

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió *author's final draft* d'un article publicat a la revista *Electronic Notes in Discrete Mathematics*.

URL d'aquest document a UPCommons E-prints:

http://upcommons.upc.edu/handle/2117/101529

Article publicat / Published paper:

Carmona, A.; Mitjana, M.; Monsó, E. The group inverse of subdivision networks. "Electronic notes in discrete mathematics", 17 Octubre 2016, vol. 54, p. 295-300. DOI: <u>10.1016/j.endm.2016.09.051</u>

© 2016. Aquesta versió està disponible sota la llicència CC-BY-NCND 3.0 <u>http://creativecommons.org/licenses/by-nc-nd/3.0/es/</u>

The group inverse of subdivision networks

Ángeles Carmona,¹ Margarida Mitjana,¹ Enric Monsó.^{1,2}

Departament de Matemàtiques Universitat Politècnica de Catalunya Barcelona, Spain

Abstract

In this paper, given a network and a subdivision of it, we show how the Group Inverse of the subdivision network can be related to the Group Inverse of initial given network. Our approach establishes a relationship between solutions of related Poisson problems on both networks and takes advantate on the definition of the Group Inverse matrix.

Keywords: Network, Subdivision, Laplacian matrix, Group Inverse.

1 Introduction and preliminaries

In this paper $\Gamma = (V, E, c)$ denotes a *network;* that is, a finite, with no loops, nor multiple edges, connected graph, with *n* vertices that we can label $V = \{1, 2, ..., n\}$ and *m* edges in *E*, in which each edge $\{i, j\}$ has been assigned a weight or *conductance* $c_{ij} > 0$. It is $c_{ij} = c_{ji}$ as defined on edges. In addition,

 $^{^{1}~}$ This work has been partially supported by the spanish Programa Estatal de I+D+i del Ministerio de Economa y Competitividad, under the project MTM2014-60450-R

² Email: enrique.monso@upc.edu

when $\{i, j\} \notin E$ we define $c_{ij} = 0$ and, in particular, $c_{ii} = 0$ for any *i*. We define the *(weighted) degree of i* as $k_i = \sum_{j=1}^n c_{ij}$.

The combinatorial Laplacian of Γ is the $n \times n$ matrix L whose entries are $L_{ij} = -c_{ij}$ for all $i \neq j$ and $L_{ii} = k_i$. Therefore, for each vector $u \in \mathbb{R}^n$ and for each $i = 1, \ldots, n$

(1)
$$[Lu]_i = k_i u_i - \sum_{j=1}^n c_{ij} u_j = \sum_{j=1}^n c_{ij} (u_i - u_j).$$

It is well-known that Lu = 0 iff $u = a\mathbf{1}$, $a \in \mathbb{R}$ and $\mathbf{1} \in \mathbb{R}^n$ the vector whose entries equal one. Moreover, given $f \in \mathbb{R}^n$, the Poisson problem, e.g. the linear system Lu = f, has solution iff $\sum_{i=1}^n f_i = 0$ and in this case two different solutions differ up to a constant. Therefore, there exists a unique solution orthogonal to $\mathbf{1}$ to every compatible linear system Lu = f (*Fredholm's alternative*).

For a square matrix M, the group inverse of M, denoted as $M^{\#}$, is the unique matrix X such that MXM = M, XMX = X and MX = XM. It is very well known, see [3, and the references therein], that $M^{\#}$ exists if and only if rank $(M) = \operatorname{rank}(M^2)$. Moreover, if M is real symmetric, then $M^{\#}$ exists and $M^{\#}$ is a symmetric $\{1\}$ -inverse of M. As the combinatorial Laplacian of Γ matrix L, is a square, symmetric matrix that satisfies rank $(M) = \operatorname{rank}(M^2)$ then $L^{\#}$ exists.

In particular, if for each i = 1, ..., n, e_i denotes the *i*-th unit vector, with 1 in the *i*th position and 0 elsewhere, the linear system

(2)
$$Lu = e_i - \frac{1}{n} \mathbf{1}$$

has a unique solution which is orthogonal to 1. This solution will be denoted by $L_i^{\#}$. We use this set of orthogonal to 1 solutions, varying the *i* vertices in *V*, to define an $n \times n$ matrix $L^{\#}$, the group inverse of *L*.

2 A Poisson Problem on a Subdivision Network

A subdivision graph (V^S, E^S) , of a given graph (V, E), finite, with no loops, with no multiple edges and connected, is the one obtained by inserting a new vertex in every edge of E so that it is replaced by two new edges, let's say $\{i, v_{ij}\}$ and $\{j, v_{ij}\}$, once v_{ij} is the new inserted vertex in between $i, j \in V$ such that $\{i, j\} \in E$. In this way we obtain the new graph (V^S, E^S) is also finite, with no loops and no multiple edges, and connected. The set of vertices $V^S = V \cup V'$ is the union of $V = \{1, 2, \dots, n\}$, those in the base graph, and $V' = \{v_{ij} \mid i, j \in V \text{ and } \{i, j\} \in E\}$, the set of the new generated vertices, so the total number of nodes of the subdivision graph is n + m (because, in our notation, $v_{ij} = v_{ji}$). Moreover the set of edges E^S is composed by 2m new edges so that every one of them have exactly one node in V and one node in V'.

A subdivision network $\Gamma^S = (V^S, E^S, c^S)$ of a base network $\Gamma = (V, E, c)$ will be the subdivided graph of (V, E), provided with a positive symmetric conductance $c^S(i, v_{jk})$ that vanishes when the pair of vertices are not adjacent in E^S . Moreover, and in order to fulfill electrical conditions, we define conductances when non-null, such that

$$\frac{1}{c_{ij}} = \frac{1}{c^S(i, v_{ij})} + \frac{1}{c^S(j, v_{ij})}.$$

As all edges in E^S have both kind of vertices in V^S , the definition of c^S cannot be misunderstood so that, in the sequel, it will be denoted also as c.

Finally, a Poisson problem in a subdivision network is stated as

(3)
$$[L^S \overline{u}]_i = h_i, \text{ for every } i = 1, \dots, n + m_i$$

where L^S is the combinatorial Laplacian of Γ^S , $h \in \mathbb{R}^{n+m}$ is a given vector, (e.g. a given data function), allegedly compatible, and $\overline{u} \in \mathbb{R}^{n+m}$ is a solution vector (e.g. a discrete function).

When labeling the vertices in V^S such that $V = \{x_1, x_2, \ldots, x_n\}$ and $V' = \{x_{n+1}, \ldots, x_{n+m}\}$, the Laplacian matrix can be written as a block matrix

$$L^S = \begin{bmatrix} H_1 & B \\ B^T & H_2 \end{bmatrix}$$

where $H_1 \in \mathcal{M}_{n \times n}$ and $H_2 \in \mathcal{M}_{m \times m}$ are diagonal, and $B \in \mathcal{M}_{n \times m}$ is just the weighted incidence matrix of Γ . In this context it is worthwhile to remark that the Laplacian matrix of Γ is the Schur complement of H_2 , in other words $L = H_1 - BH_2^{-1}B^T$. Thus the group inverse of L^S depends on the group inverse of L.

The first main result we present in this work sets the precise relation between the solution of a Poisson problem in a subdivision network Γ^{S} and the solution of a conveniently stated Poisson problem on the base network Γ .

With the aim of usefulness we define for each pair $i, j \in V$ such that

 $\{i, j\} \in E$, the coefficient

$$\alpha_{ij} = \frac{c(i, v_{ij})}{c(i, v_{ij}) + c(j, v_{ij})}$$

It could also be stated as $\alpha_{ij} = \frac{c(i,v_{ij})}{k(v_{ij})}$. Anyway, notice its value in (0, 1) and the relationship $\alpha_{ji} = 1 - \alpha_{ij}$. Also it is important for the sequel to consider, for each pair of functions (i.e vectors) $h \in \mathbb{R}^{n+m}$ and $u \in \mathbb{R}^n$, the two next definitions:

(i) The contraction of h to V (which is as \mathbb{R}^n) is

$$\underline{h}_i := h_i + \sum_{j \sim i} \alpha_{ij} h_{v_{ij}}, \ i \in V,$$

(ii) The extension of u to V^S (which is as \mathbb{R}^{n+m}), referred to h, as

$$u_i^h = \begin{cases} u_i, & \text{for all } i \in V, \\ \frac{h_{v_{ij}}}{k(v_{ij})} + \alpha_{ij}u_i + \alpha_{ji}u_j, & \text{for all } v_{ij} \in V'. \end{cases}$$

With all these tools precisely defined, we now can establish our first theorem, (see [2] for a proof) which is

Theorem 2.1 Given $\Gamma = (V, E, c)$ a network, let $\Gamma^S = (V^S, E^S, c)$ be a subdisivion network generated with Γ as a base, let $L^S(\overline{u}) = h$ be a Poisson problem on Γ^S , for $h \in \mathbb{R}^{n+m}$ a compatible data function and let L(u) = f be a Poisson problem on Γ , then there is a relation between \overline{u} and u if and only if

$$f_i = h_i + \sum_{\substack{j \in V \\ \{i,j\} \in E}} \alpha_{ij} h_{v_{ij}}, \ i = 1, \cdots, n.$$

Moreover

(i)
$$\overline{u}_i = u_i$$
, for all $i \in V$,

(ii)
$$\overline{u}_{v_{ij}} = \frac{1}{k_{v_{iij}}} \left[h_{v_{ij}} + c(i, v_{ij})\overline{u}_i + c(j, v_{ij})\overline{u}_j \right], \text{ for all } v_{ij} \in V',$$

so \overline{u} is the extension of u to V^S referred by h.

3 The Group Inverse of subdivision networks

In the next result we show how to obtain the solution of a Poisson problem on a subdivision network that is orthogonal to 1_{V^S} . **Corollary 3.1** Given $h \in \mathbb{R}^{n+m}$, let $\underline{h} \in \mathbb{R}^n$ be its contraction to V, and $u \in \mathbb{R}^n$ be the unique solution to $Lu = \underline{h}$ that satisfies $\langle u, \mathbf{1}_V \rangle = 0$. Let

$$\lambda = -\frac{1}{(n+m)} \sum_{i \sim j} \frac{h_{v_{ij}}}{k(v_{ij})} - \frac{1}{(n+m)} \sum_{i \sim j} \left(\alpha_{ij} u_i + \alpha_{ji} u_j \right)$$

be a constant, then $u^{\perp} = u^h + \lambda$ is the unique solution to $L^S u^{\perp} = h$ that satisfies $\langle u^{\perp}, \mathbf{1}_{V^S} \rangle = 0$.

Now we are ready to obtain the expression of the Group Inverse of a subdivision network Γ^S in terms of the Group Inverse of Γ , the base network. From equation 2, we are interested in solving the following Poisson problems on Γ^S . Those problems are not identical depending upon the pole vertex considered is in V or in V', as data functions for the subdivision network are to be contracted to pose a suitable Poisson problem on the base network.

$$[L^{S}(L^{S})_{i}^{\#}] = \mathbf{e}_{i} - \frac{1}{n+m}\mathbf{1}, \quad i = 1, 2, \dots, n;$$
$$[L^{S}(L^{S})_{v_{ij}}^{\#}] = \mathbf{e}_{v_{ij}} - \frac{1}{n+m}\mathbf{1}, \quad v_{ij} = n+1, n+2, \dots, n+m;$$

Moreover the solution of the corresponding Poisson problems for Γ must be extended to the whole subdivision network. So we obtain the following result where $k_i^S = \sum_{j=1}^n \alpha_{ij}$, is a kind of a degree of vertex $i = 1, \ldots, n$ once the subdivision operation has been performed.

Proposition 3.2 Let Γ^S the subdivison network of Γ , then for any i, j =

 $1, \ldots, n$ and $v_{ij}, v_{pq} = n + 1, \ldots, n + m$, the Group Inverse for Γ^S is given by

$$\begin{split} [(L^S)_i^{\#}]_j &= L_{ij}^{\#} - \frac{1}{n+m} \sum_{\ell \in V} \left[L_{i\ell}^{\#} + L_{j\ell}^{\#} \right] k_{\ell}^S \\ &+ \frac{1}{(n+m)^2} \sum_{r,s \in V} L_{sr}^{\#} k_r^S k_s^S + \frac{1}{(n+m)^2} \sum_{r \sim s} \frac{1}{k(v_{rs})}, \\ [(L^S)_i^{\#}]_{v_{pq}} &= \alpha_{pq} L_{ip}^{\#} + \alpha_{qp} L_{iq}^{\#} - \frac{1}{n+m} \sum_{\ell \in V} \left[\alpha_{pq} L_{p\ell}^{\#} + \alpha_{qp} L_{q\ell}^{\#} + L_{i\ell}^{\#} \right] k_{\ell}^S \\ &+ \frac{1}{(n+m)^2} \sum_{r,s} L_{sr}^{\#} k_r^S k_s^S + \frac{1}{(n+m)^2} \sum_{r \sim s} \frac{1}{k(v_{rs})} - \frac{1}{(n+m)k(v_{pq})}, \\ [(L^S)_{v_{ij}}^{\#}]_{v_{pq}} &= \alpha_{pq} \left(\alpha_{ij} L_{ip}^{\#} + \alpha_{ji} L_{jp}^{\#} \right) + \alpha_{qp} \left(\alpha_{ij} L_{iq}^{\#} + \alpha_{ji} L_{jq}^{\#} \right) \\ &- \frac{1}{n+m} \sum_{\ell \in V} \left[\alpha_{ij} L_{i\ell}^{\#} + \alpha_{ji} L_{j\ell}^{\#} + \alpha_{pq} L_{p\ell}^{\#} + \alpha_{qp} L_{q\ell}^{\#} \right] k_{\ell}^S \\ &+ \frac{1}{(n+m)^2} \sum_{r,s \in V} L_{sr}^{\#} k_r^S k_s^S + \frac{1}{(n+m)^2} \sum_{r \sim s} \frac{1}{k(v_{rs})} \\ &+ \frac{[e_{v_{st}}]_{v_{ij}}}{k(v_{ij})} - \frac{1}{(n+m)k(v_{ij})} - \frac{1}{(n+m)k(v_{pq})}. \end{split}$$

4 The Group Inverse of a Star of length two

We adjoint to this work an easy work-out example of our results.

Let us consider S_n the *n*-Star network with n+1 vertices $\{x_0, x_1, \ldots, x_n\}$ so that every x_i , $i = 1, \ldots n$ is adjacent only to x_0 , and equal conductances $a(x_0, x_i) = a > 0, i = 1, \ldots n$.

The group inverse in this case is known, see [1, Corollary 6.1], and defined as

$$L^{\#}(x_0, x_0) = \frac{n}{a(n+1)^2}, \qquad L^{\#}(x_0, x_i) = -\frac{1}{a(n+1)^2},$$
$$L^{\#}(x_i, x_i) = \frac{(n-1)(n+2)+1}{a(n+1)^2}, \qquad L^{\#}(x_i, x_j) = -\frac{n+2}{a(n+1)^2},$$

where $i, j = 1, \ldots, n$ and $i \neq j$.

Then, S_n^S is an *n*-Star of length 2. We denote as y_i , i = 1, ..., n the new vertices generated by the subdivision process, adjacent to x_0 and to its corresponding x_i . Thus $V^S = \{x_0, x_1, ..., x_n, y_1, ..., y_n\}$ and conductances are to be determined. As the electrical condition that allow us to relate Poisson problems in S_n and S_n^S must be satisfied, we choose every conductance as $c(x_0, y_i) = 2a = c(x_i, y_i), i = 1, ..., n$. Then **Proposition 4.1** Given the Group inverse of S_n by the expressions just stated above then, with the above notation, the group inverse of S_n^S is defined by

$$\begin{split} (L^S)^{\#}(x_0, x_0) &= \frac{5}{2} \frac{n}{(2n+1)^2 a}, & (L^S)^{\#}(x_0, x_i) &= -\frac{1}{2} \frac{n+3}{(2n+1)^2 a}, \\ (L^S)^{\#}(x_i, x_i) &= \frac{1}{2} \frac{8n^2 + n - 4}{(2n+1)^2 a}, & (L^S)^{\#}(x_i, x_j) &= -\frac{1}{2} \frac{7n + 6}{(2n+1)^2 a}, \\ (L^S)^{\#}(y_i, y_i) &= \frac{1}{2} \frac{(4n - 3)(n+1)}{(2n+1)^2 a}, & (L^S)^{\#}(y_i, y_j) &= -\frac{1}{2} \frac{3n + 4}{(2n+1)^2 a}, \\ (L^S)^{\#}(x_0, y_i) &= \frac{1}{2} \frac{n - 2}{(2n+1)^2 a}, & (L^S)^{\#}(x_i, y_i) &= \frac{1}{2} \frac{4(n + 1)(n - 1) - n}{(2n+1)^2 a}, \\ (L^S)^{\#}(x_i, y_j) &= -\frac{5}{2} \frac{n + 1}{(2n+1)^2 a}. \end{split}$$

References

- [1] A. Carmona, A. M. Encinas and M. Mitjana, Discrete elliptic operators and their Green operators, *Linear Algebra and its Appl.*, **442**, (2014), 115–134.
- [2] A. Carmona, M. Mitjana and E. Monsó, Effective resistances and Kirchhoff Index in subdivision networks, submitted.
- [3] L. Sun, W. Wang, J. Zhou and C. Bu, Some results on resistance distances and resistance matrices, *Linear and Multilinear Algebra*, **63**, (2015), 523–533.