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The group inverse of subdivision networks

Ángeles Carmona, 1 Margarida Mitjana, 1 Enric Monsó. 1,2

Departament de Matemàtiques
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract

In this paper, given a network and a subdivision of it, we show how the Group
Inverse of the subdivision network can be related to the Group Inverse of initial
given network. Our approach establishes a relationship between solutions of related
Poisson problems on both networks and takes advantatge on the definition of the
Group Inverse matrix.
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1 Introduction and preliminaries

In this paper Γ = (V,E, c) denotes a network; that is, a finite, with no loops,
nor multiple edges, connected graph, with n vertices that we can label V =
{1, 2, . . . , n} and m edges in E, in which each edge {i, j} has been assigned a
weight or conductance cij > 0. It is cij = cji as defined on edges. In addition,
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when {i, j} /∈ E we define cij = 0 and, in particular, cii = 0 for any i. We

define the (weighted) degree of i as ki =
n∑

j=1

cij.

The combinatorial Laplacian of Γ is the n× n matrix L whose entries are
Lij = −cij for all i 6= j and Lii = ki. Therefore, for each vector u ∈ Rn and
for each i = 1, . . . , n

[Lu]i = kiui −
n∑

j=1

cijuj =
n∑

j=1

cij(ui − uj).(1)

It is well-known that Lu = 0 iff u = a1, a ∈ R and 1 ∈ Rn the vector whose
entries equal one. Moreover, given f ∈ Rn, the Poisson problem, e.g. the linear

system Lu = f, has solution iff
n∑

i=1

fi = 0 and in this case two different solutions

differ up to a constant. Therefore, there exists a unique solution orthogonal
to 1 to every compatible linear system Lu = f (Fredholm’s alternative).

For a square matrix M , the group inverse of M, denoted as M#, is the
unique matrix X such that MXM = M, XMX = X and MX = XM . It is
very well known, see [3, and the references therein], that M# exists if and only
if rank(M) = rank(M2). Moreover, if M is real symmetric, then M# exists
and M# is a symmetric {1}–inverse of M . As the combinatorial Laplacian of
Γ matrix L, is a square, symmetric matrix that satisfies rank(M) = rank(M2)
then L# exists.

In particular, if for each i = 1, . . . , n, ei denotes the i–th unit vector, with
1 in the ith position and 0 elsewhere, the linear system

Lu = ei−
1

n
1(2)

has a unique solution which is orthogonal to 1. This solution will be denoted
by L#

i . We use this set of orthogonal to 1 solutions, varying the i vertices in
V, to define an n× n matrix L#, the group inverse of L.

2 A Poisson Problem on a Subdivision Network

A subdivision graph (V S, ES), of a given graph (V,E), finite, with no loops,
with no multiple edges and connected, is the one obtained by inserting a new
vertex in every edge of E so that it is replaced by two new edges, let’s say
{i, vij} and {j, vij}, once vij is the new inserted vertex in between i, j ∈ V
such that {i, j} ∈ E. In this way we obtain the new graph (V S, ES) is also
finite, with no loops and no multiple edges, and connected. The set of vertices
V S = V ∪ V ′ is the union of V = {1, 2, · · · n}, those in the base graph, and



V ′ = {vij | i, j ∈ V and {i, j} ∈ E}, the set of the new generated vertices, so
the total number of nodes of the subdivision graph is n+m (because, in our
notation, vij = vji). Moreover the set of edges ES is composed by 2m new
edges so that every one of them have exactly one node in V and one node in
V ′.

A subdivision network ΓS = (V S, ES, cS) of a base network Γ = (V,E, c)
will be the subdivided graph of (V,E), provided with a positive symmetric
conductance cS(i, vjk) that vanishes when the pair of vertices are not adja-
cent in ES. Moreover, and in order to fulfill electrical conditions, we define
conductances when non–null, such that

1

cij
=

1

cS(i, vij)
+

1

cS(j, vij)
.

As all edges in ES have both kind of vertices in V S, the definition of cS

cannot be misunderstood so that, in the sequel, it will be denoted also as c.

Finally, a Poisson problem in a subdivision network is stated as

[LSu]i = hi, for every i = 1, . . . , n+m,(3)

where LS is the combinatorial Laplacian of ΓS, h ∈ Rn+m is a given vector,
(e.g. a given data function), allegedly compatible, and u ∈ Rn+m is a solution
vector (e.g. a discrete function).

When labeling the vertices in V S such that V = {x1, x2, . . . , xn} and V ′ =
{xn+1, . . . , xn+m}, the Laplacian matrix can be written as a block matrix

LS =

H1 B

BT H2


where H1 ∈ Mn×n and H2 ∈ Mm×m are diagonal, and B ∈ Mn×m is just
the weighted incidence matrix of Γ. In this context it is worthwhile to remark
that the Laplacian matrix of Γ is the Schur complement of H2, in other words
L = H1−BH−12 BT . Thus the group inverse of LS depends on the group inverse
of L.

The first main result we present in this work sets the precise relation
between the solution of a Poisson problem in a subdivision network ΓS and
the solution of a conveniently stated Poisson problem on the base network Γ.

With the aim of usefulness we define for each pair i, j ∈ V such that



{i, j} ∈ E, the coefficient

αij =
c(i, vij)

c(i, vij) + c(j, vij)
.

It could also be stated as αij =
c(i,vij)

k(vij)
. Anyway, notice its value in (0, 1) and

the relationship αji = 1− αij. Also it is important for the sequel to consider,
for each pair of functions (i.e vectors) h ∈ Rn+m and u ∈ Rn, the two next
definitions:

(i) The contraction of h to V (which is as Rn) is

hi := hi +
∑
j∼i

αijhvij , i ∈ V,

(ii) The extension of u to V S (which is as Rn+m), referred to h, as

uhi =

 ui, for all i ∈ V,
hvij

k(vij)
+ αijui + αjiuj, for all vij ∈ V ′.

With all these tools precisely defined, we now can establish our first theo-
rem, (see [2] for a proof) which is

Theorem 2.1 Given Γ = (V,E, c) a network, let ΓS = (V S, ES, c) be a subdi-
sivion network generated with Γ as a base, let LS(u) = h be a Poisson problem
on ΓS, for h ∈ Rn+m a compatible data function and let L(u) = f be a Poisson
problem on Γ, then there is a relation between u and u if and only if

fi = hi +
∑
j∈V

{i,j}∈E

αijhvij , i = 1, · · · , n.

Moreover

(i) ui = ui, for all i ∈ V,
(ii) uvij = 1

kviij

[
hvij + c(i, vij)ui + c(j, vij)uj

]
, for all vij ∈ V ′,

so u is the extension of u to V S referred by h.

3 The Group Inverse of subdivision networks

In the next result we show how to obtain the solution of a Poisson problem
on a subdivision network that is orthogonal to 1V S .



Corollary 3.1 Given h ∈ Rn+m, let h ∈ Rn be its contraction to V, and
u ∈ Rn be the unique solution to Lu = h that satisfies 〈u, 1V 〉 = 0. Let

λ = − 1
(n+m)

∑
i∼j

hvij

k(vij)
− 1

(n+m)

∑
i∼j

(αijui + αjiuj)

be a constant, then u⊥ = uh + λ is the unique solution to LSu⊥ = h that
satisfies 〈u⊥, 1V S〉 = 0.

Now we are ready to obtain the expression of the Group Inverse of a sub-
division network ΓS in terms of the Group Inverse of Γ, the base network.
From equation 2, we are interested in solving the following Poisson problems
on ΓS. Those problems are not identical depending upon the pole vertex con-
sidered is in V or in V ′, as data functions for the subdivision network are to
be contracted to pose a suitable Poisson problem on the base network.

[LS(LS)#i ] = ei−
1

n+m
1, i = 1, 2, . . . , n;

[LS(LS)#vij ] = evij −
1

n+m
1, vij = n+ 1, n+ 2, . . . , n+m;

Moreover the solution of the corresponding Poisson problems for Γ must
be extended to the whole subdivision network. So we obtain the following

result where kSi =
n∑

j=1

αij, is a kind of a degree of vertex i = 1, . . . , n once the

subdivision operation has been performed.

Proposition 3.2 Let ΓS the subdivison network of Γ, then for any i, j =



1, . . . , n and vij, vpq = n+ 1, . . . , n+m, the Group Inverse for ΓS is given by

[(LS)#i ]j = L#
ij −

1

n+m

∑
`∈V

[
L#
i` + L#

j`

]
kS`

+
1

(n+m)2

∑
r,s∈V

L#
srk

S
r k

S
s +

1

(n+m)2

∑
r∼s

1

k(vrs)
,

[(LS)#i ]vpq = αpqL
#
ip + αqpL

#
iq −

1

n+m

∑
`∈V

[
αpqL

#
p` + αqpL

#
q` + L#

i`

]
kS`

+
1

(n+m)2

∑
r,s

L#
srk

S
r k

S
s +

1

(n+m)2

∑
r∼s

1

k(vrs)
− 1

(n+m)k(vpq)
,

[(LS)#vij ]vpq = αpq

(
αijL

#
ip + αjiL

#
jp

)
+ αqp

(
αijL

#
iq + αjiL

#
jq

)
− 1

n+m

∑
`∈V

[
αijL

#
i` + αjiL

#
j` + αpqL

#
p` + αqpL

#
q`

]
kS`

+
1

(n+m)2

∑
r,s∈V

L#
srk

S
r k

S
s +

1

(n+m)2

∑
r∼s

1

k(vrs)

+
[evzt ]vij
k(vij)

− 1

(n+m)k(vij)
− 1

(n+m)k(vpq)
.

4 The Group Inverse of a Star of length two

We adjoint to this work an easy work–out example of our results.

Let us consider Sn the n−Star network with n+ 1 vertices {x0, x1, . . . , xn}
so that every xi, i = 1, . . . n is adjacent only to x0, and equal conductances
a(x0, xi) = a > 0, i = 1, . . . n.

The group inverse in this case is known, see [1, Corollary 6.1], and defined
as

L#(x0, x0) = n
a(n+1)2

, L#(x0, xi) = − 1
a(n+1)2

,

L#(xi, xi) = (n−1)(n+2)+1
a(n+1)2

, L#(xi, xj) = − n+2
a(n+1)2

,

where i, j = 1, . . . , n and i 6= j.

Then, SS
n is an n−Star of length 2. We denote as yi, i = 1, . . . , n the

new vertices generated by the subdivision process, adjacent to x0 and to its
corresponding xi. Thus V S = {x0, x1, . . . , xn, y1, . . . , yn} and conductances are
to be determined. As the electrical condition that allow us to relate Poisson
problems in Sn and SS

n must be satisfied, we choose every conductance as
c(x0, yi) = 2a = c(xi, yi), i = 1, . . . , n. Then



Proposition 4.1 Given the Group inverse of Sn by the expressions just stated
above then, with the above notation, the group inverse of SS

n is defined by

(LS)#(x0, x0) = 5
2

n
(2n+1)2a

, (LS)#(x0, xi) = −1
2

n+3
(2n+1)2a

,

(LS)#(xi, xi) = 1
2
8n2+n−4
(2n+1)2a

, (LS)#(xi, xj) = −1
2

7n+6
(2n+1)2a

,

(LS)#(yi, yi) = 1
2
(4n−3)(n+1)
(2n+1)2a

, (LS)#(yi, yj) = −1
2

3n+4
(2n+1)2a

,

(LS)#(x0, yi) = 1
2

n−2
(2n+1)2a

, (LS)#(xi, yi) = 1
2
4(n+1)(n−1)−n

(2n+1)2a
,

(LS)#(xi, yj) = −5
2

n+1
(2n+1)2a

.
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