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ABSTRACT 

Three simple methods are proposed for the estimation of 
the modulation index of Continuous Phase Modulated 
signals in noise. These methods employ the estimated 
autocorrelation and fourth-order cumulant sequences of the 
received signal after sampling at the symbol rate. Analytic 
expressions are derived for the asymptotic mean and 
variance of the estimated parameters which are corroborated 
by means of Monte Carlo simulations. The performance 
of the methods is illustrated graphically and numerically. 
It is concluded that, under significant noise degradation, 
only the scheme based on the fourth-order cumulant 
sequence can be used to consistently estimate the 
modulation index h in the range O< h < 1. 

1. INTRODUCTION AND PROBLEM 
FORMULATION 

Continuous Phase Modulations (CPM) represent an 
important class of communication signals due to their 
bandwidth efficiency. One of the most important 
parameters that define CPM signals is the modulation 
index. In this paper, we study the estimation of this 
parameter for demodulation purposes. 

CPM digital communication signals are given by [ 13, 

~ ( t )  = A COS [ 2~ fc t + Nt;  I )  + @ ]  (1) 
00 

Nt;  I )  = 2xh Ik  q(t - kT,), 
k =-00 

where A is the amplitude& is the carrier frequency, & is 
a constant phase, h is the modulation index and Ik are the 
transmitted symbols. Each symbol in the sequence can 
take one out of M values (f l ,  +3, ..., k(M-l)]. These 

symbols are assumed statistically independent and 
identically distributed. The waveform q( t )  may be 
represented in general as the integral of some pulse u(t). If 
u(t) = 0 for t > T,, where Ts is the symbol period, the 
CPM signal is called full response CPM. If u(t) # 0 for 
t > Ts ,  the modulated signal is then called partial  
response CPM. In the sequel, we will consider only full 
response CPM signals. 

To estimate the modulation index h, the equivalent 
lowpass signal v(t)  is sampled to derive the discrete 
sequence v(n). The sampling period is denoted by To. 

2. AUTOCORRELATION AND FOURTH- 
ORDER CUMULANT SEQUENCES 

The autocorrelation and power spectrum of CPM 
signals have been studied thoroughly in the literature (see 
for example [2]). For binary CPM signals with h < 1 and 
sampling at the symbol rate, i.e. T, = To,  v (n )  is 
stationary and for its autocorrelation function a,(m) we 
obtain, 

a,,(m) = A2 cos(w h j M .  (3) 

The modulation index h can be obtained from the 
autocorrelation of the received sequence. However, if the 
CPM signal is observed in noise, the autocorrelation of 
the noise is added to the autocorrelation of the signal 
making the estimation of h biased. Fig. 1 shows the 
autocorrelation function a,(m) as a function of the 
modulation index. 
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Figure 1: Autocorrelation as a function of the modulation 
index. 

We have studied the higher-order moments and 
cumulants of CPM signals. They can provide us with 
consistent unbiased estimates of the modulation index h 
even when the received sequence is corrupted by additive 
Gaussian noise of unknown covariance. In particular, 
sampling at the symbol rate, i.e. Ts = To, a slice of the 
fourth-order cumulant of v(n) with h e 1 admits the 
following expression, 

c,(O, 0 ,  m) = -A4 COS(IC h j d  (4) 

which can also be used to estimate h. Fig. 2 shows the 
cumulant sequence cJ0, 0, m) as a function of the 
moduIation index. 

1 "  

Figure 2: Fourth-order cumulant as a function of the 
modulation index. 

3. ESTIMATION OF THE MODULATION 
INDEX. 

We denote by $(m) and t(0, 0, m) the real part of the 
estimated autocorrelation and fourth-order cumulant of the 
received signal after sampling at the symbol rate. We 
analyzed three simple methods that can be used to estimate 
c o s [ a h ] .  Two of them employ the estimated 
autocorrelation whereas the third one makes use of the 
fourth-order cumulant sequence. They are defined as, 

C l  = G(1) I G(0) (5a) 

Since ci employs the power of the received sequence, it is 
clearly sensitive to the SNR. The estimation given by c2 
is asymptotically unaffected by white noise but can not be 
used for values of h near 0.5 when a(1) tends to zero. In 
addition, c2 is biased if the noise is colored. On the other 
hand, c3 provides asymptotically unbiased estimates in 
white or colored Gaussian noise. 

We derived analytic expressions for the bias and 
variance of c i ,  c2, and c3 as a function of the modulation 
index and the SNR. This analytic performance analysis has 
been confirmed by means of Monte Carlo simulations. 

4. ANALYTIC PERFORMANCE ANALYSIS 

We study here the asymptotic mean and variance of the 
three estimation methods proposed above. These results 
hold exactly only in the limit as the number of samples 
N, approaches infinity. Nevertheless, they are sufficiently 
accurate for values of N in the range of interest. 

Analytic performance evaluation of algorithms based 
on sample cumulants requires computation of the 
covariances of these statistics, and the Jacobian matrix of 
the estimates with respect to them [4]. 

In the three proposed methods the estimates are 
obtained as the quotient of two sample statistics: 

A 

(9 S l  e = -  

In this case, the asymptotic mean and variance of the 
8 

estimate e is given by: 
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5. EXAMPLE 

where vi1 = var{slJ. v22 = var{sd and vi2 = cov{sl, sd 
are the asymptotic covariances of the sample statistics si 
and 32. 

Hence, we need to compute the asymptotic covariances 
of the statistics considered in ( 5 )  to obtain the variances of 
the estimates. Following a similar procedure to the one 
described in [4], we derived general expressions for the 
covariances of sample cumulants of CPM signals in noise 
from the covariances of sample moments. 

Hand computation of the covariances of sample fourth- 
order moments is very tedious since a summation of 
eighth-order moments of the communication signal in 
noise is necessary. A symbolic mathematical package [3], 
has demonstrated to be very useful in this task. 

Substitution of the resulting covariances in (8) gives 
the performance of the three estimation methods. Only the 
final results are given. 

Let us defie 
r = 0,,2 I A ~  

a = cos[2zh] 

where A is the amplitude of the CPM signal and an2 is 
the variance of the white Gaussian noise. The asymptotic 
mean and variance of the estimates cl , c2, and c3 are: 

E{cd =  COS[^] 

2 4 + 2 &  +(44a)r+(6+2a)$ 
8 cos2[zh] N 

W{Cd  = 

E{c3} = cos[lrh] 

( I  -a)r+3$+(16+8~)?+(6+4a)/ 
2 N  w{c31 = 

The following figures illustrate the performance of the 
proposed methods for the estimation of the modulation 
index of a binary full response CPM signal in white 
Gaussian noise for SNR = 0 d6, and a sequence length of 
N = 1000 samples. 

Fig. 3 shows the asymptotic performance of the first 
estimation method c1. The dotted line indicates the mean 
of the estimate while the dashed lines the mean +/- the 
standard deviation. The solid line is the real value of 
cos(zh).  As we mentioned before the method is clearly 
biased in the presence of noise. 
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Figure 3: Performance analysis of c l .  

The performance of the estimation obtained with c2 is 
given in Fig. 4. In this case the method is not biased and 
the real value of cos(zhh), solid line, coincides with the 
mean of the estimation. The mean +/- the standard 
deviation are indicated by the dashed lines. We can observe 
how the estimation degrades as we approach the critical 
value of h = 0.5 where the variance goes to infiity. 

ABppmicFbh”xAMlyaf  

-- -1 t I f  .-. 

j! -0.5 

0 ,  I , ,  , I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M d u i m h d o l  

Figure 4: Performance analysis of cz 
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Figure 5: Performance analysis of c3 

Fig. 5 illustrates the performance of c3. The method is 
again unbiased and thus, the real value of cos(nhh), solid 
line, coincides with the mean of the estimation. The mean 
+/- the standard deviation are indicated by the dashed lines. 
A relatively small variance is attained independently of the 
value of h in the range 0 c h c I .  

The predicted analytic results were compared against 
simulation results for two values of the modulation index 
h. The mean and standard deviation of c l ,  c2, and c3 is 
presented in Tables 1 and 2. The first and second columns 
correspond to the simulation results while the third and 
fourth column give the analytic results. 

The estimated autocorrelation and fourth-order 
cumulant sequences where computed from N = I000 
samples of the received signal. The simulation results 
were obtained from a total of 100 Monte Carlo runs. 

Montecarlo Montecarlo Asymp. Analytic 1 mean I std I mean 1 std 1 
r i  I i I i 

ci I -0.4030 0.0181 I -0.4045 I 0.0183 I 1 C2 I -0.8086 I 0.0423 I -0.8090 I 0.0444 I 
I C 3  I -0.8500 I 0.1466 I -0.8090 1 0.1212 I 
Table 1: Simulation versus analytic results for h = 0.8. 
COS(&) = -0.8090. 

Montecarlo 

Table 2: Simulation versus analytic results for h = 0.51, 
COS(7Ch) = -0.03 14. 

6. CONCLUSIONS 

In this paper we have addressed the problem of 
estimating the modulation index of Continuous Phase 
Modulated signals in noise. Three simple methods that 
employ the estimated autocorrelation and fourth-order 
cumulants have been proposed and analyzed. 

We derived the analytic expressions of the covariances 
of sample cumulants of CPM signals in noise, and used 
these expressions to obtain the asymptotic mean and 
variance of the estimates. This analysis shows that, for 
low SNR, only the scheme based on the fourth-order 
cumulant sequence can be used to consistently estimate the 
modulation index h in the range 0< h c I. The Monte 
Carlo simulations confirm the predicted behavior for the 
three proposed methods. 
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