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Abstract—This work focuses on a health-aware Model Pre-
dictive Control (MPC) scheme, which aims at enhancing the
availability of the system. The objective is to extend the uptime
of the system by delaying, as much as possible the system
reliability decay. The weights of the MPC cost function are
set according to some reliability importance measures. This
work describes the main reliability importance measures and
studies which of them are best suited for a health-aware MPC
strategy applied to a Drinking Water Network. The overall
system reliability as well as the reliability importance measures
are computed online through a Dynamic Bayesian Network.
Index Terms—Availability, Reliability, Model Predictive Control,
Dynamic Bayesian Network, Reliability Importance Measures

1. INTRODUCTION

The research on performance degradation in a control
system design has gained a lot of interest in the last decade
[1]-[4]. The objective is to extend the operation time of the
system as far as possible. This can be achieved by considering
the level of actuators reliability and their importance for the
reliability of the system in the control algorithm. Then, it is
possible to redistribute the control effort among the available
actuators to relieve the load on devices in the worst conditions
avoiding their break down. Consequently, an appropriate rule
to redistribute the control effort should be implemented [5],
[6].

In this work a Dynamic Bayesian Network (DBN) is used
to model the overall system reliability. This approach has
been recently considered in some works [7]-[12]. It uses
a DBN which includes a temporal dimension and takes
into account observations (evidences) about the state of the
components to compute the system reliability.

Reliability Importance Measures (RIMs) offer an evalua-
tion of the relative importance of individuals components or
groups of components constituting a system, with respect to
its safety, reliability, availability and performance. RIMs can
be defined on the basis of the system structure or component
reliability [13]. In this work, the RIMs are used to improve
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the system reliability through the control algorithm and are
computed using the DBN [6].

This paper presents, through an illustration dedicated to
Drinking Water Networks (DWNGs), the benefits of integrating
the overall system and components reliability by means of
their reliability importance measures in the control algorithm.
The objective is to distribute the control efforts within the
actuators to extend their useful life and improve the overall
DWN reliability. DWNs are multivariable dynamic con-
strained systems that are composed by the interconnection of
several subsystems (i.e.: tanks, actuators, intersection nodes,
water sources and consume sectors), whose main objective
is to satisfy the consumer demand.

To perform an optimal management of the DWN and
supply the consumer demand a multi-criteria problem is
formulated through a Model Predictive Control (MPC) ap-
proach [14]. MPC has proved to be an efficient technique
that can predict the appropriate control actions to achieve
optimal performance according to a defined criteria in the
cost function [16].

The objective is to provide control performance while
preserving the DWN reliability which depends on many
factors such as the quality and quantity of the water and
its availability at the sources, the failure rates of the pumps,
valves, among others.

The paper is organized as follows: Section II presents the
DWN system. Section III presents the reliability modelling
using a DBN. In Section IV a review of the reliability
importance measures and its integration in the control al-
gorithm is presented. In Section V, some results are given
and discussed.. Finally, some conclusions are provided in
Section VL.

II. DRINKING WATER NETWORK DESCRIPTION

A Drinking Water Network is a system composed by
sources (water supplies), sinks (water demand sectors),
pipelines that link sources to sinks through pumps and valves.
The network consists of 5 sources and 1 sink (Fig. 1). It is
assumed that the demand forecast (d,,) at the sink is known
and that any single source can satisfy this required water
demand (Fig. 2).

The aim of using MPC techniques for controlling water
distribution networks is to compute, ahead of time, the input
commands to achieve the optimal performance of the network
according to a given set of control goals. MPC has been
widely applied in the management of the urban water cycle
[15].
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Figure 2. Drinking water demand.

Consider that the DWN is modelled by the following linear
discrete-time dynamic model described in the state-space
form by applying mass balance to each tank:

x(k+1) = Ax(k) + Bu(k) + Bgdu(k)
(k) = Cx(k)
where x(k) € R" is the state, u(k) € R? is the control input,
y(k) € RY is the measured output, A € R"*" is the state matrix,
B € R?*P is the input matrix and C € R?*" is the output
matrix, and B; and d,, are the matrix and vector of water
demand, respectively.

The MPC algorithm [14] uses the model of the system
(1) to predict the future output of the system and compute
the optimal control actions aimed to optimize a given cost
function over a prediction horizon H,. This cost function
is minimized subject to a set of physical and operational
constraints over a control horizon H. < H,. Once the mini-
mization is performed, a vector of control actions is obtained
and just the first component is applied to the system. The
procedure is repeated for the next time instant following a
receding-horizon strategy and taking into account feedback
system measurements and future set-points.

In this paper, the multiobjective optimization problem is
formulated as follows:
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where p;(k) is a weight, u and @ denote the minimum and
maximum flow capacities, and x and X denote the minimum
and maximum volume capacities. The notation k + j|k allows
a future time instant K+ j to be referred at current time instant
k, and Ad;(k) = i;(k) — di;(k—1).

The first term in the cost function aims at guaranteeing a
smooth pump operation whereas the second term penalizes
pump operation according to their weights p;(k).

In [15] an application of MPC for a DWN taking into
account economical factors, level service and degradation
criteria is developed, where p; represents the economic
weight of pumping depending on the electric tariffs along the
day. In this work, p; will be used to introduce the reliability
dependence in the computation of the control law, as will be
explained in Section IV-F.

The simulation parameters are presented in Table I.

Table I
SIMULATION PARAMETERS

Parameter Value
H, | H. 24/ 8
15 [h] 1
7 5] 075 075 075 120  0.85
winejs 1.60 170 085 170 1.60
0 0 0 0 0
3/
wlm’/s} 0 0 0 0
x [m3] 65200 3100 14450 11745
x [m3] 25000 2200 5200 3500
xo [m3] 45100 2650 9825 7622

III. RELIABILITY MODELLING
A. Components Reliability

In this paper the reliability is modelled as an exponential
function,

Ri(t) =M 3)

where A; is the failure rate of the ith component modelled
using the Cox’s expression [17],

Ai=A0 x gi(¢,9) 4)

where lio is the baseline failure rate (nominal failure rate) for
the ith component and g;(¢,¥) represents the effect of stress
on the component known as covariate, where ¢ represents an
image of the load applied and ¥ is a component parameter.

Different definitions of the load function g(¢,7) exists
in the literature, basically it depends on the nature of the
component and its degradation process, for example: the
number of cycles for a on/off actuator (e.g. a valve, a
switche, etc.); the amount of effort which is related with
the work load of the actuator (e.g., a pump). In addition,
environmental factors could be taken into account such as
humidity, temperature, etc. In this paper, it is assumed that
the failure rate depends on the use the component, hence,
gi(+) is defined as:

—= 5)



where u;(k) is the control effort at time instant k, u; and %;
are the minimum and maximum control efforts allowed for
the ith actuator. Then (4) can be rewritten as:

Ai(k) = 20 x gi(ui(k)) (©6)

The major actuator load corresponds to u;(k) = u;, which
leads to the worst failure rate A;(k) = 1.

The failure rates of pumps in the DWN system are pre-
sented in Table II.

Table 1T
SIMULATION PARAMETERS

A0 [ x 1074
pi P2 p3 P4 ps Po P71 ps po P10
9.85 1070 1050 140 085 080 1170 0.60 0.74 0.78

It is possible then, to obtain the system reliability from the
reliability of its components, as detailed in the next Section.

B. System Reliability

A system is defined as a set of components whose states
are described by the binary random variable X;, as:

PXi=1)=p;, PXi=0)=1—-p;Viec[l,n. (7)

Therefore, it is considered that they can have two states:
operational (up) and failed (down). The state of ith compo-
nent is described by the binary variable X;: X; = 1 if the
component is UP, X; = 0 if the component is down.

It is assumed that all components are mutually indepen-
dent, this means that the joint distribution of the system state
vector X = (Xj,...,X,) is determined by the reliability of the
components pi,..., .

The dependence of the state of the system with respect
to the state of its components is determined by means of the
structure function ®(X). Then, if ®(X) = 1 means the system
is up, and if ®(X) =0 means the system is down.

Generally, ®(-) is determined by the structure of the
system, it could be serial, parallel or a more complex structure
(i.e. a combination of serial and parallel structure). This could
be a problem in the case of systems with high amount of
components or in complex structures.

In this work the DWN reliability is computed from its
components reliability using a Bayesian Network. Thus, the
complexity of computing the system reliability using the
structure function is avoided. The BN nodes represent random
variables and the edges represent the influences between
them.

The strength of the dependences are quantified by condi-
tional probabilities. Based on these relations and the structure
of dependencies of the network, the BN is used to estimate
the a posteriori probability of unknown variables given the
other (or knowledge i.e. evidences) by a probabilistic reason-
ing based on the Bayes theorem [18].

The procedure described in [11] was followed to obtain
the Dynamic Bayesian Network for the drinking water sys-
tem (Fig.3). This DBN is used here not only to compute
the system reliability but also to compute some reliability

importance measures of each actuator, that will be introduced
in next section.

Figure 3. Dynamic Bayesian Network for the Drinking Water Network.

It consists of building the BN based on the minimal path
sets of the system. A minimal path set is a minimum set
of components whose functioning (i.e. being up) ensures the
functioning of the system: if all elements of a minimal path
set are up, the path is available and then the system is up.

Once, the network is obtained, the components reliabilities
(computed using a Markov Chain model) are propagated to
the network and the system reliability could be estimated
using the Bayes theorem [18] given the parallel functioning
of the minimal path sets and components reliabilities values.

IV. RELIABILITY IMPORTANCE MEASURES

Importance Measures (IMs) were first introduced by [19].
IMs are classified in two groups: Reliability Importance Mea-
sures (RIMs) and Structural Importance Measures (SIMs).
The RIMs evaluate the relative importance of a component
taking into account its contribution to the overall system
reliability and the SIMs provide the relative importance of
a component taking into account its position into the system
structure.

These metrics can be defined either according to their
functional aspect, taking into account the minimal path sets,
or according to their dysfunctional aspect, considering the
minimal cut sets. As both are equivalent, in this work only
the functional aspect is used.

The aim from the system reliability analysis point of view,
is to use the RIMs to identify the weakness or strengths in
the system and to quantify the impact of component failures
over system functioning.

A. Birnbaum’s Importance Measure

The Birnbaum importance measure [19] also known as
Marginal Importance Factor (MIF) is related to the probabil-
ity of a component to be critical for the system functioning.
It is defined as:



Definition 1. The B-reliability importance of component i for
the functioning of the system, denoted as Iyr,, for a coherent
system with independent components is defined as:

Iuir, =P(@(X) = 11X; = 1) - P(®(X) = 1]X; = 0)
_9R(p)
a api
=R(1;;p) —R(0;;p). (8)

The notation R(1;,p) denotes the reliability of the system
in which the ith components is replaced by an absolutely
reliable one, while R(0;,p) denotes the reliability of the
system in which the ith component is failed.

The Birnbaum’s measure is the probability that the failure
or functioning of component i coincide with system failure
or functioning. This approach is well known from classical
sensitivity analysis. Moreover, it can be interpreted as the
maximum lost in system reliability when ith component
changes from the condition of perfect functioning to a failed
condition.

Note that Birnbaum’s importance measure (Iy;5;) of the ith
component depends only on the structure of the system and
the reliabilities of the other components which means that it
is independent of the actual reliability of the ith component.

B. Criticality Reliability Importance Measure

The Criticality Reliability Importance also know as Critical
Importance Factor (CIF) was introduced by [20] and it is
defined as:

Definition 2. The criticality reliability importance of compo-
nent i for system functioning , denoted by Icyr,, is defined as
the probability that ith component functions and is critical for
the system functioning given that the system is functioning.

P(®(X) =1]X; = 1) = P(®(X) = 1|X; = 0)
P(®(X)=1)

Icrr, =pi

Pi
=——NLr 9
R(p) MIF; 9

Moreover, this can be interpreted as the probability that the

ith component has caused a system failure when it is known
that the system is failed.

C. Fussell-Vesely Reliability Importance Measure

The Fussell-Veselly importance measure also known as the
Diagnostic Importance Factor (DIF) was proposed initially in
the context of fault tree [21], [22]. It takes into account the
contribution of a component to system functioning, and it is
derived from the minimal path sets.

Definition 3. The Fussell-Veselly reliability importance mea-
sure of the ith component, denoted by Ipy,, is defined as the
probability that a minimal path containing component i exist
and makes the system to be operative.

Ipy, =P{3 P€ P;5t.X; =1V je Pl®(X) =1}
_piP{(1,X):3Pe P;s1. X; =1V jeP}

R(p)
=P(X;=1|¢(X)=1)

(10)

where P € &; denotes the minimal path containing compo-
nent i.

The Fussell-Vesely importance measure can be explained
as the probability that component i fails given that the system
is failed.

D. Reliability Achievement Worth, RAW

The Reliability Achievement Worth (RAW) describes the
increase of the system reliability if component i is replaced
by a perfect reliable one. It is defined as:

Definition 4. The RAW, denoted by Ipaw, qualifies the
maximum possible percentage of system reliability increase
generated by component i. It is expressed as:

P(®(1;,X) =1)
P(®(X) =1)
P(®(X)=1|X;=1)
P(@(X) =1)
qi

=1+ ——Iyr
R(p)

E. Reliability Reduction Worth, RRW

Iraw, =

(1)

The Reliability Reduction Worth (RRW) measure [23]
reflects the reduction of system reliability if component i is
failed. It is defined as:

Definition 5. The RRW, denoted as Iggpw, expresses the
potential damage caused to the system by a failure in the
component i.

- (12)

F. Reliability Importance Measures as MPC weights

The reliability-aware MPC approach consists in setting
pi(k) weights in the cost function (2) to redistribute the
control effort among the actuators [11] based on the RIMs.
These RIMs will be computed through the DBN reliability
model described in Section III-B.

In this paper, different assignments of p; are proposed. On
the one hand, an approach focused in the reliability of the
components (local approach) in which the weights are set as:

(13)
On the other hand, a global approach that focuses on

the system reliability where a representation of the pump
criticality through the RIMs is used.



Table III
PUMPS RELIABILITY IMPORTANCE MEASURES AT T=2000

Pump A [x107%]  R; (%]  Iwir [%)]

Ipir (%) Icir (%] Iraw (%) Irrw (%]

V. RESULTS AND DISCUSSION

For the computation of the RIMs in the DWN system it
is considered that sources, tanks ans pipelines are perfectly
reliable and only actuators are affected by a loss of reliability
according to (3).

First of all, a static RIM analysis is performed in order
to get better knowledge on them. Component reliability is
assumed to follow (3) with A; = 11-0 and ¢ = Ty (2000 hours)
and no RIM information is integrated into the control algo-
rithm (i.e., p; = 1). The corresponding results are presented
in Tables III and IV.

In Table IV pumps are sorted according to their reliability
importance measures. Remark that pump 6 is the most critical
according to all RIMs. It is also interesting to highlight that
some RIMs give a similar pump criticallity order: CIF and
RRW are equivalent, and MIF provides a close result.

Table IV
A priori CLASSIFICATION OF THE PUMPS

Ai Ri  Imir  Ipir lcir Ijaw  Irrw
P71 P8 Pe . pe . Pe Pe .. Po
P2 Py Ps . ps . Ps p1._..Ps .
Py pwooP1 Py py Pt P9
pro o Ps o Py po . pio_ . P2 Pio
b4 Ps pa ps. . pa p3 . P4
CPs o P4 pio . pa ps . P4 P8
T 2 P8 P P1 ps . P
P Pz P p3 . p1o py ... P
Py P2 p3 P2 p3 po_ . P3 .
P8 P71 P2 P71 P2 P8 P2

This a priori knowledge will be later used to decide how
to distribute the control effort in the system following the
MPC scheme. Next, a dynamic RIM analysis is performed.

The dynamic analysis involves the computation of pump
failure rate according to (5) and (6), as well as the pump
RIMs through the DBN in Fig. 3. Then, following the
methodology proposed in Section IV-F, several p; assign-
ments will be investigated.

In order to assess the performance of MPC scheme, three
different indices will be used:

1) Ry(Ty), the system reliability at the end of the mission.

A higher value of this index will indicate a good
performance in terms of preserving system reliability.

2) JPR(Ty), the joint pump reliability index at the end of
the mission. JPR measures the remaining overall pump
reliability as follows:

JPR =

Ri(Ty) (14)

P

i=1

3) Ucum, the cumulative pump usage. Ucyy provides a
measure of the pump energy consumption as follows:

Uum=T; Y, (k) u(k)]
=0

15)

Table V presents the performance indices corresponding
to different simple p; assignments. A nominal case corre-
sponding to the situation where no reliability information is
taken into account in the control loop (i.e., p; = 1) is also
considered.

Table V
SIMPLE p; ASSIGNMENT PERFORMANCE

oi Ry [%]  Ucym [x10°]  JPR

1 97.50 1.537 0.093
1—-R; 97.88 2.025 0.214
bur  99.34 3.850 0.170
Ipir 97.49 1.538 0.089
Ieir 9939 3.904 0.171
Iraw 9750 1.537 0.093
Irgw ~ 97.44 1.556 0.094

According to the system reliability index, the best results
correspond to p; = Icr; and p; = Iyyr;. These two RIMs
provided a close pump criticallity ordering in Table IV.
However, p; = Iggw; does not provide a good performance,
although CIF and RRW were expected to be equivalent
according to Table IV.

Moreover, assigning p; = 1 — R; produces the best remain-
ing overall pump reliability, but does not provide the best
overall system reliability.

Provided the results obtained in the static and dynamic
RIM analyses some combined p; assignments will be inves-
tigated. In particular, results corresponding to combinations
of MIF, CIF and RRW are provided in Table VI. The best
results correspond to p; = Icir; X Irgw; and p; = Iy, X Irrw;,



improving the results obtained in assignment of p; to a single

RIM.

Table VI

COMBINED p; ASSIGNMENT PERFORMANCE

i Ry [%]  Ucum [x10%]  JPR

Icir, X Irrw; 99.44 3.971 0.172
Iyir; X Irrw; 99.42 3.946 0.172
IMIFi X ICIF,' X IRRW,- 98.78 3.518 0.153
IM”:i X ICIF,' 98.73 3.463 0.152

Although the reliability is improved, the consumption of
energy increases, this could be due to the fact that the
controller tends to use more those pumps whose impact on
the overall system reliability is low.

According to their definitions, when the combination of
CIF and RRW is used, the objective is to preserve those
components whose reliabilities are critical for the system
functioning and those that can produce the largest system
reliability reduction. In the case of Icyr, X Irgw;, the objective
is to preserve those components whose reliabilities changes
would produce the higher variation and the higher reduction
in the system reliability.

Fig. 4 illustrates the improvement of system reliability with
respect to the nominal scenario.

1 T T r
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Figure 4. System reliability comparison.

Fig. 5 shows the tanks volume corresponding to p; = 1
and p; = Icsr, X Irgw;- In both scenarios the MPC manages to
keep the volume within the limiting bounds.

In Fig. 6 the pump commands corresponding to p; = 1 and
Pi = Icir; X Irgw; are presented. Remark that different pump
commands are produced in the two approaches.

VI. CONCLUSIONS

This paper has presented a model predictive control design
based on reliability importance measures for a drinking water
network. The use of reliability importance measures helped in
identifying the relative importance of each actuator (pump) in
the DWN with respect to the overall reliability of the system.
The objective was to extend the uptime of the system by
delaying, as much as possible the system reliability decay.
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Figure 5. Tanks volume [m?/h]: blue line corresponds to p; = 1 and red
line corresponds to p; = Icyr;, X Irrw;-
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Figure 6. Pumping actions [m° /h]: blue line corresponds to p; = 1 and red
line corresponds to p; = Icyr; X Irrw;-

A static and a dynamic analysis of the reliability impor-
tance measures have been performed using the DBN of the
DWN. A combination of both analysis has helped in choosing
the best parameter tuning of the MPC controller.

In this work, only the actuators use has been considered
in the MPC cost function, tracking error issues will be
considered and studied in future research.
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