UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió author's final draft d'un article publicat a la revista Electronic Notes in Discrete Mathematics.

URL d'aquest document a UPCommons E-prints:
http://upcommons.upc.edu/handle/2117/101529

Article publicat / Published paper:

Carmona, A.; Mitjana, M.; Monsó, E. The group inverse of subdivision networks. "Electronic notes in discrete mathematics", 17 Octubre 2016, vol. 54, p. 295-300. DOI: 10.1016/j.endm.2016.09.051
© 2016. Aquesta versió està disponible sota la llicència CC-BY-NCND $3.0 \mathrm{http}: / /$ creativecommons.org/licenses/by-nc-nd/3.0/es/

The group inverse of subdivision networks

Ángeles Carmona, ${ }^{1}$ Margarida Mitjana, ${ }^{1}$ Enric Monsó. ${ }^{1,2}$
Departament de Matemàtiques
Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract

In this paper, given a network and a subdivision of it, we show how the Group Inverse of the subdivision network can be related to the Group Inverse of initial given network. Our approach establishes a relationship between solutions of related Poisson problems on both networks and takes advantatge on the definition of the Group Inverse matrix.

Keywords: Network, Subdivision, Laplacian matrix, Group Inverse.

1 Introduction and preliminaries

In this paper $\Gamma=(V, E, c)$ denotes a network; that is, a finite, with no loops, nor multiple edges, connected graph, with n vertices that we can label $V=$ $\{1,2, \ldots, n\}$ and m edges in E, in which each edge $\{i, j\}$ has been assigned a weight or conductance $c_{i j}>0$. It is $c_{i j}=c_{j i}$ as defined on edges. In addition,

[^0]when $\{i, j\} \notin E$ we define $c_{i j}=0$ and, in particular, $c_{i i}=0$ for any i. We define the (weighted) degree of i as $k_{i}=\sum_{j=1}^{n} c_{i j}$.

The combinatorial Laplacian of Γ is the $n \times n$ matrix L whose entries are $L_{i j}=-c_{i j}$ for all $i \neq j$ and $L_{i i}=k_{i}$. Therefore, for each vector $u \in \mathbb{R}^{n}$ and for each $i=1, \ldots, n$

$$
\begin{equation*}
[L u]_{i}=k_{i} u_{i}-\sum_{j=1}^{n} c_{i j} u_{j}=\sum_{j=1}^{n} c_{i j}\left(u_{i}-u_{j}\right) . \tag{1}
\end{equation*}
$$

It is well-known that $L u=0$ iff $u=a 1, a \in \mathbb{R}$ and $1 \in \mathbb{R}^{n}$ the vector whose entries equal one. Moreover, given $f \in \mathbb{R}^{n}$, the Poisson problem, e.g. the linear system $L u=f$, has solution iff $\sum_{i=1}^{n} f_{i}=0$ and in this case two different solutions differ up to a constant. Therefore, there exists a unique solution orthogonal to $\mathbf{1}$ to every compatible linear system $L u=f$ (Fredholm's alternative).

For a square matrix M, the group inverse of M, denoted as $M^{\#}$, is the unique matrix X such that $M X M=M, X M X=X$ and $M X=X M$. It is very well known, see [3 , and the references therein], that $M^{\#}$ exists if and only if $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)$. Moreover, if M is real symmetric, then $M^{\#}$ exists and $M^{\#}$ is a symmetric $\{1\}$-inverse of M. As the combinatorial Laplacian of Γ matrix L, is a square, symmetric matrix that satisfies $\operatorname{rank}(M)=\operatorname{rank}\left(M^{2}\right)$ then $L^{\#}$ exists.

In particular, if for each $i=1, \ldots, n, \mathrm{e}_{i}$ denotes the i-th unit vector, with 1 in the i th position and 0 elsewhere, the linear system

$$
\begin{equation*}
L u=\mathrm{e}_{i}-\frac{1}{n} 1 \tag{2}
\end{equation*}
$$

has a unique solution which is orthogonal to 1 . This solution will be denoted by $L_{i}^{\#}$. We use this set of orthogonal to 1 solutions, varying the i vertices in V, to define an $n \times n$ matrix $L^{\#}$, the group inverse of L.

2 A Poisson Problem on a Subdivision Network

A subdivision graph $\left(V^{S}, E^{S}\right)$, of a given graph (V, E), finite, with no loops, with no multiple edges and connected, is the one obtained by inserting a new vertex in every edge of E so that it is replaced by two new edges, let's say $\left\{i, v_{i j}\right\}$ and $\left\{j, v_{i j}\right\}$, once $v_{i j}$ is the new inserted vertex in between $i, j \in V$ such that $\{i, j\} \in E$. In this way we obtain the new graph $\left(V^{S}, E^{S}\right)$ is also finite, with no loops and no multiple edges, and connected. The set of vertices $V^{S}=V \cup V^{\prime}$ is the union of $V=\{1,2, \cdots n\}$, those in the base graph, and
$V^{\prime}=\left\{v_{i j} \mid i, j \in V\right.$ and $\left.\{i, j\} \in E\right\}$, the set of the new generated vertices, so the total number of nodes of the subdivision graph is $n+m$ (because, in our notation, $v_{i j}=v_{j i}$). Moreover the set of edges E^{S} is composed by $2 m$ new edges so that every one of them have exactly one node in V and one node in V^{\prime}.

A subdivision network $\Gamma^{S}=\left(V^{S}, E^{S}, c^{S}\right)$ of a base network $\Gamma=(V, E, c)$ will be the subdivided graph of (V, E), provided with a positive symmetric conductance $c^{S}\left(i, v_{j k}\right)$ that vanishes when the pair of vertices are not adjacent in E^{S}. Moreover, and in order to fulfill electrical conditions, we define conductances when non-null, such that

$$
\frac{1}{c_{i j}}=\frac{1}{c^{S}\left(i, v_{i j}\right)}+\frac{1}{c^{S}\left(j, v_{i j}\right)} .
$$

As all edges in E^{S} have both kind of vertices in V^{S}, the definition of c^{S} cannot be misunderstood so that, in the sequel, it will be denoted also as c.

Finally, a Poisson problem in a subdivision network is stated as

$$
\begin{equation*}
\left[L^{S} \bar{u}\right]_{i}=h_{i}, \text { for every } i=1, \ldots, n+m, \tag{3}
\end{equation*}
$$

where L^{S} is the combinatorial Laplacian of $\Gamma^{S}, h \in \mathbb{R}^{n+m}$ is a given vector, (e.g. a given data function), allegedly compatible, and $\bar{u} \in \mathbb{R}^{n+m}$ is a solution vector (e.g. a discrete function).

When labeling the vertices in V^{S} such that $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $V^{\prime}=$ $\left\{x_{n+1}, \ldots, x_{n+m}\right\}$, the Laplacian matrix can be written as a block matrix

$$
L^{S}=\left[\begin{array}{cc}
H_{1} & B \\
B^{T} & H_{2}
\end{array}\right]
$$

where $H_{1} \in \mathcal{M}_{n \times n}$ and $H_{2} \in \mathcal{M}_{m \times m}$ are diagonal, and $B \in \mathcal{M}_{n \times m}$ is just the weighted incidence matrix of Γ. In this context it is worthwhile to remark that the Laplacian matrix of Γ is the Schur complement of H_{2}, in other words $L=H_{1}-B H_{2}^{-1} B^{T}$. Thus the group inverse of L^{S} depends on the group inverse of L.

The first main result we present in this work sets the precise relation between the solution of a Poisson problem in a subdivision network Γ^{S} and the solution of a conveniently stated Poisson problem on the base network Γ.

With the aim of usefulness we define for each pair $i, j \in V$ such that
$\{i, j\} \in E$, the coefficient

$$
\alpha_{i j}=\frac{c\left(i, v_{i j}\right)}{c\left(i, v_{i j}\right)+c\left(j, v_{i j}\right)} .
$$

It could also be stated as $\alpha_{i j}=\frac{c\left(i, v_{i j}\right)}{k\left(v_{i j}\right)}$. Anyway, notice its value in $(0,1)$ and the relationship $\alpha_{j i}=1-\alpha_{i j}$. Also it is important for the sequel to consider, for each pair of functions (i.e vectors) $h \in \mathbb{R}^{n+m}$ and $u \in \mathbb{R}^{n}$, the two next definitions:
(i) The contraction of h to V (which is as \mathbb{R}^{n}) is

$$
\underline{h}_{i}:=h_{i}+\sum_{j \sim i} \alpha_{i j} h_{v_{i j}}, i \in V,
$$

(ii) The extension of u to V^{S} (which is as \mathbb{R}^{n+m}), referred to h, as

$$
u_{i}^{h}=\left\{\begin{array}{cl}
u_{i}, & \text { for all } i \in V, \\
\frac{h_{v_{i j}}}{k\left(v_{i j}\right)}+\alpha_{i j} u_{i}+\alpha_{j i} u_{j}, & \text { for all } v_{i j} \in V^{\prime}
\end{array}\right.
$$

With all these tools precisely defined, we now can establish our first theorem, (see [2] for a proof) which is

Theorem 2.1 Given $\Gamma=(V, E, c)$ a network, let $\Gamma^{S}=\left(V^{S}, E^{S}, c\right)$ be a subdisivion network generated with Γ as a base, let $L^{S}(\bar{u})=h$ be a Poisson problem on Γ^{S}, for $h \in \mathbb{R}^{n+m}$ a compatible data function and let $L(u)=f$ be a Poisson problem on Γ, then there is a relation between \bar{u} and u if and only if

$$
f_{i}=h_{i}+\sum_{\substack{j \in V \\\{i, j\} \in E}} \alpha_{i j} h_{v_{i j}}, i=1, \cdots, n .
$$

Moreover
(i) $\bar{u}_{i}=u_{i}$, for all $i \in V$,
(ii) $\bar{u}_{v_{i j}}=\frac{1}{k_{v_{i i j}}}\left[h_{v_{i j}}+c\left(i, v_{i j}\right) \bar{u}_{i}+c\left(j, v_{i j}\right) \bar{u}_{j}\right]$, for all $v_{i j} \in V^{\prime}$,
so \bar{u} is the extension of u to V^{S} referred by h.

3 The Group Inverse of subdivision networks

In the next result we show how to obtain the solution of a Poisson problem on a subdivision network that is orthogonal to $1_{V^{s}}$.

Corollary 3.1 Given $h \in \mathbb{R}^{n+m}$, let $\underline{h} \in \mathbb{R}^{n}$ be its contraction to V, and $u \in \mathbb{R}^{n}$ be the unique solution to $L u=\underline{h}$ that satisfies $\left\langle u, 1_{V}\right\rangle=0$. Let

$$
\lambda=-\frac{1}{(n+m)} \sum_{i \sim j} \frac{h_{v_{i j}}}{k\left(v_{i j}\right)}-\frac{1}{(n+m)} \sum_{i \sim j}\left(\alpha_{i j} u_{i}+\alpha_{j i} u_{j}\right)
$$

be a constant, then $u^{\perp}=u^{h}+\lambda$ is the unique solution to $L^{S} u^{\perp}=h$ that satisfies $\left\langle u^{\perp}, 1_{V^{S}}\right\rangle=0$.

Now we are ready to obtain the expression of the Group Inverse of a subdivision network Γ^{S} in terms of the Group Inverse of Γ, the base network. From equation 2, we are interested in solving the following Poisson problems on Γ^{S}. Those problems are not identical depending upon the pole vertex considered is in V or in V^{\prime}, as data functions for the subdivision network are to be contracted to pose a suitable Poisson problem on the base network.

$$
\begin{aligned}
{\left[L^{S}\left(L^{S}\right)_{i}^{\#}\right] } & =\mathrm{e}_{i}-\frac{1}{n+m} 1, \quad i=1,2, \ldots, n \\
{\left[L^{S}\left(L^{S}\right)_{v_{i j}}^{\#}\right] } & =\mathrm{e}_{v_{i j}}-\frac{1}{n+m} 1, \quad v_{i j}=n+1, n+2, \ldots, n+m
\end{aligned}
$$

Moreover the solution of the corresponding Poisson problems for Γ must be extended to the whole subdivision network. So we obtain the following result where $k_{i}^{S}=\sum_{j=1}^{n} \alpha_{i j}$, is a kind of a degree of vertex $i=1, \ldots, n$ once the subdivision operation has been performed.

Proposition 3.2 Let Γ^{S} the subdivison network of Γ, then for any $i, j=$
$1, \ldots, n$ and $v_{i j}, v_{p q}=n+1, \ldots, n+m$, the Group Inverse for Γ^{S} is given by

$$
\begin{aligned}
{\left[\left(L^{S}\right)_{i}^{\#}\right]_{j} } & =L_{i j}^{\#}-\frac{1}{n+m} \sum_{\ell \in V}\left[L_{i \ell}^{\#}+L_{j \ell}^{\#}\right] k_{\ell}^{S} \\
& +\frac{1}{(n+m)^{2}} \sum_{r, s \in V} L_{s r}^{\#} k_{r}^{S} k_{s}^{S}+\frac{1}{(n+m)^{2}} \sum_{r \sim s} \frac{1}{k\left(v_{r s}\right)}, \\
{\left[\left(L^{S}\right)_{i}^{\#}\right]_{v_{p q}} } & =\alpha_{p q} L_{i p}^{\#}+\alpha_{q p} L_{i q}^{\#}-\frac{1}{n+m} \sum_{\ell \in V}\left[\alpha_{p q} L_{p \ell}^{\#}+\alpha_{q p} L_{q \ell}^{\#}+L_{i \ell}^{\#}\right] k_{\ell}^{S} \\
& +\frac{1}{(n+m)^{2}} \sum_{r, s} L_{s r}^{\#} k_{r}^{S} k_{s}^{S}+\frac{1}{(n+m)^{2}} \sum_{r \sim s} \frac{1}{k\left(v_{r s}\right)}-\frac{1}{(n+m) k\left(v_{p q}\right)}, \\
{\left[\left(L^{S}\right)_{v_{i j}}^{\#}\right]_{v_{p q}} } & =\alpha_{p q}\left(\alpha_{i j} L_{i p}^{\#}+\alpha_{j i} L_{j p}^{\#}\right)+\alpha_{q p}\left(\alpha_{i j} L_{i q}^{\#}+\alpha_{j i} L_{j q}^{\#}\right) \\
& -\frac{1}{n+m} \sum_{\ell \in V}\left[\alpha_{i j} L_{i \ell}^{\#}+\alpha_{j i} L_{j \ell}^{\#}+\alpha_{p q} L_{p \ell}^{\#}+\alpha_{q p} L_{q \ell}^{\#}\right] k_{\ell}^{S} \\
& +\frac{1}{(n+m)^{2}} \sum_{r, s \in V} L_{s r}^{\#} k_{r}^{S} k_{s}^{S}+\frac{1}{(n+m)^{2}} \sum_{r \sim s} \frac{1}{k\left(v_{r s}\right)} \\
& +\frac{\left[\mathrm{e}_{\left.v_{z}\right]}\right]_{v_{i j}}}{k\left(v_{i j}\right)}-\frac{1}{(n+m) k\left(v_{i j}\right)}-\frac{1}{(n+m) k\left(v_{p q}\right)} .
\end{aligned}
$$

4 The Group Inverse of a Star of length two

We adjoint to this work an easy work-out example of our results.
Let us consider S_{n} the n-Star network with $n+1$ vertices $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ so that every $x_{i}, i=1, \ldots n$ is adjacent only to x_{0}, and equal conductances $a\left(x_{0}, x_{i}\right)=a>0, i=1, \ldots n$.

The group inverse in this case is known, see [1, Corollary 6.1], and defined as

$$
\begin{aligned}
L^{\#}\left(x_{0}, x_{0}\right) & =\frac{n}{a(n+1)^{2}}, & & L^{\#}\left(x_{0}, x_{i}\right)=-\frac{1}{a(n+1)^{2}}, \\
L^{\#}\left(x_{i}, x_{i}\right) & =\frac{(n-1)(n+2)+1}{a(n+1)^{2}}, & & L^{\#}\left(x_{i}, x_{j}\right)=-\frac{n+2}{a(n+1)^{2}},
\end{aligned}
$$

where $i, j=1, \ldots, n$ and $i \neq j$.
Then, S_{n}^{S} is an n-Star of length 2 . We denote as $y_{i}, i=1, \ldots, n$ the new vertices generated by the subdivision process, adjacent to x_{0} and to its corresponding x_{i}. Thus $V^{S}=\left\{x_{0}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ and conductances are to be determined. As the electrical condition that allow us to relate Poisson problems in S_{n} and S_{n}^{S} must be satisfied, we choose every conductance as $c\left(x_{0}, y_{i}\right)=2 a=c\left(x_{i}, y_{i}\right), i=1, \ldots, n$. Then

Proposition 4.1 Given the Group inverse of S_{n} by the expressions just stated above then, with the above notation, the group inverse of S_{n}^{S} is defined by

$$
\begin{array}{rlrl}
\left(L^{S}\right)^{\#}\left(x_{0}, x_{0}\right) & =\frac{5}{2} \frac{n}{(2 n+1)^{2} a}, & \left(L^{S}\right)^{\#}\left(x_{0}, x_{i}\right)=-\frac{1}{2} \frac{n+3}{(2 n+1)^{2} a}, \\
\left(L^{S}\right)^{\#}\left(x_{i}, x_{i}\right) & =\frac{1}{2} \frac{8 n^{2}+n-4}{(2 n+1)^{2} a}, & \left(L^{S}\right)^{\#}\left(x_{i}, x_{j}\right)=-\frac{1}{2} \frac{7 n+6}{(2 n+1)^{2} a}, \\
\left(L^{S}\right)^{\#}\left(y_{i}, y_{i}\right) & =\frac{1}{2} \frac{(4 n-3)(n+1)}{(2 n+1)^{2} a}, & \left(L^{S}\right)^{\#}\left(y_{i}, y_{j}\right)=-\frac{1}{2} \frac{3 n+4}{(2 n+1)^{2} a}, \\
\left(L^{S}\right)^{\#}\left(x_{0}, y_{i}\right) & =\frac{1}{2} \frac{n-2}{(2 n+1)^{2} a}, & \left(L^{S}\right)^{\#}\left(x_{i}, y_{i}\right)=\frac{1}{2} \frac{(n+1)(n-1)-n}{(2 n+1)^{2} a}, \\
\left(L^{S}\right)^{\#}\left(x_{i}, y_{j}\right) & =-\frac{5}{2} \frac{n+1}{(2 n+1)^{2} a} . & &
\end{array}
$$

References

[1] A. Carmona, A. M. Encinas and M. Mitjana, Discrete elliptic operators and their Green operators, Linear Algebra and its Appl., 442, (2014), 115-134.
[2] A. Carmona, M. Mitjana and E. Monsó, Effective resistances and Kirchhoff Index in subdivision networks, submitted.
[3] L. Sun, W. Wang, J. Zhou and C. Bu, Some results on resistance distances and resistance matrices, Linear and Multilinear Algebra, 63, (2015), 523-533.

[^0]: 1 This work has been partially supported by the spanish Programa Estatal de I+D+i del Ministerio de Economa y Competitividad, under the project MTM2014-60450-R
 ${ }^{2}$ Email: enrique.monso@upc.edu

