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Abstract
Restricted Boltzmann Machines (RBMs) have shown success
in different stages of speaker recognition systems. In this paper,
we propose a novel framework to produce a vector-based rep-
resentation for each speaker, which will be referred to as RBM-
vector. This new approach maps the speaker spectral features
to a single fixed-dimensional vector carrying speaker-specific
information. In this work, a global model, referred to as Uni-
versal RBM (URBM), is trained taking advantage of RBM un-
supervised learning capabilities. Then, this URBM is adapted
to the data of each speaker in the development, enrolment and
evaluation datasets. The network connection weights of the
adapted RBMs are further concatenated and subject to a whiten-
ing with dimension reduction stage to build the speaker vectors.
The evaluation is performed on the core test condition of the
NIST SRE 2006 database, and it is shown that RBM-vectors
achieve 15% relative improvement in terms of EER compared
to i-vectors using cosine scoring. The score fusion with i-vector
attains more than 24% relative improvement. The interest of
this result for score fusion yields on the fact that both vectors are
produced in an unsupervised fashion and can be used instead of
i-vector/PLDA approach, when no data label is available. Re-
sults obtained for RBM-vector/PLDA framework is comparable
with the ones from i-vector/PLDA. Their score fusion achieves
14% relative improvement compared to i-vector/PLDA.

1. Introduction
Gaussian Mixture Models (GMMs) are the basis of many state-
of-the-art speaker modeling techniques. They are used in an
adaptation process in the conventional GMM-UBM method for
speaker recognition. By concatenating the mean vectors ob-
tained from Maximum a Posteriori (MAP) adapted GMMs, a
high-dimensional vector called supervector is formed. These
high-dimensional supervectors can be converted into lower-
dimensional vectors by means of an effective Factor Analysis
(FA) technique renowned as i-vector [1]. These i-vectors can be
employed in classification for speaker recognition using cosine
distance similarity or Probabilistic Linear Discriminant Analy-
sis (PLDA) [2, 1, 3].

Restricted Boltzmann Machines (RBMs) are generative
models able to efficiently learn via unsupervised learning algo-
rithms. They have recently shown success in applications such
as audio and speech processing (e.g., in [4, 5, 6]). In speaker
recognition, they were used to extract features [7], and speaker
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factors [8], and to classify i-vectors [9, 10]. They have been
utilized in an adaptation process [11, 12, 13, 14], to further dis-
criminatively model target and impostor speakers. RBMs have
been recently used in DBNs as a pre-training stage to extract
Baum-Welch statistics for i-vector and supervector extraction
[15, 16]. RBMs were used in [17] prior to PLDA, as a trans-
formation stage of i-vectors, to build a more suitable discrim-
inative representation for the supervised classifier. It is also
worth noting that recently different methods have been pro-
posed to incorporate Deep Neural Networks (DNNs) into the
context of speaker recognition. In [18, 19], DNNs were used
to extract an enriched vector representation of speakers for text-
dependent speaker verification. In [20], DNNs were employed
to extract a more discriminative vector from i-vector. They have
been used in [21] to collect sufficient statistics for i-vector ex-
traction. There were also few attempts addressing methods to
produce alternative vector-based speaker representation using
RBMs, some of which, show moderate success compared to i-
vector [22, 23].

Motivated by the representational power of RBMs, we pro-
pose a novel framework to produce a vector-based represen-
tation for each speaker, which is referred to as RBM-vector.
This new framework maps the speaker spectral features to a
single fixed-dimensional vector conveying speaker-specific in-
formation. Although there were attempts trying to use RBMs
to produce a vector-based representation of speakers [22, 23],
this work is distinct from different perspectives. In [22, 23] sta-
tistical properties of the hidden units likelihoods were used to
build the vector representation for speakers. However, in this
paper, the connecting weights between hidden and visible units
are used to form the RBM-vectors. Furthermore, in [23], an
RBM is used to transform the GMM supervectors to smaller-
dimensional ones which can be later used for classification with
cosine similarity. However, in this work, the proposed method
is directly applied to the speech spectral features, without using
GMM-UBM approach to produce supervectors.

Taking advantage of RBM unsupervised learning algo-
rithm, a global model is trained, which will be referred to as
Universal RBM (URBM). This URBM model is further adapted
to each speaker’s data. The connection weights of each adapted
RBM model are concatenated to produce RBM-vectors. The
produced RBM-vectors are classified using cosine distance or
PLDA approach. The experimental results show that with co-
sine scoring, RBM-vector outperforms conventional i-vector by
15% relative improvement, which achieves to more than 24%
by score fusion. In the PLDA framework, the performance of
RBM-vector is comparable to i-vector, while their score fusion
attains 14% relative improvement compared to using only i-
vector.
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2. Background
Over the past few years, i-vector approach as a fixed- and low-
dimensional representation of speech utterances has dominated
the speaker recognition technologies [1]. In this method, a Fac-
tor Analysis (FA)-based approach is applied to supervectors.
One of the most successful supervectors is obtained by con-
catenating the D-dimensional mean vectors of an M -mixture
adapted GMM. In other words, each variable length utterance
is represented by a (M × D)-dimensional GMM supervector.
The speaker- and session-dependent GMM supervectors are fur-
ther used to train the total variability matrix [1]. This low-rank
matrix is trained using Baum-Welch statistics of all available
speech utterances. Total variability matrix is adopted to esti-
mate a low-dimensional vector representation for each speaker,
called i-vector. The obtained i-vectors can be classified by sim-
ply using cosine similarity, which is an effective distance metric
when no speaker label is available for development data [1], or
employing a more complex classifier such as PLDA [24, 3].

On the other hand, representational abilities of Restricted
Boltzmann Machines (RBMs) along with their simple unsuper-
vised learning algorithm raise them as a potential alternative to
the previously mentioned methods. RBMs are generative mod-
els composed of two fully connected visible and hidden lay-
ers, where there is no intra-layer connection between units as
illustrated in Fig. 1a. Units can be stochastic binary or Gaus-
sian real-valued. They can be trained using an approximated
version of Contrastive Divergence (CD) algorithm called CD-1
[25]. CD-1 is a three-step procedure (Fig. 1b). First, given the
visible units values, the values of the hidden units are computed
with their posterior probability distribution. In the second stage,
given the values of the hidden units, the visible units values are
reconstructed. It should be mentioned that the hidden unit like-
lihoods are converted to binary values before being used in the
second stage [26]. In the third stage, once more the hidden val-
ues are computed given the reconstructed values of the visible
units. After completing this procedure, the network weights will
be modified by:

∆wij ≈ −α
(
〈vihj〉data − 〈vihj〉recons

)
(1)

where α is the learning rate, wij is the connection weight
between visible unit i and hidden unit j, 〈vihj〉data and
〈vihj〉recons denote the expectations when the hidden state val-
ues are driven, respectively, from the input data and the recon-
structed one. This process is iterated until the algorithm con-
verges. Each iteration is called an epoch. In order to acceler-
ate the parameter updating process, it is recommended to divide
the whole training dataset into smaller ones, called mini-batches
[26].

3. Proposed Method
In this paper, we propose a new framework using RBMs, to
produce an alternative vector-based representation for speakers,
referred to as RBM-vectors. Figure 2 shows the block diagram
of the RBM-vector extraction process. Employing speech spec-
tral features, an RBM model is trained based on the background
data. It is then adapted to the data of each speaker in order to
build a model per speaker. These models are adopted to form
RBM-vactors. These vectors can be further used for speaker
verification using cosine distance metric or conventional com-
pensation strategies such as PLDA. The overall process can be
considered as three main stages, namely Universal RBM train-
ing, RBM adaptation, and vector extraction using parameters of
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Figure 1: RBM (a), and RBM training using CD-1 algorithm (b).

the adapted RBM models. All these stages will be addressed in
detail in the following subsections.

3.1. Universal RBM

The first step towards building the proposed speaker vector rep-
resentation is to train a universal model based on all available
background data, which conveys the speaker-independent infor-
mation. This is carried out by training a single RBM given the
spectral features extracted from all background utterances. The
binary hidden units are chosen for the RBM. However, due to
the fact that the features are real-valued data, we use Gaussian
real-valued units for observed variables. The CD-1 algorithm
for Gaussian-Bernoulli RBMs works under the assumption that
the inputs have zero mean and unit variance [26]. Therefore, a
cepstral mean-variance normalization (CMVN) is applied to the
features of each utterance prior to RBM training (Fig. 2). The
obtained RBM model is referred to as Universal RBM (URBM).
URBM represents the general, speaker-independent model. It
is assumed that URBM is able to learn both speaker and ses-
sion variabilities from the background data. It should be built
using whole available background samples (feature vectors) in
order to cover a wide range of speaker and channel variabili-
ties. However, due to resource limitations we randomly select
as many background feature vectors as possible for training.

3.2. RBM adaptation

In order to build a speaker-specific model for each speaker, it is
proposed to incorporate speaker-dependent information into the
obtained universal model (URBM). This is carried out by means
of an adaptation stage. For each speaker, the speaker adaptation
is performed by training an RBM model with a few number
of iterations using data samples of the corresponding speaker.
The parameters of this RBM model, such as weights and biases,
are initialized by the ones obtained from the URBM. In other
words, the URBM is adapted to the data of each speaker. The
idea of this kind of adaptation has also shown success in [11, 12,
13, 14] to initialize the parameters of DNNs for classification
purposes.

Figure 3 shows the weight matrices for URBM along with
its adapted versions for two randomly selected speakers. This
speaker adaptation, modifies the weights of the universal model.
As it can be seen from the Fig. 3, the weights of the two selected
speakers after adaptation are distinct one from another. It should
be noted that in comparison to URBM training, fewer number
of epochs is used for the adaptation procedure. This is important
in order to avoid overfitting. This also makes the training time
much less than what is needed for training a speaker-specific
model without adaptation.
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Figure 2: Block diagram showing different stages of RBM-vector extraction process. CMVN is a speaker dependent cepstral mean-variance normal-
ization.
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Figure 3: Comparison of the adapted weight matrices. The URBM
weight matrix, obtained using the background data, is adapted to the
data of two different speakers. It shows that the connection weights
convey the speaker-specific information.

3.3. RBM vector extraction

Once the adaptation step is completed, an RBM model is as-
signed to each speaker. There may be different scenarios avail-
able in order to build a fixed-dimensional vector representation
per speaker using these models. One naive approach is to feed
the data of each speaker into its corresponding RBM model, and
then use the statistical properties of the outputs to form a vec-
tor. In this method it is assumed that the outputs of each model,
which are posterior distributions, convey speaker-specific infor-
mation and the estimates of the first and second order moments
can lead us to a vector-based representation.

For each speaker model the mean and variance of its out-
puts are computed and concatenated to build a single vector.
In order to improve the discrimination power of these vectors,
it is proposed to transform the outputs prior to the mean and
variance computations. We have tried some different transfor-
mations among which we have chosen the logarithm function as
in [23]. The logarithm function maps the output of the sigmoid
function, that is within 0 and 1, to a broader interval from −∞
to 0. The obtained vectors will be mean-normalized prior to
whitening. The whitening with dimension reduction is carried
out by means of Principle Component Analysis (PCA). These
whitened vectors are now ready for classification purposes with
cosine similarity or PLDA. Experimental results showed that
using higher-order moments could not considerably improve the

performance for this kind of vectors.
Another proposed idea in this work is to utilize the RBM

model parameters such as hidden-visible connection weights W
and biases to build the speaker vector. As illustrated in Fig. 3,
the weights carry speaker-specific information which are dis-
tinct enough one from another, to be used for speaker recogni-
tion. The rows of the weight matrix along with the bias vectors
are concatenated to form a high-dimensional RBM-vector. The
obtained vectors will be subject to a mean-normalization prior
to PCA whitening with dimension reduction. PCA is trained us-
ing background speaker vectors and then applied to all the back-
ground, target, and test vectors. Whitening transformation ro-
tates the original data to the principal component space in which
the rotated data components are less correlated,

ΛL×M = (S1:L×1:L + ε)−1/2 U1:L×M (2)

where Λ is the transformation matrix which is multiplied by the
original data for whitening and dimension reduction, U is the
matrix of eigenvectors, S is the diagonal matrix of the corre-
sponding eigenvalues, M and L are the values for the dimen-
sion of original and shortened vectors, respectively. A small
constant of ε is added, for regularization, to avoid large values
in practice. The values for L and ε must be set experimentally
to optimize the results.

The output of the whitening stage is called RBM-vector and
similar to i-vector can be used for speaker verification using
cosine similarity or PLDA. In the next section, it will be shown
that using weights to build the speaker-specific vectors results
in a more discriminative vector-based representation for speaker
verification compared to the first scenario as mentioned earlier.
It is also shown that this representation is able to outperform the
conventional i-vector approach.

4. Experimental Results
4.1. Database and setup

From our experience in [14], it has been decided to work on
the spectral features instead of Filter-Bank Energy (FBE) fea-
tures. Frequency Filtering (FF) [27] features, have been used
as spectral features in this work. FF features, like MFCCs, are
a decorrelated version of FBEs [27]. It has been shown that
FF features achieve equal or better performance than MFCCs
[27]. They are extracted every 10 ms with a 30 ms Hamming
window. The size of static FF features is 16. Before feature ex-
traction, speech signals are subject to an energy-based silence
removal process. All the features are mean-variance normalized
per each utterance. The whole core test condition of the NIST
2006 SRE evaluation [28] is considered in all the experiments.
It comprises 816 target speakers, with 51, 068 trials. Each sig-
nal consists of about two minutes of speech. Performance is
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evaluated using the Equal Error Rate (EER) and the minimum
Decision Cost Function (minDCF) calculated using CM = 10,
CFA = 1, and PT = 0.01.

The performance of the proposed approach is compared
with the i-vector baseline system using either cosine similar-
ity scoring or PLDA. The gender-independent UBM is repre-
sented as a diagonal covariance, 512-component GMM. ALIZE
open source software [29] is used to extract 400-dimensional i-
vectors. The development data includes 6125 speech files col-
lected from NIST 2004 and 2005 SRE corpora. It is worth
noting that in the case of NIST 2005 only the speech files of
those speakers which do not appear in NIST 2006 database
are used. The same development data is used to train UBM,
T matrix, whitening matrices, PLDA, and URBM. The PLDA
for the i-vector/PLDA baseline is trained with 15 iterations and
the number of eigenvoices is empirically set to 250. It should
be mentioned that both i-vectors and RBM-vectors are length-
normalized prior to training PLDA.

Since in this work it is necessary to train a network per
speaker, we try to reduce the computational complexity consid-
ering only 5 neighbouring frames (2-1-2) of the features in or-
der to compose 80-dimensional feature inputs for the networks.
All the RBMs used in this paper comprise 400 hidden units.
The fixed momentum and weight decay for both URBM and
adapted RBMs are set to 0.91 and 0.0002, respectively. The
URBM is trained by a learning rate of 0.0001 with 200 epochs.
The minibatch size of 100 is used for training both URBM and
RBM adaptation. The URBM should be trained based on all
available background data which is here about 60 million fea-
ture vectors. However, due to the resource limitations we have
done a random sample selection prior to training and reduced
the number of feature vectors to 8 million. As mentioned in sec-
tion 3, the URBM model is adapted to the data of each speaker
to build the speaker-specific models. This adaptation process is
carried out by 5 epochs of CD-1 algorithm and a learning rate
of 0.005. For each adapted RBM, the connection weights and
biases are concatenated. These obtained vectors are further sent
to a whitening with dimension reduction stage using PCA to de-
crease the dimension and the correlation between RBM-vector
components. As mentioned in section 3.3, a regularization con-
stant ε is considered as a hyperparameter for whitening to avoid
numerical instability. This value is set to 0.0005 for all the ex-
periments reported in this section. The optimum weights for the
score-level fusion has been set heuristically. For cosine scoring,
these weights were set to 0.35 and 0.65 for i-vector and RBM-
vector, respectively. In the case of PLDA, they were set to 0.65
and 0.35 for i-vector and RBM-vector, respectively.

4.2. Results

RBM-vectors of different sizes have been evaluated using co-
sine similarity. The results are shown in Table 1. The perfor-
mance of RBM-vector of size 400 is comparable to the i-vector
of equal length. The 600-dimensional RBM-vectors slightly
perform better than our baseline. By increasing the length of
the RBM-vector to 800, we achieve 6% relative improvement.
However, by increasing the size to 2000, it outperforms the con-
ventional i-vector by 15% relative improvement. The last row
in the table shows the score-level fusion of the i-vector tech-
nique and RBM-vector of size 2000, which is more than 24%
relative improvement compared to using only i-vector. This is
important particularly when no data label is available to perform
supervised compensation techniques such as PLDA. It should
be mentioned here that RBM-vectors perform much better than

Table 1: Comparison of the i-vector with different RBM-vectors in
terms of EER%, minDCF, and vector dimension. Results obtained on
the core test condition of NIST SRE 2006 using cosine scoring. The
fusion is applied on score level.

Technique EER (%) minDCF
i-vector (400) 7.01 0.0324
RBM-vector (400) 7.26 0.0341
RBM-vector (600) 6.77 0.0327
RBM-vector (800) 6.58 0.0320
RBM-vector (2000) 5.98 0.0289
Fusion i-vector (400) & RBM-vector (2000) 5.30 0.0278

the first and second order moments of the RBM outputs. Using
the mean of the RBM transformed outputs, as explained in sec-
tion 3.3 to form speaker vector, resulted in an EER of 11.26%.
This vector was further concatenated with the variance vector
and resulted in an EER of 11.07%, which was not consider-
able improvement. This shows that the speaker-specific infor-
mation lies more within the interaction of visible and hidden
units, which is here considered as connection weights.

The dimension of the vectors are reduced to the length of L
as mentioned in the previous section. This dimension affects the
EER percentage. Figure 4 shows the impact of the size of RBM-
vector on the performance of the system in terms of EER. The
figure has been plotted upto L = 4000, however it is possible to
obtain slightly better results at the cost of longer vectors, either
using alone or in combination with i-vector as score fusion.

400 1000 2000 3000 4000

6

6.5

7

7.5

PCA dimension

E
E

R
 (

%
)

Figure 4: The impact of the size of RBM-vector on the performance
of the system in terms of EER%. The performance are evaluated using
cosine scoring.

PLDA is also applied to RBM-vectors and the results have
been reported in Table 2. The PLDA is trained with 15 itera-
tions and the number of eigenvoices are empirically set to 250,
350, 400, for RBM-vectors of sizes 400, 600, 800, respectively.
The RBM-vectors are subject to length normalization prior to
PLDA training. Using i-vector/PLDA shows an improvement of
about 30% compared to i-vector/cosine framework. Comparing

Table 2: Comparison of the performance of PLDA with i-vector, and
RBM-vectors of different dimensions, in terms of EER%, and minDCF.
Results were obtained on the core test condition of NIST SRE 2006
evaluation. The fusion is applied on the score level.

Technique EER (%) minDCF
i-vector (400) 4.90 0.0263
RBM-vector (400) 5.55 0.0277
RBM-vector (600) 5.15 0.0276
RBM-vector (800) 5.42 0.0266
i-vector (400)+RBM-vector (600) Fusion 4.21 0.0230
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Figure 5: Comparison of DET curves for the proposed RBM-vectors
with i-vector. The size of the RBM-vector is given in parenthesis. The
score fusion of i-vector with RBM-vector of length 2000 is also illus-
trated. Results obtained on the core test condition of NIST SRE 2006
evaluation using cosine similarity.

the results obtained by RBM-vector/PLDA framework with the
ones from RBM-vector/cosine shows a relative improvement of
24%, 24%, and 18% for RBM-vectors of dimensions 400, 600,
and 800, respectively. This reveals that PLDA as a compensa-
tion technique, is more suitable for i-vectors than RBM-vectors.
This proposes a potential research direction to find more suit-
able compensation techniques for RBM-vectors.

Figure 5 compares the Detection Error Trade-off (DET)
curves of RBM-vectors of different sizes with the i-vector base-
line system in terms of cosine scoring. According to this fig-
ure, the RBM-vectors of size 400 works close to i-vector in
the lower false alarm rate region, however, in the higher false
alarm rate region they diverge from each other. The 600- and
800-dimensional RBM-vectors perform better than i-vector in
the lower false alarm rates. It can be seen that RBM-vector
of length 2000 consistently outperforms the i-vector in a wide
range of operating points, especially those in the lower false
alarm regions. The result obtained by the score fusion of our
baseline with RBM-vector of size 2000 is also illustrated. It
can be concluded that RBM-vector is better suited with lower
false alarm rate regions compared to i-vector.

The PLDA performance of different RBM-vectors and i-
vector are compared in Fig. 6, in terms of DET-curves. As
it is illustrated, i-vector/PLDA performs better than RBM-
vector/PLDA, in a wide range of working points. However,
RBM-vector/PLDA converge to i-vector/PLDA, in lower false
alarm rate regions. It should be mentioned that fusing the PLDA
scores of i-vector with RBM-vector of size 600, consistently
outperforms the i-vector/PLDA in all the operating points, par-
ticularly those in the lower false alarm areas.

5. Conclusions
We train a global model which is referred to as Universal RBM
(URBM). The URBM is adapted to the data of each speaker
in development, enrolment, and evaluation datasets. The con-
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Figure 6: Comparison of DET curves for the proposed RBM-vectors
with i-vector. The size of the RBM-vector is given in parenthesis. The
score fusion of i-vector with RBM-vector of length 600 is also illus-
trated. Results obtained on the core test condition of NIST SRE 2006
evaluation using PLDA.

nection weights of each adapted RBM model are concatenated
to form a high-dimensional vector per speaker. This vector is
further subject to a PCA whitening with dimension reduction
in order to have a low-dimensional representation for each ut-
terance, called here RBM-vector. This new fixed-dimensional
vector conveys speaker-specific information and can be used in
speaker recognition. The preliminary results on the core test
condition of the NIST SRE 2006 database show that this new
vector representation outperforms the conventional i-vector us-
ing cosine similarity by 15% relative improvement. The fusion
with i-vector using cosine can improve more than 24%. The im-
portance of this fusion arises from the fact that both vectors are
produced in an unsupervised fashion, and can be used instead
of i-vector/PLDA, when no data label is available. As expected,
using PLDA instead of cosine similarity, improves the perfor-
mance of RBM-vectors by 24% relative improvement in terms
of EER. Finally, when fusing the RBM-vector/PLDA scores
with the ones obtained by i-vector/PLDA a further improvement
of 14% is attained compared to using only i-vector/PLDA.
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