risk values). This increase of risk due to a high source zone537

efficiency can be suspected for a single species (conservative or decaying)538

system only. As shown in Henri et al. (2015), plume travel times control539

the effective risk attributed to a chemical mixture in a non-trivial manner.540

To sum up, increasing the advective time will result (1) in an increase in the541

total risk beyond the mean hot spot location characterized by a toxicity-based542

Damköhler number below 1 (zone of production of highly toxic subspecies),543

and (2) in a decrease in the threat in zones with DR > 1, between the544

source zone and the mean hot spot location (zone of destruction of highly545

toxic subspecies). Increasing the source zone efficiency η will generate lower546

travel times in areas of production of daughter compounds (DR > 1), which547

will increase the probability to decrease the risk near the source zone. This548

decrease in risk is also observed when the plume moves downstream but549

vanishes progressively owing to the spread of the plume and to the inability of550

the metric η to describe the travel time when the traveled distance increases.551

By performing a regression analysis, we obtain the power exponent of the552

data set in Figure 11. The power exponent informs us about the degree of553

sensitivity of RT to η and the regression coefficient of determination can be554

seen as an indicator of the degree of correlation. Figure 12 depicts the total555

risks that are highly sensitive to the source zone efficiency at short distances.556

The degree of correlation between the risk and the water flux passing through557

the source zone is relatively high at short traveled distances and decreases558

downstream of the hot spot (near DR > 1). Surprisingly, the degree of559

correlation is highest near the hot spot location, where the effective threat560

to human health is the highest. Both sensitivity and correlation between561

the two variables are mitigated by increasing the heterogeneity in the Y-field562

from σ2
Y = 1 to σ2

Y = 4 (Figure 12b). On the other hand, conceptualizing563

the source zone by ganglia (Γ = 1.5) tends to decrease the dependence of the564

total risk on the source zone efficiency (lower absolute value of the β power565
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law exponent and of the coefficient of determination).566

Conditional Probability Density Functions of RT. In order to illustrate the567

potential importance of the water flux crossing the source zone in the statis-568

tical quantification of the total ILCR, we conditioned the pdf s of RT on η,569

and characterized the risk distribution for a source zone efficiency with η < 1570

and η > 1.571

The analysis was performed using the set of simulations related to a pool572

fully-dominated source zone (Γ = 0.5). Figure 13 shows the clear difference573

of total risk distribution for the two conditions (η < 1 and η > 1). Relatively574

high water flux passing through the DNAPL source zone leads to lower total575

risk values (as explained above) with a clear difference at the hot spot location576

(Figure 13b,e). Total risk pdf s conditioned by a η > 1 also display a lower577

variance, e.g. less uncertainty, especially at short distances from the source578

zone. Again, the non triviality of the impact of travel times on the effective579

ILCR in case of chemical mixtures accounts for these observations.580

6. Conclusions581

This work investigates the human health risk response to DNAPL source582

zone behavior. The human health risk due to the release of the chlorinated583

solvent PCE and to the reactive transport of its carcinogenic biodegradation584

products was characterized stochastically through Monte Carlo simulations585

considering uncertain hydraulic properties.586

DNAPL Mass Release and Expected Risk, Uncertainty. Results show that587

mass release models can significantly affect the human health risk. The sta-588

tistical analysis of the increased lifetime cancer risk due to a mixture of589

chlorinated solvents demonstrated a lower threat when the DNAPL source590

zone was mostly formed of ganglia. The detrimental impact of the presence591

of DNAPL pools is also clearly shown while using the exceedence of MCLs592

as a risk metric. Moreover, we show that in the presence of network reac-593

tion systems, the DNAPL mass release mode, when modeled by an upscaled594

contaminant mass transfer from a source zone, does not affect the hot spot lo-595

cation (area of higher risk). We confirm the observations made in Henri et al.596

(2015) that highlight a risk-based Damköhler number (depending on travel597

time and on species-dependent reaction kinetics and toxicities) as the right598

metric to predict hot spot locations. The amplitude of the total risk follows599

a scaling factor sensitive to both source zone mass release and heterogeneity600
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in the hydraulic conductivity. Moreover, we show that the conceptualiza-601

tion of DNAPL mass release has a significant impact on the uncertainty of602

the human health risk estimation. Globally, an increase in the pooling-effect603

decreases the reliability of the expected risk values.604

Impacts of a Two-domain Mass Depletion Model. The propagation of the605

effective lifetime cancer risk is then analyzed as a result of a simplified two-606

domain DNAPL mass depletion model. Outputs show that the risk profile607

resulting from a source zone constituted by ganglia and pools can be eval-608

uated by a simple linear combination of the risk profile solutions of a pool609

dominated source zone and a ganglia dominated source zone. Interestingly,610

results display a higher uncertainty in the risk prediction when the propor-611

tion of pool in the source zone is increased. Moreover, the ganglia to pool612

ratio is considered for the first time as an uncertain parameter. We show that613

this additional source of uncertainty does not have a significant impact on a614

lifetime cancer risk prediction based on an expected ganglia-to-pool ratio.615

The Role of Source-zone Efficiency. As a complement to the above analysis of616

the low statistical moments of risk, our work highlights the potential impact617

of the water flux passing through the source zone on the effective increased618

lifetime cancer risk due to a reactive chemical mixture. Counter-intuitively,619

the source zone efficiency is shown to have a beneficial effect on the risk. The620

total risk tends indeed to decrease for high source zone efficiency due to the621

consequential decrease in travel times near the source zone, which may limit622

the production of highly toxic daughter products.623

The results of this paper confirm the importance of allocating resources624

in characterizing the source zone distribution and the hydraulic flux passing625

though it. We illustrate how source zone characteristics have a strong role626

in controlling the stochastic behavior of the risk. Although we limited our627

analysis to multi-Gaussian fields, other geostatistical models can be incorpo-628

rated. The physical insights and graphical visualization techniques shown in629

this paper can be useful for risk managers to increase the accuracy of their630

predictions while facing a DNAPL contamination.631
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Figure 1: Scheme of an aquifer contaminated by a DNAPL. The source zone is formed
by pools due to the presence of low permeability lenses in the source zone. The scheme
illustrates the screening approach used in this paper. This approach uses the concentration
at the downstream edge of the source zone area to assess the health risk posed by the
contamination.
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Figure 2: Temporal evolution of the source zone concentrations for (a) a set of power
exponents of the simple mass transfer model; and (b) for a set of fractions of ganglia for
the bimodal source zone mass transfer model.
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Figure 3: Risk of exceedance of the MCLs of PCE (first row), TCE (second row), DCE
(third row) and VC (fourth row) as a function of the normalized time τ and the normalized
distance η for a variance of Y of 1.0 and a mass release power coefficient of 0.5 (frames
a-d), 1.5 (frames e-h) and 3.0 (i-l).
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Figure 4: Risk of exceedance of the MCLs of PCE (first row), TCE (second row), DCE
(third row) and VC (fourth row) as a function of the normalized time τ and the normalized
distance η for a variance of Y of 4.0 and a power exponent of 0.5 (frames a-d), 1.5 (frames
e-h) and 3.0 (i-l).
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Figure 5: Impact of the mass release power coefficient on the expected total ILCR from
chlorinated solvents simulations in a mildly (a) and highly (b) heterogeneous hydraulic
conductivity field.
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of correlation of the regression in grey line (right axis).
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Figure 7: Probability Density Functions of the total ILCR for a series of mass release power
coefficients at the control planes located at the normalized distances from the injection
ξ =3.5, 25 and 60, and for a mildly (left hand) and a highly (right hand) heterogeneous
hydraulic conductivity field.
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Figure 9: Probability Density Functions of the total ILCR for a series of Ganglia To Pool
ratios at control planes located at the normalized distances from the injection ξ =3.5, 25
and 60, and for a mildly (left hand) and a highly (right hand) heterogeneous hydraulic
conductivity field (respectively σ2
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Figure 10: Probability Density Functions of the total ILCR considering a random Ganglia
To Pool (GTP) ratio taken from a normal distribution (left hand, frames a, b and c) and
from a uniform distribution (right hand, frames d, e, f) at control planes located at the
normalized distances from the injection ξ =3.5, 25 and 60, and for a mildly heterogeneous
hydraulic conductivity field (σ2

Y = 1.0). Both distributions of the GTPs have a mean of
5.0.
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Figure 11: Relationship between the source zone efficiency and the total increase lifetime
cancer risk obtained for each simulation at control planes located at normalized distances
from the source zone ζ ranging from 3.5 to 88.1. Right hand figures (frames a and c)
show the relationship for a power DNAPL mass transfer exponent Γ of 0.5 (pool), left
hand (frames b and d) for a Γ of 1.5 (ganglia) for a mildly (top) and a highly (bottom)
heterogeneous hydraulic conductivity field (σ2

Y = 1.0 and σ2
Y = 4.0), respectively.
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Figure 12: Power regression coefficient as a function of the normalized traveled distance
(bottom x-axis) and corresponding mean toxicity-based Damköhler (top x-axis) for a power
DNAPL mass transfer exponent Γ of 0.5 (solid line) and 1.5 (dashed line) and for a mildly
(top) and a highly (bottom) heterogeneous hydraulic conductivity field (respectively σ2

Y =
1.0 and σ2

Y = 4.0). Gray lines show the coefficients of determination of the regressions
(right hand axis).
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Figure 13: Probability Density Functions of the total ILCR conditioned to a source zone
efficiency lower than 1 (dashed line) and higher than 1 (solid line) at control planes located
at the normalized distances from the injection ξ =3.5, 25 and 60, and for a mildly (left
hand) and a highly (right hand) heterogeneous hydraulic conductivity field (σ2

Y = 1.0 and
σ2
Y = 4.0, respectively).
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Table 1: Risk parameters

Parameter Value
Ingestion rate, IR [l/d] 1.4
Body weight, BW [kg] 70.0
Exposure duration, ED [y] 30.0
Exposure frequency, EF [d/y] 350.0
Average time of the expected lifetime, AT [d] 25550.0

pce tce dce vc
Cancer potency factor, CPFi [kg d/mg] 0.0021 0.011 0.6 1.5
Maximum Contaminant Level, MCLi, [ppb] 5.0 5.0 7.0 2.0

Table 2: Physical parameters

Parameter Value
Flow problem

Average hydraulic gradient [−] 0.07
Longitudinal dispersivity, αL [m] 0.4
Transversal dispersivity in the horizontal plane, αTH [m] 0.04
Transversal dispersivity in the vertical plane, αTV [m] 0.01
Porosity, φ [−] 0.3

Heterogeneous field
Variogram type Gaussian
Mean of Y (Y=lnK) [m2/d] 0.0
Variance of Y 1.0, 2.0, 4.0, 8.0
Integral scales, λx=λy=λz [m] 14.18

Domain discretization
Number of cells in x direction, nx 400
Number of cells in y direction, ny 220
Number of cells in z direction, nz 100
Cell dimension, ∆x ×∆y ×∆z [m×m×m] 4.0 × 4.0 × 4.0

Table 3: Biochemical parameters

Parameter Value
pce tce dce vc

First order decay, ki [d−1] 0.0025 0.002 0.0015 0.001
Yield coefficient, yi/j [mol mol−1] × 0.79 0.74 0.64
Retardation factor, Ri [−] 7.1 2.9 2.8 1.4
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Table 4: Source zone mass transfer parameters

Parameter Value
Initial concentration, C0 [g.m−3] 0.1
Initial mass, M0 [g] 3× 105

Degradation rate, λs [d−1] 5× 10−5

Volumetric discharge Qsz [m3.d−1] depends on K-field
Power law Γ [−] 0.25, 0.5, . . . , 4.0
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