
 1 

COMPARATIVE ANALYSIS OF BLEVE MECHANICAL ENERGY AND 

OVERPRESSURE MODELLING 

Behrouz Hemmatian, Eulàlia Planas, Joaquim Casal* 

Centre for Technological Risk Studies (CERTEC), Universitat Politècnica de Catalunya-

BarcelonaTech, Diagonal 647, 08028 Barcelona, Catalonia, Spain 

 

ABSTRACT 

A mechanical effects of a BLEVE are overpressure and ejection of fragments. Although 

fragments reach much longer distances, peak overpressure can be very strong over a 

certain area. Diverse authors have proposed methodologies for the estimation of the 

explosion energy and peak overpressure from these type of explosions, based on 

different thermodynamic and physical assumptions. Here these methodologies are 

commented and compared. Their predictions, which show an important scattering, are 

checked by comparison with two sets of experimental data taken from the literature. 

The results obtained indicate that none of the models take into account Reid’s theory. 

The models based on ideal gas behaviour and constant volume energy addition, 

isentropic expansion and isothermal expansion give quite conservative (i.e., high) 

values of both energy released and overpressure, while those assuming real gas 

behaviour and adiabatic irreversible expansion give lower values, much closer to the 

real/experimental ones. The diverse uncertainty factors affecting the prediction of peak 

overpressure are also commented. 

 

Keywords: vessel explosion, explosion energy, blast overpressure, pressure wave. 

 

 

 

                                                           

* Corresponding author. Tel.: +34 934 016 704. 
   E-mail address: joaquim.casal@upc.edu (J. Casal). 

mailto:joaquim.casal@upc.edu


 2 

1. Introduction 

A boiling liquid expanding vapour explosion (BLEVE) is one of the severe major 

accidents that can happen in the process industry or during the transport of hazardous 

substances. This type of explosion occurs when a vessel containing a superheated liquid 

fails. At that moment, the vapour inside the vessel will expand and the superheated 

liquid will experience a flash vaporization. The expansion of vapour (or gas; in this 

paper the word "vapour" will be used) will cause a sudden volume increase that will 

create an overpressure wave. In such explosions, the energy stored in the liquid and 

vapour phases is devoted essentially to break the vessel, to give kinetic energy to the 

ejected fragments and to generate a pressure wave. A BLEVE should not be confused 

with a fireball, a completely different phenomenon which often follows these 

explosions (Hemmatian et al, 2016). 

The common method to predict the most important effect produced by a BLEVE, i.e. 

the peak overpressure, consists in determining the total mechanical energy released by 

the explosion. Then, assuming that a certain percentage of this energy is converted into 

a pressure wave, the peak overpressure can be estimated by the method of the TNT 

equivalent mass, Sachs scaled distance curve or other similar characteristic curves 

(Casal, 2008; Crowl, 2010). 

There is not a unique way to calculate the mechanical energy released in a BLEVE, and 

several models can be found in the literature. The differences among them rely, 

basically, on the thermodynamic assumptions on which they are based (Planas and 

Casal, 2015). Few attempts have been made to compare the results given by the diverse 

models with the rather scarce experimental data available and, mostly, the comparison 

has been made in terms of the peak overpressure generated (Crowl, 2002; Abbasi et al., 

2007; Bubbico and Marchini, 2008; Ogle et al., 2012; Laboureur et al., 2014). 

In this paper the models presented in the literature to estimate the BLEVE mechanical 

energy and overpressure effects are reviewed. Their predictions concerning the 

mechanical energy released are compared and, after compiling some experimental data 

on BLEVEs, a comparison is also performed in terms of overpressure estimation. The 

effect of the fraction of the energy released that is invested in creating overpressure, 

and of considering only the vapour phase contribution or both the vapour and liquid 

flash contributions on the results obtained are also evaluated. 
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2. BLEVE mechanical energy and overpressure modelling 

During the failure of a vessel containing a superheated liquid, the expansion of the 

vapour phase present before the burst plus the partial flashing of the liquid and 

subsequent expansion of the formed vapour, generate the mechanical energy. The way 

in which this mechanical energy is computed depends mainly on the thermodynamic 

assumptions that are made. These assumptions can be summarized as follows: 

− Constant volume energy addition (CV) 

− Isothermal expansion (IE) 

− Thermodynamic availability (TA) 

− Ideal gas behaviour and isentropic expansion (IISE) 

− Real gas behaviour and isentropic expansion (RISE) 

− Real gas behaviour and adiabatic irreversible expansion (RAIE). 

The first four assumptions consider ideal gas behaviour, while the last two consider real 

gas. To take into account the energy associated to the flashing fraction (𝑓𝑓) of the 

superheated liquid, the mass of liquid that will be converted into vapour when reducing 

the pressure has to be estimated. Its volume at the pressure just before the explosion 

(𝑉𝑉𝑓𝑓) has to be added to the one of the previously existing vapour phase (𝑉𝑉) to obtain the 

total volume of vapour contributing to the expansion energy (𝑉𝑉∗) (Casal, 2008): 

𝑓𝑓 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−2.63 ∙
𝑐𝑐𝑝𝑝𝐿𝐿,𝑇𝑇𝑇𝑇

∆ℎ𝑣𝑣,𝑇𝑇𝑇𝑇
∙ (𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑇𝑇) ∙ �1 − �

𝑇𝑇𝑐𝑐 − 𝑇𝑇
𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑇𝑇

�
0.38

�� (1) 

𝑉𝑉𝑓𝑓 = 𝐿𝐿 ∙ 𝑓𝑓 ∙ �
𝜌𝜌𝐿𝐿
𝜌𝜌𝑉𝑉
� (2) 

𝑉𝑉∗ = 𝑉𝑉 + 𝑉𝑉𝑓𝑓 (3) 

The equations required to calculate the mechanical energy associated to the vapour 

phase (𝐸𝐸) or to the sum of vapour and flashing liquid contributions (𝐸𝐸∗) for each of the 

thermodynamic assumptions listed before have been summarized in the Appendix.  

The method based on constant volume energy addition (CV), proposed by Brode 

(1959), is the simplest one and provides the energy that can potentially be released in 

the explosion as the amount of energy needed to pressurize the vapour from ambient 

pressure to the pressure just before the explosion, considering a constant volume 
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process. The isothermal expansion (IE) assumption (Smith and Van Ness, 1996) 

considers that, during the explosion, the expansion of the gas is so fast that there cannot 

be any changes in the temperature. This is the approach which provides usually the 

largest values for the explosion energy. Crowl (1991, 1992) proposed the 

thermodynamic availability (TA) method to provide the maximum mechanical energy 

that could be obtained from a fixed mass of material (ideal gas) as it reversibly changed 

from burst to ambient conditions. Prugh (1991) proposed to calculate the explosion 

energy considering that the vapour behaves as an ideal gas and its expansion is adiabatic 

and reversible (i.e. isentropic) (IISE assumption). Other authors, such as Roberts (2000) 

or the CCPS (2010), consider the isentropic expansion of the vapour but take the real 

properties of the material (RISE). Finally, Planas et al. (2004) and Casal and Salla 

(2006) considered that the assumption of an adiabatic and irreversible expansion 

process with the real properties of the substance (RAIE assumption) would be the most 

realistic approach, taking into account the obvious non-reversible and non-isentropic 

nature of the explosion phenomenon. 

All these methods provide an estimation of the total energy released in the BLEVE 

explosion. Nevertheless, this energy is not fully converted into pressure wave as it is 

also used to, among others, break the vessel, to deform the fragments generated, to 

provide kinetic energy to the ejected projectiles and to heat the environment (although 

this part is negligible), etc. The energy distribution among all these factors depends on 

the particular conditions of each explosion; the percentage devoted to the generation of 

the pressure wave (usually expressed as parts per unit, from now on β) can range from 

80% in the case of fragile fracture of the vessel (quite rare) to 40% in case of a ductile 

fracture, when large fragments of the vessel are ejected, which is the most common 

case. Taking into account that the goal is to compare the effect of the thermodynamic 

assumptions on the results given by the diverse models considered, a uniform value β 

= 0.4 was considered (i.e., it is assumed that 40% of the mechanical energy released is 

devoted to create the overpressure wave); this value seems to be adequate, taking into 

account the relatively good agreement obtained with the experimental results (see 

Section 5). Therefore, the energy released which is converted into pressure wave is: 

𝐸𝐸𝑤𝑤 = 𝛽𝛽 ∙ 𝐸𝐸∗ = 0.4 ∙ 𝐸𝐸∗ (4) 
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To convert this energy into overpressure two methods are commonly used, the TNT 

equivalent mass method and the Sachs scaled distance method. In both cases, a scaled 

distance needs to be calculated and then, from the corresponding graph (CCPS, 1994; 

Laboureur et al., 2014), the peak overpressure can be obtained. The corresponding 

scaled distances can be obtained from equations (5) and (6) (Casal, 2008): 

𝑅𝑅� =
𝑟𝑟0

(2.14 ∙ 10−7 ∙ 𝐸𝐸𝑤𝑤)1 3⁄  (5) 

(where 𝑅𝑅� is the scaled distance, 2.14∙10-7 kgTNT ∙ J-1 corresponds to the blast energy of 

TNT and ro is the distance between the centre of the explosion and the point at which 

the overpressure has to be estimated, m) 

𝑅𝑅𝑠𝑠 = 𝑟𝑟0 ∙ �
𝑃𝑃0
𝐸𝐸𝑤𝑤
�
1 3⁄

 (6) 

(where Rs is the Sachs scaled distance and Po is the atmospheric pressure, Pa). 

Although these two methods give only approximate values of the peak overpressure, 

its use is adequate for a comparative analysis. 

3. Previous comparative analyses 

A few authors have performed a comparative analysis of the aforementioned 

methodologies (Table 1), based on the predicted value of the energy released or ∆P. It 

should be mentioned that those authors used different values of β  and scaled distance 

curves for the various thermodynamic assumptions in order to calculate ∆P and do their 

analyses.  

 Table 1. Thermodynamic assumptions considered in different studies. 

Authors 
Thermodynamic assumptions 

Comments 
CV RIE IE IIE TA RAIE 

Abbasi et al.  
(2007) 

      

- Comparison of models in terms of 
mechanical energy 

- Substance used: propane 
- β not used (β = 1) 

Bubbico and Marchini  
(2008) 

      

- Comparison of models in terms of 
energy and overpressure (∆P) 

- Substance used: propane 
- β = 0.5 
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- Scaled distance curve used: TNT curve 

Crowl  
(2010) 

      

- Comparison of models in terms of 
mechanical energy 

- Substance used: compressed inert gas 
-  β not used (β = 1) 

Ogle et al.  
(2012) 

      

- Comparison of models in terms of 
mechanical energy 

- Substances used: propane; chlorine; 
ammonia; R134a 

- β not used (β = 1) 

Laboureur et al.  
(2014) 

      

- Comparison of models in terms of 
overpressure (∆P) 

- Substances used: propane and butane 
- β = 0.07, 0.4, 0.5 
- Scaled distance used: TNT and Sachs 

curves 

 

Abbasi et al. (2007) performed a review of several of these methodologies. According 

to their results, if the burst energy of a vessel filled with propane was equal to 1 kJ as 

per the method based on ideal gas and isentropic expansion assumption (e.g. Prugh, 

1991), then it would be about 1.1 kJ as per the method based on real gas behaviour and 

isentropic expansion (e.g. CCPS, 2010) and 0.4 kJ as per the method based on real gas 

behaviour and adiabatic irreversible expansion (Planas Cuchi  et al., 2004). Their 

comparative study shows that this last method is less conservative than the other ones, 

giving lower values probably much closer to the real value. 

Bubbico and Marchini (2008) studied an accident involving the explosion of a vessel 

filled with propane. They applied different methods to calculate the explosion energy 

and compared the corresponding calculated overpressures with the value obtained from 

the analysis of the real case at two different distances. Comparing the estimated results 

with the real case, they observed that the methodologies based on real gas behaviour 

and adiabatic irreversible expansion assumption gave the closest values; they noted that 

the constant volume energy addition or isentropic expansion assumptions, even if far 

from the real phenomenon, might be convenient to estimate the maximum overpressure 

that could be expected.  

Crowl (2010) also compared the results obtained using the thermodynamic availability 

concept with those from three other methods, those based on ideal gas behaviour and 

isothermal expansion, ideal gas behaviour and isentropic expansion and constant 
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volume energy addition assumptions. According to this analysis, the isothermal method 

predicts higher overpressure values than the other three methods, and assuming 

isentropic expansion is the one which predicts the lowest values because it considers 

the final temperature much lower than the surroundings one. The author obtained the 

following conclusion for the value of the energy of expansion calculated from the 

diverse approaches: 

Isothermal approach > constant volume energy addition approach > thermodynamic 

availability approach > isentropic approach. 

Ogle et al. (2012) followed the work of Crowl (1992), calculating the maximum energy 

which could be released by a BLEVE. They applied thermodynamic availability to 

different fluids and compared the results with those obtained from other methodologies: 

ideal gas behaviour and isentropic expansion (Prugh, 1991), real gas behaviour and 

isentropic expansion (CCPS, 2010) and real gas behaviour and adiabatic irreversible 

expansion (Planas Cuchi  et al., 2004). The energy of expansion calculated by the 

thermodynamic availability method was much larger than that predicted by the other 

methods, and the real gas behaviour and adiabatic irreversible expansion gave the 

lowest energy; the other two methods gave similar values, except when approaching 

the critical temperature. However, the relative magnitude changed for each fluid. 

Finally, Laboureur et al. (2014) performed also a comparative study. They classified 

the experimental data into three different groups in terms of TNT equivalent mass: large 

scale (mTNT > 1 kg); mid-scale (mTNT = 1 kg) and small-scale (mTNT < 1 kg). The 

methodologies based on real gas behaviour and adiabatic irreversible expansion 

assumption (Planas Cuchi et al., 2004; Casal and Salla, 2006) gave the best fit in all 

cases. However, they also suggested that the methodologies based on ideal gas 

behaviour and isentropic expansion assumption (e.g. Prugh, 1991) could be used in a 

rather conservative approach, even though what their results give really should be 

considered in fact the theoretical upper limit of the energy released. 

All these studies coincided in that the methods assuming an ideal behaviour give higher 

values than the few ones assuming a real behaviour. However, a more detailed and 

systematic analysis, comparing the diverse predictions with experimental data obtained 

at a middle scale, was still required to establish the limitations, validity and usefulness 

of the different methodologies. 
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4. Mechanical energy according to the diverse models 

To study the effects predicted by the diverse models mentioned above, a scenario was 

defined for a 45 m3 vessel filled up to a 20%, 50%, and 80% of its total volume with 

the ten substances most commonly found in BLEVE accidents according to a previous 

historical survey (Hemmatian et al., 2015):  propane, butane, methane, water, vinyl 

chloride, chlorine, ethylene, ammonia, propylene and ethylene oxide. It was assumed 

that the vessel was heated up by an external thermal source and that it could break at 

any temperature up to the critical one; therefore, the released energy was calculated for 

all these temperatures. NIST Reference Fluid Properties (Version 9.1; Lemmon et al., 

2007) was used for the thermodynamic calculations. Fig.1 summarizes the results 

obtained for the case of 50% filling degree. The liquid superheating energy (SE) method 

(Casal and Salla, 2006) was not shown in this set of calculations because this method 

does not give the overall energy released, but just the energy invested in creating the 

overpressure wave. However, it is included in this study (see Section 6).  

Based on Fig. 1, the results show that the method based on real gas behaviour and 

adiabatic irreversible expansion gives the lowest values for energy release for all the 

substances, with a good agreement with the results of some of the previously mentioned 

studies (Bubbico and Marchini, 2008; Laboureur et al., 2014). As for the method based 

on constant volume energy addition, it gives the largest values in the cases of propane, 

butane, vinyl chloride, propylene and ethylene oxide, which have lower values of 𝛾𝛾 

(ratio of gas specific heats); when the value of γ  is higher than 1.2, this method predicts 

lower values of the energy released than those obtained from the method based on 

isothermal expansion; thus, this latter method gives the largest amount for the rest of 

substances (methane, water, chlorine, ethylene and ammonia). This is due to the fact 

that γ appears in the denominator of the constant volume energy addition equation (Eqs. 

(A-1) and (A-2), see Appendix) and does not affect the isothermal model; therefore, for 

large γ values the CV model tends to provide lower values. The method based on 

thermodynamic availability gives similar results than the one based on isothermal 

expansion; however, the former method has lower energy value at the same condition 

than the latter one. 



 9 

 

Fig. 1 - Mechanical energy released by the explosion at different temperatures and 50% initial filling 
degree (just before the explosion), based on the diverse thermodynamic assumptions for 10 different 
substances. The vertical line in the graph indicates the corresponding value of the superheat limit 
temperature (Salla et al., 2006). 
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Finally, the method based on real gas behaviour and adiabatic irreversible expansion 

shows a much smaller change as a function of temperature than the other ones.  

All aforementioned methods have the same behaviour as a function of different filling 

degrees for various substances. During the heating of a vessel, two simultaneous 

phenomena occur: expansion and evaporation of the contained liquid. If in a vessel 

there is initially a high level of liquid, this level will increase because of heating and 

subsequent expansion. In some very specific situations, the vessel could become fully 

filled with the liquid; in such a case, further heating would imply the failure of the 

vessel due to the increase of pressure, the liquid being an incompressible fluid, and the 

model analysis here will not be applicable anymore as the relationship between pressure 

and temperature will become completely different. This situation, which occurred in 

Els Alfacs accident (Casal, 2008), could also be found in the case of certain pipelines 

sections between two blocking valves.   

Another feature that can be mentioned is the fact that none of these methods shows any 

discontinuity when the superheat limit temperature is reached. This does not agree with 

the theory proposed by Reid (1979). According to it, for the explosion to be a BLEVE 

this temperature should be reached; then, the explosion mechanism would be different 

and its effects would be much more severe. This would determine the minimum 

pressure/temperature at which a BLEVE could occur. However, it seems that this 

condition should be restricted to laboratory small scale tests. 

5. BLEVE experimental data 

Two sets of BLEVE experiments from literature (Johnson et al., 1990 and Birk et al. 

2006, 2007) were used in order to check the performance of the different models 

previously commented. They were considered to be a good representative of large scale 

systems in real cases (Birk, 2012). 

 Birk et al. used 2 m3 vessels which contained liquid propane. The vessels were 

engulfed by a set of jet-fires and the overpressures at various distances (𝑃𝑃𝑠𝑠 ) were 

measured, both in the axial and transversal directions (this overpressure was that 

associated to the first registered peak, corresponding to the expansion of the previous 

existing vapour); another reported parameter was the vessel failure pressure (𝑃𝑃𝑟𝑟𝑟𝑟𝑒𝑒). A 

summary of these experimental results are shown in Table 2. 
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Table 2. Experiments performed by Birk et al. with propane in a 2 m3 vessel (Birk et al., 2006 and 
2007; Laboureur et al., 2014). 

Test 
Filling 
degree 

(%) 

Prupture 

(kPa) 

ro (distance between the 
explosion and 

measurement point, m) 

 Ps (overpressure at a 
distance ro, kPa) 

B1 17 1863 10/20/30(E)/30(S)/40(E)/
40(S) 6.65/3.5/3.11/4.19/2.11/2.73 

B2 35 1846 10/20/30/40(E)/40(S) 3.97/3.78/2.29/1.48/2.13 

B3 13 1699 10/20/40(E)/40(S) 5.29/2.75/1.72/1.83 

B4 21 1894 10/40 5.02/1.675 

B5 12 1573 10/20/30/40 4.13/2.58/1.58/1.31 

B6 51 1803 10/20/30(E)/30(S)/40(E)/
40(S) 13.11/8.95/6.03/2.99/3.37/4.06 

B7 52 1563 10/20/30/40 4.563/3.4/1.93/1.58 

B8 53 1813 10/20/30(E)/30(S)/40(E)/
40(S) 4.15/2.99/2.99/2.29/2.6/0.64 

B9 61 1858 10/20/30/40 5.44/5.05/3.59/2.7 

S: transversal direction 

E: axial direction 

 

Johnson et al. (1990) performed a series of tests with butane and propane (Table 3). 

They used electric immersion heaters for heating up the vessels; a polymeric heat 

insulator covered the vessels to reduce heat losses. Detonation of a short length of linear 

shaped high explosive charge provoked the failure of the tanks. In one of the tests (J6) 

the experimental fluid was changed from butane to propane, without changing the 

vessel capacity. These authors also performed one test by increasing the volume of the 

container (10.8 m3) and keeping the same amount of butane (2000 kg) such as in another 

test (J5). In another experiment (J3), they reduced the amount of butane to 1000 kg in 

the same vessel volume. In these tests, the overpressures generated by the expansion of 

the vapour phase present before the burst and by the flash vaporization of the liquid 

often combined into a single peak. 

Table 3. Experiments performed by Johnson et al. with propane in a 2 m3 vessel (Johnson et al., 1990). 
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Test 

Filling 
degree 

(%) Fluid m (kg) V (m3) 
Prupture 

(kPa) 

ro (distance 
between the 

explosion and 
measurement 

point, m) 

Ps 
(overpressure 

at a distance ro, 
kPa) 

J1 75 Butane 2000 5.659 1460 25/100/150 6.2/1.3/1.1 

J2 76 Butane 2000 5.659 1510 25/50/100/150 6.3/3.9/0.9/0.6 

J3 38 Butane 1000 5.659 1520 25/50/100/150 5/2.8/1.2/0.8 

J4 68 Butane 2000 5.659 770 25/50/100/150 1/0.5/0.17/0.15 

J5 40 Butane 2000 10.796 1510 25/50/100/150 8.2/3.4/1.4/0.7 

J6 77 Propane 2000 5.659 1520 25/50/100/150 2.3/1.2/0.3/0.3 

J7 76 Butane 2000 5.659 1520 25/50/100 7/3.4/1.3 

6. Comparative analysis 

Here a constant 𝛽𝛽 factor –fraction of the energy released converted into a pressure 

wave– is considered and set equal to 40% (𝛽𝛽 = 0.4) (Planas-Cuchi et al. 2004), even if 

different values had been proposed in the diverse methods (in fact, most authors have 

considered 100% (𝛽𝛽 = 1) in a quite conservative and hence non-realistic approach)- 

This constant value was used to obtain a better comparison of the various 

thermodynamic assumptions corresponding to the diverse methods. The two scaled 

distance curves (the TNT equivalent mass and Sachs scaled distance methods) were 

used to estimate the overpressure at the different distances. Fig. 2 depicts the procedure. 

 

Fig. 2 - Scheme of the methodology used to calculate the overpressure peak at a certain distance, from 
the total mechanical energy. 

 

The predicted values of the released mechanical energy of the explosion corresponding 

to the tests performed by Johnson et al. and Birk et al. are summarized in Fig. 3 and 

Fig. 4. As it can be observed, the extreme values are obtained from the method based 

on real gas behaviour and adiabatic irreversible expansion (Planas et al, 2004) (the 

lowest mechanical energy) and by the method based on constant volume energy 

Method used  for 
mechanical energy of 

BLEVE

β = 0.4 as fraction of 
energy released 
converted into 
pressure wave

(TNT equivalent 
mass curve and Sachs 
overpressure distance 

curve)
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addition (Brode, 1959) (the largest mechanical energy) as already observed in section 

4.  

 

Fig. 3 - Calculated mechanical energy according to the different models for the experiments of Johnson 
et al.  (1990). 

 

Fig. 4 - Calculated mechanical energy according to the different models for the experiments of Birk et 
al. (2006, 2007). 

 

0

50

100

150

200

250

300

350

400

450

J1 J2 J3 J4 J5 J6 J7

En
er

gy
 (M

J)

Constant volume energy addition Real gas behaviour and isentropic expansion

Isothermal expansion Ideal gas behaviour and isentropic expansion

Thermodynamic availability Real gas behaviour and adiabatic irreversible expansion

0

10

20

30

40

50

60

70

80

B1 B2 B3 B4 B5 B6 B7 B8 B9

En
er

gy
 (M

J)

Constant volume energy addition Real gas behaviour and isentropic expansion

Isothermal expansion Ideal gas behaviour and isentropic expansion

Thermodynamic availability Real gas behaviour and adiabatic irreversible expansion



 14 

The diverse predictions for the overpressure peak are depicted in Fig. 5 and Fig. 6, 

together with the experimental results of Johnson (1990) and Birk (2006, 2007) 

respectively . Here, the superheating energy (SE) model is also considered, which is 

based on the real gas behaviour and adiabatic irreversible expansion assumption. In 

most of the tests, the experimental results are closer to the predictions from the methods 

proposed by Casal and Salla (2006), Planas-Cuchi et al. (2004) and Crowl (1992), 

which give relatively similar values, and far from the values predicted by the other four 

methods. 

An atypical result is observed in the case of experiments number J4 and J6, which 

clearly gave a value much lower than those predicted by all methods. Laboureur et al. 

(2014) found similar large deviations in their calculations. This seems to indicate that 

something strange could have occurred with these two tests, perhaps a partial loss of 

containment through a crack just before the final explosion. With experiment B6, the 

overpressure was exceptionally high as compared to the other tests. It was reported by 

the authors that it was a two-step BLEVE, and in this case the explosion is more severe.   

In a two-step BLEVE, the initial crack is trapped in a stronger part of the vessel wall or 

stopped because of the decreased pressure in the vessel. Then, the liquid inside the 

vessel can reach the superheat condition due to the rapid pressure drop inside the vessel. 

The superheat liquid flashes and causes pressure recovery inside the vessel; this 

phenomenon can produce enough energy and loading on the wall and the crack again 

starts to grow causing finally the loss of containment and the BLEVE (Abbasi and 

Abbasi, 2007). In this situation, the vessel might be already weakened by the crack and 

heating and a larger part of the available energy may be converted to overpressure 

(higher value of β). 

By using the Sachs scaled distance curve, the trend of the calculated overpressure is 

logically similar to the results obtained by the TNT equivalent mass curve. However, 

due to the shape and position of the curve, the value for overpressure obtained by the 

Sachs scaled distance method is about 50% lower than the one obtained by using the 

TNT equivalent mass method.  
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 a) 

 

 b) 

 

Fig. 5 - Calculated overpressure at a distance of 25 m simulating the experimental results reported by  
Johnson et al. (1990), according to  a) TNT equivalent mass method; b) Sachs method.  
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a) 

 

 b) 

 

Fig. 6 - Calculated overpressure at a distance of 20 m simulating the experimental results reported by 
Birk et al. (2006, 2007),  according to: a) TNT equivalent mass method; b) Sachs method. 
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Applying all the methods to all experimental tests and measurement distances, the 

models’ performance was analysed by applying the Root Mean Square Deviation 

(RMSD) (Piñeiro et al., 2008) which represents the mean deviation of predicted values 

with respect to the observed ones, in the same units as the model variable under 

evaluation. The RMSD was calculated with respect to all the aforementioned 

experimental results (Table 4). The results confirm the values obtained in the previous 

paragraphs. The methods based on real gas behaviour and adiabatic irreversible 

expansion (Casal and Salla, 2006; Planas Cuchi et al., 2004) still have the lowest 

RMSD, together with that using thermodynamic availability (Crowl, 1992), this 

showing a better agreement with experimental data. 

Table 4. Overall RMSD considering all thermodynamic assumptions. 

 Thermodynamic assumption 

RMSD CV RIE IE IIE TA RAIE SE 

Johnson, TNT curve 9.2 4.6 4.5 3.6 2.7 2.3 2.2 

Johnson, Sachs 

curve 
4.5 2.1 2.1 1.7 1.3 1.3 1.3 

Birk, TNT curve 14.3 8.7 9.6 7.4 6.3 4.9 4.1 

Birk, Sachs curve 8.0 4.7 4.9 3.6 3.0 2.4 2.2 

 

Even if the RAIE and SE methods are both based on real gas behaviour and adiabatic 

irreversible expansion assumption, their RMSD values show some deviations. This can 

be explained by the fact that the SE method considers only the contribution of liquid 

flash for calculating the overpressure and as such it will be affected by the initial liquid 

level in the vessel (also called filling degree). Fig. 7 shows the comparison for the 

experiments with different filling degrees.  
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Fig. 7 - Comparison of the SE and RAIE methods at different filling degrees, using the Sachs curve, 
simulating the experimental results of Johnson et al. (1990) and Birk et al. (2006, 2007). 
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quantity of vapour present just before bursting. Therefore, those experiments were 

studied in detail by comparing them with the corresponding experimental values (Fig. 
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Fig. 8 - Comparison of the calculated values with the experimental ones for the experiments conducted 

by Birk et al. (2006, 2007) at lower filling degrees. 
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axis; in the far field, the blast was less directional. However, there is not yet enough 

information on this aspect to quantify it. 

 a) 
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Fig. 9 - Calculated overpressures (TNT equivalent mass curve) based on considering only the vapour 
phase existing just before the explosion, compared with the experimental values from a) Johnson et al. 
(1990) and b) Birk et al. (2006, 2007).  

7. Discussion 

The estimation of the blast generated by  BLEVEs is subjected to diverse uncertainties, 

some of which are inevitable. For example, an aspect which can be important is the 

fraction of the overall energy released in the explosion that is invested in creating the 

overpressure; it should be taken into account that some of this energy is devoted to 

breaking the vessel and ejecting the fragments to a certain distance. The value of this 

fraction will depend on diverse circumstances, such as the conditions of the vessel 

(corrosion), the way in which it is heated by a fire, the existence of a welding joint, and 

so on. Thus, some authors assume that it is 40%, some others 50% and, finally, those 

more conservative assume 100%. In this paper a fraction of 40% (β = 0.4) has been 

assumed, which shouldn't be far from the real value taking into account the results 

obtained.  

Another uncertainty is the heterogeneity of the blast wave, i.e. its directionality (Birk 

et al., 2007). For cylindrical tanks, the value of overpressure is not the same in the 

direction of the tank main axis than in the direction perpendicular to it, especially at 

short distances. This directionality can be related with the pressure in the vessel just 

before the explosion through the distance reached by a fragment of a given weight; 

however, this distance can be strongly affected by the fragment shape. However, 

nowdays this aspect is not sufficiently studied and it cannot be included in any 

estimation of overpressure. 

Furthermore, there is currently some discussion about the respective contributions of 

the vapour present just before the explosion and that of the vapour generated in the 

liquid flash (Birk et al., 2007; Laboureur et al., 2015). All the models considered here 

except the one based on the superheating energy were applied using both contributions. 

Based on the analysis performed, the following simplifying criterion could be proposed.  

The contribution of the liquid phase is really significant when the filling degree is larger 

than 50%, while at lower filling degrees, the role of the vapour phase present before the 

burst in the resulting mechanical energy increases. The probability of underestimation 

is higher if the curves based on the Sachs distance are applied instead of the classical 

TNT equivalent mass one.  



 22 

Additionally, another factor which will add incertitude in any analysis is the amount of 

material involved in the explosion. Will the tank be filled in an 80%? Or, even if it was 

filled at the beginning of the emergency –for example, a fire heating it–, at the moment 

of the explosion the degree of filling will have decreased significantly, for example to 

40%,  due to the release through a safety valve? 

Therefore, it should be realized that only approximate estimations of the overpressure 

wave can really be performed in most cases. However, even if this must be accepted, it 

is also true that some of the methods proposed in the literature give better predictions 

than others. 

8. Conclusions 

From the comparative study performed, the following conclusions can be drawn: 

1. The results obtained from the diverse models have not shown any discontinuity or 

significant increase of overpressure when the superheat limit temperature is reached. 

Thus, none of the methods analysed takes into account a “superheat limit temperature” 

as a condition to be fulfilled for the explosion to be a BLEVE.  

2. The comparative study here developed of the diverse methods proposed by different 

authors based on different thermodynamic assumptions has shown that, as could be 

expected, there is an important scattering in the values obtained from them. Looking at 

these results, a rough classification in two categories is made: a) methods giving a quite 

conservative (high) value, which in some cases is clearly the upper theoretical value 

thermodynamically possible, and b) methods giving a lower value,  much closer to the 

real/experimental one. 

3. The methods based on constant volume energy addition, isentropic expansion and 

isothermal expansion are in the first category. These methods should be applied to 

estimate the maximum overpressure from the explosion.  Those assuming real gas 

behaviour and adiabatic irreversible expansion are in the second one. These latter 

methods are much closer to real values, as certain analyses of medium and full scale 

BLEVEs have shown; they should be used to estimate the probable overpressure. 

4. In the case of cylindrical tanks, experimental data indicate that overpressure is higher 

on the direction of the tank main axis than on the direction perpendicular to it, this effect 

being important at short distances.  
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5. There is some uncertainty associated to the respective contributions to blast of the 

expansion of the vapour phase present before the burst (practically instantaneous) and 

of the liquid flash (slower); a conservative approach is to consider both simultaneously.  

6. It has been observed that, when using the TNT equivalent mass curve, results are 

different than when the Sachs scaled distance is used, the latter giving lower results.  

7. Further experimental work is still needed to improve the knowledge of overpressure 

from BLEVEs. Important points would be the amount of energy released invested really 

in creating overpressure, the respective contributions of the vapour phase present before 

the burst and of the liquid flash, and the directional effects in the case of cylindrical 

tanks.  However, due to the diverse uncertainty factors aforementioned, one may think 

that it will always exist some uncertainty in its prediction for a given case. 
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Nomenclature 

Δ𝐵𝐵 Batch availability, J·mol-1 

𝑐𝑐𝑝𝑝𝑉𝑉  Specific heat of the vapour, J·mol-1·K-1 

𝑐𝑐𝑝𝑝𝐿𝐿,𝑇𝑇𝑇𝑇 Specific heat of the liquid at atmospheric-pressure boiling point, J·kg-1·K-1 

𝐸𝐸 Explosion energy considering only the expansion of the vapour phase present before 

the burst, J 
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𝐸𝐸∗ Explosion energy considering the expansion of the vapour phase present before the 

burst plus the vapour generated in the flashing of the liquid, J 

𝐸𝐸𝑤𝑤 Part of the explosion energy used to generate the pressure wave, J 

𝑓𝑓 Mass fraction of liquid vaporized in the depressurization, -- 

ℎ𝐿𝐿0 Enthalpy of the liquid in the vessel at atmospheric-pressure boiling point, J·kg-1 

ℎ𝐿𝐿 Enthalpy of the liquid in the vessel at conditions just before the explosion, J·kg-1 

∆ℎ𝑣𝑣,𝑇𝑇𝑇𝑇 Latent heat of vaporization at atmospheric-pressure boiling point, J·kg-1 

Δ𝐻𝐻𝑐𝑐 Heat of combustion of the fuel, J·kg-1 

Δ𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇 TNT explosion energy, J·kg-1 

L Volume of liquid in the vessel just before the explosion, m3 

𝑚𝑚𝐿𝐿0 Mass of liquid at the final state of the isentropic process, kg 

𝑚𝑚𝐿𝐿 Mass of liquid in the vessel at conditions just before explosion, kg 

𝑚𝑚𝑇𝑇 Total mass of the vessel content, kg 

𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 Equivalent mass of TNT, kg 

𝑚𝑚𝑉𝑉 Mass of vapour in the vessel at conditions just before explosion, kg 

𝑚𝑚𝑉𝑉0 Mass of vapour at the final state of the isentropic process, kg 

𝑃𝑃 Pressure in the vessel just before explosion, Pa 

𝑃𝑃𝑐𝑐 Critical pressure, Pa 

𝑃𝑃0 Atmospheric pressure, Pa 

𝑃𝑃𝑟𝑟𝑟𝑟𝑝𝑝 Failure pressure, Pa 

𝑃𝑃𝑠𝑠 Overpressure at a given distance, Pa 

𝑟𝑟0 Distance between the centre of the explosion and the point at which the overpressure 

has to be estimated, m 

𝑅𝑅 Ideal gas constant, 8.3145 J·mol-1·K-1 

𝑅𝑅� Scaled distance, m·kg-1/3 

𝑅𝑅𝑠𝑠 Sachs scaled distance, -- 

𝑆𝑆𝐿𝐿 Specific entropy of the liquid at conditions just before explosion, J·kg-1·K-1 

𝑆𝑆𝐿𝐿0 Specific entropy of the liquid at the final state of the adiabatic process, J·kg-1·K-1 
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𝑆𝑆𝑉𝑉 Specific entropy of the vapour at conditions just before explosion, J·kg-1·K-1 

𝑆𝑆𝑉𝑉0 Specific entropy of the vapour at the final state of the adiabatic process, J·kg-1·K-1 

𝑆𝑆𝐸𝐸 Superheating energy of liquid, kJ·kg-1 or MJ·m-3 

𝑇𝑇 Temperature of the vapour in the vessel just before the explosion, K 

𝑇𝑇𝑇𝑇 Atmospheric-pressure boiling point, K 

𝑇𝑇𝑐𝑐 Critical temperature, K 

𝑇𝑇0 Ambient temperature, K 

𝑇𝑇𝑠𝑠𝑠𝑠 Superheat limit temperature, K 

𝑟𝑟𝐿𝐿 Specific internal energy of the liquid at conditions just before explosion, J·kg-1 

𝑟𝑟𝐿𝐿0 Specific internal energy of the liquid at the final state of the adiabatic process, J·kg-1 

𝑟𝑟𝑉𝑉 Specific internal energy of the vapour at conditions just before explosion, J·kg-1 

𝑟𝑟𝑉𝑉0 Specific internal energy of the vapour at the final state of the adiabatic process, J·kg-1 

𝑈𝑈 Overall internal energy of the vessel at conditions just before the explosion, J 

∆𝑈𝑈 Overall variation of the internal energy of the vessel content, J 

𝑣𝑣𝑉𝑉0 Specific volume of vapour at the final state of the adiabatic process, m3·kg-1 

𝑣𝑣𝐿𝐿0 Specific volume of liquid at the final state of the adiabatic process, m3·kg-1 

𝑉𝑉 Volume of vapour in the vessel just before the explosion, m3 

𝑉𝑉𝑓𝑓 Volume of vapour generated in the flashing of the liquid, m3 

𝑉𝑉𝑇𝑇 Total vessel volume, m3 

𝑉𝑉∗ Total volume of vapour contributing to the explosion at conditions just before the 

explosion, m3 

∆𝑉𝑉 Volume variation of the total content of the vessel when going from the explosion state 

to atmospheric pressure conditions, m3 

𝑒𝑒 Vapour fraction (with respect to the total mass) at the final state of the adiabatic 

irreversible process 

𝑒𝑒𝑉𝑉 Fraction of the vapour mass at explosion state that does not condense when going to 

the final state of the isentropic process 

𝑒𝑒𝐿𝐿 Fraction of the liquid mass at explosion state that flashes to vapour when going to the 

final state of the isentropic process 
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Greek Letters 

𝛽𝛽 Fraction of the explosion energy converted into blast wave, -- 

𝛾𝛾 Ratio of constant pressure to constant volume specific heats of the gas in the vessel, -- 

𝜌𝜌𝑉𝑉 Density of the saturated vapour at conditions just before explosion, kg·m-3 

𝜌𝜌𝐿𝐿 Density of the saturated liquid at conditions just before explosion, kg·m-3 

 

 

Appendix  

Mechanical energy models 

Constant volume energy addition (CV) 

The model considered within this thermodynamic assumption is the one from Brode 

(1959) : 

𝐸𝐸 =
(𝑃𝑃 − 𝑃𝑃0) ∙ 𝑉𝑉

(𝛾𝛾 − 1)  (A-1) 

𝐸𝐸∗ =
(𝑃𝑃 − 𝑃𝑃0) ∙ 𝑉𝑉∗

(𝛾𝛾 − 1)  (A-2) 

Isothermal expansion (IE) 

Within this thermodynamic assumption the model considered is the one from Smith et 

al. (1996): 

𝐸𝐸 = 𝑃𝑃 ∙ 𝑉𝑉 ∙ ln �
𝑃𝑃
𝑃𝑃0
� (A-3) 

𝐸𝐸∗ = 𝑃𝑃 ∙ 𝑉𝑉∗ ∙ ln �
𝑃𝑃
𝑃𝑃0
� (A-4) 

Thermodynamic availability (TA) 

Crowl (1991, 1992) was the author which developed the model considering this 

thermodynamic assumption: 
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𝐸𝐸 = �
𝑃𝑃 ∙ 𝑉𝑉
𝑅𝑅 ∙ 𝑇𝑇

� ∙ Δ𝐵𝐵 (A-5) 

 

𝐸𝐸∗ = �
𝑃𝑃 ∙ 𝑉𝑉∗

𝑅𝑅 ∙ 𝑇𝑇
� ∙ Δ𝐵𝐵 (A-6) 

where Δ𝐵𝐵 is the batch availability which has to be obtained from: 

Δ𝐵𝐵 = 𝑐𝑐𝑝𝑝𝑉𝑉 ∙ Δ𝑇𝑇 − 𝑐𝑐𝑝𝑝𝑉𝑉 ∙ 𝑇𝑇0 ∙ ln �
𝑇𝑇0
𝑇𝑇
� − 𝑅𝑅 ∙ 𝑇𝑇0 ∙ ln �

𝑃𝑃
𝑃𝑃0
� − 𝑅𝑅 ∙ 𝑇𝑇 ∙ �

𝑃𝑃0
𝑃𝑃
− 1� (A-7) 

 

Ideal gas behaviour and isentropic expansion (IISE) 

The most used model within this thermodynamic assumption is the one from Prugh, 

1991: 

𝐸𝐸 =
𝑃𝑃 ∙ 𝑉𝑉
𝛾𝛾 − 1

∙ �1 − �
𝑃𝑃0
𝑃𝑃
�
𝛾𝛾−1
𝛾𝛾
� (A-8) 

 

𝐸𝐸∗ =
𝑃𝑃 ∙ 𝑉𝑉∗

𝛾𝛾 − 1
∙ �1 − �

𝑃𝑃0
𝑃𝑃
�
𝛾𝛾−1
𝛾𝛾
� (A-9) 

Real gas behaviour and isentropic expansion (RISE) 

The most used model within this thermodynamic assumption is the one from CCPS 

(2010): 

𝐸𝐸 = ∆𝑈𝑈𝑉𝑉 = 𝑚𝑚𝑉𝑉 ∙ (𝑟𝑟𝑉𝑉0 − 𝑟𝑟𝑣𝑣) (A-10) 

𝐸𝐸∗ = ∆𝑈𝑈 = 𝑚𝑚𝐿𝐿0 ∙ 𝑟𝑟𝐿𝐿0 + 𝑚𝑚𝑉𝑉0 ∙ 𝑟𝑟𝑉𝑉0 − 𝑚𝑚𝐿𝐿 ∙ 𝑟𝑟𝐿𝐿 − 𝑚𝑚𝑉𝑉 ∙ 𝑟𝑟𝑣𝑣 (A-11) 

where the mass of vapour (𝑚𝑚𝑉𝑉0) and liquid (𝑚𝑚𝐿𝐿0) at the final state of the isentropic 

expansion can be obtained from the following equations: 
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𝑚𝑚𝑉𝑉0 = 𝑒𝑒𝐿𝐿 ∙ 𝑚𝑚𝐿𝐿 + 𝑒𝑒𝑉𝑉 ∙ 𝑚𝑚𝑣𝑣 (A-12) 

𝑚𝑚𝐿𝐿0 = (1 − 𝑒𝑒𝐿𝐿) ∙ 𝑚𝑚𝐿𝐿 + (1 − 𝑒𝑒𝑉𝑉) ∙ 𝑚𝑚𝑣𝑣 (A-13) 

The mass fraction of liquid that flashes to vapour during the explosion (𝑒𝑒𝐿𝐿), and the 

mass fraction of vapour that does not condense (𝑒𝑒𝑉𝑉) can be obtained from the following 

equations: 

𝑒𝑒𝐿𝐿 =
𝑠𝑠𝐿𝐿 − 𝑠𝑠𝐿𝐿0
𝑠𝑠𝑉𝑉0 − 𝑠𝑠𝐿𝐿0

 (A-14) 

𝑒𝑒𝑉𝑉 =
𝑠𝑠𝑉𝑉 − 𝑠𝑠𝐿𝐿0
𝑠𝑠𝑉𝑉0 − 𝑠𝑠𝐿𝐿0

 (A-15) 

Real gas behaviour and adiabatic irreversible expansion (RAIE) 

Two methods are considered within this assumption, the one proposed by Planas Cuchi 

et al. (2004) identified here with RAIE abbreviation:  

𝐸𝐸∗ = −[(𝑟𝑟𝐿𝐿0 − 𝑟𝑟𝑉𝑉0) ∙ 𝑚𝑚𝑇𝑇 ∙ 𝑒𝑒 − 𝑚𝑚𝑇𝑇 ∙ 𝑟𝑟𝐿𝐿0 + 𝑈𝑈] (A-16) 

 

𝑒𝑒 =
𝑚𝑚𝑇𝑇 ∙ 𝑃𝑃 ∙ 𝑣𝑣𝐿𝐿0 − 𝑉𝑉𝑇𝑇 ∙ 𝑃𝑃 + 𝑚𝑚𝑇𝑇 ∙ 𝑟𝑟𝐿𝐿0 − 𝑈𝑈
[(𝑟𝑟𝐿𝐿0 − 𝑟𝑟𝑉𝑉0) − (𝑣𝑣𝑉𝑉0 − 𝑣𝑣𝐿𝐿0) ∙ 𝑃𝑃] ∙ 𝑚𝑚𝑇𝑇

 (A-17) 

and the method proposed by Casal and Salla (2006), in the paper abbreviated by (SE):  

𝑆𝑆𝐸𝐸 = ℎ𝐿𝐿 − ℎ𝐿𝐿0 (A-18) 

These authors demonstrated that, for an isentropic process (assuming that 50% of the 

energy released was devoted to braking the vessel and ejecting the fragments; see last 

paragraph of this section), if an irreversible (much more realistic) process is assumed, 

only 5% of 𝑆𝑆𝐸𝐸 originates blast; this percentage was introduced through a constant k: 

𝐸𝐸𝑤𝑤 = 𝑘𝑘 ∙ 𝑚𝑚𝐿𝐿 ∙ 𝑆𝑆𝐸𝐸 (A-19) 

However, in this study, in order to make possible the comparative analysis, k values 

have been lightly changed, assuming that only 40% (instead of 50%) of the energy 

participates in resulting BLEVE blast. So, we have: 
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𝑘𝑘 =  0.04 for irreversible process. 

In this paper, the irreversible process has been considered for the comparative analysis. 
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