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Abstract— One of the most important areas of the water
utilities is the water quality management. This area is re-
sponsible of guaranteeing safety in the water supply to the
citizens. The strategy to guarantee the safety is based on two
principal elements: disinfection and monitoring. Disinfection
techniques, such as chlorination, allow to prevent the growing
of microorganisms present in the water. Moreover, in order
to guarantee this safety in the whole water network and
avoid any unexpected event, on-line sensors are required to
monitor a set of quality parameters. The whole process is
based on the assumption that the information retrieved from
quality sensors is totally reliable. But due to the complexity
of the calibration and maintenance of these chemical sensors,
several factors affect the accuracy of the raw data collected.
Consequently, any decision based on this raw data might
be based on a non solid base. Therefore, this work presents
a data analytics approach consisting in two modules: fault
diagnosis and prognosis. The fault diagnosis module first
discerns if a sensor is detecting a real change on water quality
parameters or actually is providing inconsistent information
due to some malfunction. The prognosis module aims to
predict the fault instant due to a slow degradation, which
is very common in chlorine sensors. This approach allows to
apply a predictive maintenance strategy reducing corrective
actions. The proposed methodology has been satisfactorily
tested on the Barcelona Drinking Water Network.

I. INTRODUCTION

One of the main tasks of the water utilities (WU) is
to transport and supply drinking water to the citizens
throughout water distribution systems (WDS). Two of the
WU’s main areas concerned are: On the one hand, the
operations department to manage the hydraulic infras-
tructure (e.g. pumping stations, reservoirs, pipes,...). On
the other hand, the water quality control department to
manage the drinking water safety. Furthermore, different
legal frameworks regulates the quality of drinking water to
supply.

Water quality monitoring and control management pro-
grammes involve several tasks. As detailed in [1], such
tasks are monitoring network design (e.g. which parameters
to be measured, how often, etc.), laboratory work (e.g.
chemical analysis, laboratory tests, etc.) and analytical
quality assurance (e.g. production of reliable data) among
other elements.

This paper is focused on developing a methodology that
guarantees the production of sensor reliable data.
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There are several techniques to treat the water in WDS
and keep it healthy for human consumption. One common
disinfection technique is the chlorination of water. This
process consists in injecting chlorine or derivatives in the
water. The injected chlorine is consumed (i.e. chemical
reaction) in the WDS because of two main factors [2].
On the one hand, due to reactions in the bulk water: by the
presence of organic content in the water, the initial chlorine
concentration and physical conditions (e.g. temperature).
On the other hand, the chlorine reacts at the pipe wall,
known as biofilm.

The chlorine in the water drops exponentially as follows:

C(t) = C0 · e−kT (1)

where C(t) is the chlorine concentration (mg/l) at the
instant t, C0 is the initial chlorine concentration and T
the time interval since the injection.

Thus, in order to keep residual chlorine in the water
distribution network after a certain time T , it is necessary
to inject a certain chlorine dose C0. The chlorine injection,
usually done in the reservoirs, is regulated by an automatic
controller, where a feedback control loop (typically based
on a proportional-integral-derivative controller) injects a
quantity of chlorine determined by the error between the
concentration reference and the measured chlorine concen-
tration.

The WU monitors the water quality parameters with
on-line water quality sensors (multi-parametric and single-
parametric) installed along the water transport and distribu-
tion networks. The most common water quality parameters
monitored on-line are: conductivity, temperature, pH and
chlorine. Other interesting parameters such as total organic
carbon (TOC) are well-known indicators of water quality.
Moreover, laboratory analyses of water samples taken from
different points of the network are essential to analyze
biological and chemical components unobserved by the
on-line sensors, or even to contrast them against on-line
observations.

Quality sensors require a specific calibration planning
prescribed by the manufacturer depending on the sensor’s
model to guarantee the reliability of the observations.
Moreover, a preventive maintenance planning (e.g. bi-
monthly or quarterly) is also specified by the manufacturer
to preserve data reliability.

Even though applying a preventive planning, these qual-
ity sensors could be affected by several problems such
as the ones listed in Table I. Thus, a corrective planning
is always required to solve these unexpected problems
affecting the sensors reliability.



TABLE I
MAIN FACTORS AFFECTING THE INFORMATION GATHERED FROM

WATER QUALITY SENSORS.

Cause Consequence
Communications problem Data gap
Loss of sensitivity Flat signal or slow drift down
Electronic malfunction Noise and peaks in the signal
Miscalibration of the sensor Offsets affecting the real value

There is significant research to detect and avoid intended
and unintended injection of hazardous substances in the
water distribution network to guarantee the drinking water
safety. Several works have studied this particular subject
in order to detect water contamination events. In [3],
different contaminants introduced in tap water are detected
measuring pH, turbidity, conductivity, total organic carbon
and chlorine and establishing as detection limits a threshold
based on three time the standard deviation above the
average of each magnitude. In [4], a probabilistic prin-
cipal component analysis (PPCA) method using UV-Vis
spectrometers is detailed to detect contaminant injection
into WDS. In [5], a model-based approach considering the
chlorine input injection is used to compute bounds to com-
pare with the sensors measurements. In [6], a benchmark
of a set of sensors from different manufacturers measuring
distinct quality parameters is presented allowing to analyze
and compare the sensitivity on the presence of various
contaminants. In [7], operational data and water quality
are combined to reduce false positives rate in the quality
event detection. In [8], different change-point detection
algorithms are applied to the residuals of an autoregressive
model. Sensor placement is also an important topic to im-
prove quality monitoring meanwhile reducing operational
costs as discussed in [9].

Model-based approaches, such as [5], have the main
drawback that the performance depend directly on the
water network model’s accuracy. Moreover, due to the
complex behaviour of the water parameters, it is very
difficult to develop a physical model to describe the water
quality dynamics. Hence, data-driven approaches are very
interesting in this case and therefore widely used.

The major drawback, in general, of the existing ap-
proaches to detect drinking water quality events is that
are based on the assumption that data gathered from these
sensors are accurate and precise. But as we have pointed
out, raw data from quality sensors could not be ready to be
analyzed or to extract solid conclusions. Unreliable water
quality information is a serious problem for the WU in
order to guarantee a water supply that assures the citizens
health.

The most common fault is the loss of sensitivity of the
sensor producing a slow drift (decays of 0.3-0.4 from 4
days to two weeks) of the chlorine signal. Due to the
slowness of the incipient degradation is not straightforward
to detect this fault. Hence, a prognosis approach is applied
to predict the remaining useful life (RUL) of the sensor.

Prognosis is an important field in the fault community
research [10], [11], [12], [13], [14].

Hence, the main motivation of this work is to provide a
data analytics methodology for monitoring quality sensors
and events applicable to drinking water networks, such as
the mentioned before.

The contributions of this work are twofold. On the one
hand, this work provides a procedure to get a solid informa-
tion basis, discarding unreliable data, to improve decision
making of the WU in the water quality management. On
the other hand, a set of indicators are provided allowing
to improve the preventive planning reducing the number of
expensive corrective actions.

The proposed methodology has been satisfactorily tested
on the Barcelona drinking water network.

The structure of the paper is the following: In SectionII,
the considered case study to illustrate the proposed method-
ology is introduced. In Section III, the methodology is
described. In Section IV, the results obtained in several
real scenarios in the considered case study are presented
and discussed. Finally, in Section V, the conclusions are
provided as well a future research paths.

II. CASE STUDY

The case study, used to illustrate the proposed method-
ology for monitoring quality sensors and events, is based
on the Barcelona drinking water network. The Barcelona
drinking water network is a complex WDS of over 4,600
km that supplies supply drinking water to 218 demand
sectors. In this WDS, there are installed thousands of
sensors along the network to know with precision the
hydraulic state of the network, to control and manage it
efficiently. In addition, there are installed quality sensors
and analysers to handle the water quality control.

For illustrative purposes, this paper is focused on the
zone depicted in Figure 1. The water supply of this zone
can come from two different water sources: the rivers Ter
and Llobregat.

The tank collects water to satisfy three demand sectors.
A chlorination process is continuously done in this tank
based on an actuator (chlorine injection), a chlorine an-
alyzer and some reference given by the WU’s operators.
At the entrance of each demand sector, a multi-parameter
water quality sensor is installed to monitor and control the
quality of the supplied water.

The WU collects hourly observations from multi-
parameter sensors and 15-minutes observations from chlo-
rine analyzers. The parameters observed are: temperature,
conductivity, pH and chlorine. The single-parameter sen-
sors measure chlorine.

The water quality data collected are analyzed by the
experts using a visualization software to check any existing
quality event or sensor problem. Another software system
allows the experts to contrast field samples analyzed in the
laboratory against the data collected from the sensors.

The methodology presented next has been inspired on
the knowledge of the experts used to analyze, check and
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Fig. 1. Water Demand Sector from the Barcelona Water Network.

even forecast problems in the water quality sensors.

III. METHODOLOGY

The methodology presented consists in two modules:
fault diagnosis and fault prognosis. Fault diagnosis detects
a sensor fault, discerning if it has occurred a quality event.
And the prognosis module tries to forecast the sensor
remaining useful life (RUL) before the fault occurs.

This section describes and analyze the procedure fol-
lowed by both modules. On the one hand, the diagnosis
module, as we discussed before, has two objectives: the first
objective is to detect changes in the water quality parame-
ters that can compromise the safety of the water supplied,
and the second objective is to discriminate if the problem
detected is a real change in the water quality parameters or
whether it has been generated by unreliable observations
due to some of the problems presented in Table I. On the
other hand, the prognosis module forecasts the RUL of the
quality sensors, giving a valuable information to the WU
to apply predictive maintenance.

A. Diagnosis

The detection of the event is done using a time se-
ries model (TSM) based on an Artificial Neural Network
(ANN) and used to detect unexpected changes using his-
torical knowledge. The ANN uses an autoregressive model
using past observations as inputs with the predicted value
as outcome.

This ANN model can detect abrupt changes in the
pattern, but it is not able to distinguish if the change in the
pattern is due to a sensor fault, i.e. unreliable data collected,
or a quality event in the WDS.

Hence, spatial information is required to contrast the
events detected against additional information provided by
other sensors related.

Thus, the spatial model considered to provide this ad-
ditional information is the predecessor (PD) model. The
PD model measures the coherence between the sensor
analyzed and the predecessor sensor. In our case study, the

TABLE II
FAULT SIGNATURES BASED ON THE MODELS RESIDUALS.

PD ANN PD ∧ ANN Cause

1 1 0 Distribution sensor fault
1 0 0 Distribution sensor fault
0 1 1 Quality event
0 0 0 Normal state

predecessor sensor is an on-line chlorine analyzer placed
in the chlorination control loop.

Indeed, this is the procedure followed by the WU
experts. First, they look for anomalous behaviours in the
signals and next they validate their conclusions looking
for information from other sensors hydraulically related to
conclude if it is only a sensor problem or a real water
quality problem.

Combining all this knowledge, a fault diagnosis scheme
is developed to interpret the combination of the results
and provide the key indicators to the WU to improve and
anticipate the sensors maintenance operations.

Each model-based test generates a 1 if the residual is
within the model threshold and 0 otherwise. The lower
bound θLB and upper bound θUB are estimated based on
the following expression:

θLB = Q1 − 3 · IQR
θUB = Q3 + 3 · IQR

(2)

where Q1 and Q3 are the first and third quartiles re-
spectively, and IQR is the interquartile range (difference
between the third and first quartiles) obtained from the
residuals of the validation data set.

The fault diagnosis system can be formalized as a
discrete-event system. Figure 2 presents the state diagram.
From the normal state, there are two possible outcomes:
a quality event or a sensor fault. When a sensor fault is
detected, a maintenance operation is performed. A quality
event can be caused by an intended action (e.g. hydraulic
action, chlorine reference change) or by some unexpected
infiltration.

The states are characterized in the Table II as a function
of the activation of model-based tests, except the calibration
state which is clearly known by the WU maintenance
department.

NORMAL

SENSOR FAULT

QUALITY EVENT

MAINTENANCE

Fig. 2. State diagram of a quality sensor.



As detailed in Table II, a sensor is in normal state when
all the tests are not active. A quality event is diagnosed
when PD test is not active and ANN is active. When PD
test is activated, a sensor fault is diagnosed, regardless of
the ANN test.

B. Prognosis

This module forecast the Remaining Useful Life (RUL)
based on a predetermined Failure Threshold (FT). As
proposed in [11], the RUL is given by:

RUL ∈ N | ŷ(t+ RUL|t) = FT (3)

where ŷ(t+RUL|t) is the RUL-step ahead forecast at time
t of a given predictive model ŷ.

A data-driven approach is used to derive the predictive
models from the data collected. Three different methods
for multi-step forecast the chlorine decay are compared:
Brown’s double exponential smoothing, drift and Holt’s
linear filter.

The Brown’s Double Exponential Smoothing can be
expressed as follows

y1(t) = αy(t) + (1− α)y1(t− 1) (4)

y2(t) = αy1(t) + (1− α)y2(t− 1) (5)

ŷ(t+ h|t) =
(
2 + α

h

1− α

)
y1(t)−

(
1 + α

h

1− α

)
y2(t)

(6)
where h is the forecast horizon and α the smoothing pa-
rameter. In the results section, the α parameter is arbitrary
selected.

The drift model is a simple way to estimate the change
over time from a set of observations. Indeed, it estimates
the drift between the first observation and the last one. The
drift’s forecast expression is as follows

ŷ(t+ h|t) = yt + h

(
yt − yt−m

m

)
(7)

where m is the size of the window of observations.
Finally, the Holt’s linear method is considered, but in

the state-space model form. [16] presents a classification
of exponential smoothing methods and the associated state
space model for each class. They are classified using the
triplet (E,T,S), where trend (T) and seasonal (S) are the
components of a time series and the error (E) is the un-
predictable component. Each component can be considered
none (N), additive (A) or multiplicative (M). In this work
we use the model ETS(A,A,N), with additive error, additive
trend and none seasonality. Actually, this corresponds with
the Holt’s linear method with additive error.

The state-space general representation has the following
form

yt = w′xxxt1 + εt, (8a)

xxxt = FFFxxxt−1 + gεt, (8b)

where yt is the observed value at time t and xxxt is the state
vector. The state vector xxxt = [lt bt]

′ is composed by the

level lt and the growth rate bt, w = [1 1]′, F =

[
1 1
0 1

]
and g = [α β]′.

These parameters α and β are estimated using the
maximum likelihood estimators.

The forecast of the state-space model ETS(A,A,N) is
expressed as follows

ŷ(t+ h|t) =
[
1
h

]
xxxt + εt (9)

IV. RESULTS

In this section, results based on the Barcelona case study
described in Section II are presented next to show the
performance of the methodology proposed in this work.

The data used to generate the results come from the
multi-parametric (chlorine, pH, temperature and conductiv-
ity) sensors (0794, 0795 and 0801), the chlorine analyzer
X127701D and the incidences reported by the WU experts
to the maintenance department.

The models have been calibrated with data sets different
to the faults scenarios. The Drift model has only one
parameter, m, that is set to 48 samples (hours) for all the
scenarios. The Brown’s double exponential smoothing has
the α parameter, that is set to 0.05 for all the scenarios.
This value has been estimated such that good forecasts of
the RUL are provided. Finally, the ETS model has the
parameters: α, β, h, and the initial state xxx0 = [l0 b0]

′,
where l0 is set to be the intercept of the linear trend
computed on the first 10 observations, and b0 is set to the
slope of the trend. Hence, α, β and the initial state xxx0 are
refined estimating the maximum likelihood, as expressed
in [16]. The horizon h is set to 1 during the calibration of
the three models.

The following results correspond to three scenarios
(named A, B and C) based on similar types of faults:
incipient decay of chlorine observed due to a loss of
sensitivity of the sensor. The value FT = 0.2 is fixed as the
minimum chlorine limit that corresponds with RUL = 0.
Hence, at a given time instant using the prediction models
presented before, the methodology determines when the
chlorine sensor will arrive to FT .

To evaluate the prognosis models performance the Prog-
nostic Horizon (PH), as proposed in [17], is used

PH = tEOL − i (10)

that is the difference between the discrete time instant time
index of actual end of life tEOL and the one computed as
follows

i = min (j|(j ∈ h) ∧ (Rj ⊂ R∗k) ∀k ∈ [j, tEOL]) (11)

where h is the set of all time instants when a forecast is
made, Rj is the predicted RUL according to (3) at time j,
and R∗k = [tEOL(1−ε)− t(k), tEOL(1+ε)− t(k)] are the
ε-bounds of the actual RUL, i.e. the allowable prediction
error. In this work, we set ε = 0.05 to allow a ±5% of
error in the predicted RUL.



Figure 3 shows the chlorine signals of the multi-
parametric sensor V0794 and the chlorine analyzer
VX127701D. As we can see, from t = 0 until t = 350 the
chlorine signal V0794 follows the reference VX127701D,
with some offset due to the physical distance between
them. But, from t = 350, the sensor V0794 starts to decay
arriving to 0.2 in about 14 days. Figure 4 shows the actual
RUL (black solid line) and the forecast RUL using the
prognosis module using three forecasting models proposed
in Section III-B. The Brown model has a PH = 8, Drift
model with PH = 19 and ETS with PH = 9.
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Fig. 3. Scenario A. Chlorine signal from V0794 sensor and VX127701D.
600 620 640 660 680

0
.2

0
.3

0
.4

0
.5

0
.6

time (hour)

C
h
lo

ri
n
e

chlorine
Brown h=1 alpha=0.05
Drift
ETS h=1
fault instant

600 620 640 660 680

0
5
0

1
0
0

1
5
0

time (hour)

R
U

L

actual RUL
RUL Brown’s forecast PH: 59
RUL Drift’s forecast PH: 33
RUL ETS’s forecast PH: 15
bounds ε=5%

Fig. 4. Scenario A. RUL of the Chlorine signal from V0794 sensor and
VX127701D.

Figure 5 shows another scenario corresponding to an
incipient fault of the sensor V0795. The decay is faster
than in the previous scenarios, arriving to FT in 5 days.
Figure 6 shows the actual and predicted RULs of the three
models. The Brown’s PH is 8, Drift’s PH is 18 and ETS’s
PH is 9.
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Fig. 5. Scenario B. Chlorine signal from V0795 sensor and VX127701D.
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Fig. 6. Scenario B. RUL of the Chlorine signal from 0795 sensor and
X127701D.

Figure 7 shows a similar scenario as the previous one,
an incipient fault in the sensor V0795. The chlorine decay
is fast as the previous scenario, arriving to FT in around
5 days. And Figure 8 shows the actual and forecast RULs,
where the Brown model has PH = 11, Drift model with
PH = 14 and ETS with PH = 12.
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Fig. 7. Scenario C. Chlorine signal from 0795 sensor and X127701D.
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Fig. 8. Scenario C. RUL of the Chlorine signal from 0795 sensor and
X127701D.

Table III lists the 4 scenarios and the PH results detailed
previously to compare the forecast models’ performance.

V. CONCLUSIONS

This paper has presented an approach to fault diagnosis
and prognosis faults in water quality sensors. Different
approaches to forecast the RUL of a water quality sensor
have been analyzed and compared. A fault diagnosis algo-
rithm has been developed able to distinguish between water



TABLE III
PH RESULTS OF THE PROGNOSIS MODELS

Scenario Brown PH Drift PH ETS PH

A 59 33 15
B 43 55 38
C 39 54 54

quality events and problems affecting the sensors such as
loss of sensitivity.

A prognosis algorithm, comparing three different fore-
casting methods, has been developed to predict the RUL
of water quality sensors suffering loss of sensitivity.

This approach has been applied to the Barcelona Water
Network and the results obtained show that the method-
ology detailed is able to anticipate the detection of future
problems in chlorine sensors compared to the visual anal-
ysis applied by WU experts.

In particular, the Drift and Brown methods have shown
in two of three scenarios slightly better performance than
the ETS method. These two methods allow to anticipate,
around 50 hours ahead, the loss of total sensitivity of the
chlorine sensors.

Hence, the proposed approach improves the water qual-
ity control management with predictive maintenance thus
reducing corrective maintenance actions on the Barcelona
Water Network.

As a future research, it is planned to extend the proposed
methodology to bound the uncertainty of the prognosis
models.
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in the development of this work. This work has been
funded by the Spanish Government (MINECO) through
the project CICYT ECOCIS (ref. DPI2013-48243-C2-1-
R), by MINECO and FEDER through the project CICYT
HARCRICS (ref. DPI2014-58104-R).

REFERENCES

[1] J. Bartram, R. Ballance, W. H. Organization, and U. N. E.
Programme, “Water quality monitoring : a practical guide to
the design and implementation of freshwater quality studies
and monitoring programs / edited by Jamie Bartram and
Richard Ballance,” 1996. [Online]. Available: http://www.who.int/
iris/handle/10665/41851

[2] J. C. Powell, N. B. Hallam, J. R. West, C. F. Forster, and J. Simms,
“Factors which control bulk chlorine decay rates,” Water Research,
vol. 34, no. 1, pp. 117–126, 2000. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0043135499000974

[3] D. Byer and K. H. Carlson, “Expanded Summary: Real-time de-
tection of intentional chemical contamination in the distribution
system,” Journal / American Water Works Association, vol. 97, no. 7,
pp. 130–133, 2005.

[4] D. Hou, S. Liu, J. Zhang, F. Chen, P. Huang, and G. Zhang,
“Online Monitoring of Water-Quality Anomaly in Water Distribution
Systems Based on Probabilistic Principal Component Analysis by
UV-Vis Absorption Spectroscopy,” Journal of Spectroscopy, vol.
2014, 2014.

[5] D. Eliades, T. Lambrou, C. Panayiotou, and M. Polycarpou,
“Contamination Event Detection in Water Distribution Systems
Using a Model-based Approach,” Procedia Engineering, vol. 89,
pp. 1089–1096, 2014. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S1877705814023443

[6] B. Y. J. Hall, A. D. Zaffiro, and J. G. Herrmann, “System Contam-
ination,” no. January, pp. 66–77, 2007.

[7] D. B. Hart, S. a. McKenna, R. Murray, and T. Haxton, “Combining
Water Quality and Operational Data for Improved Event Detection,”
Water Distribution Systems Analysis 2010, pp. 287–295, 2011.
[Online]. Available: http://ascelibrary.org/doi/abs/10.1061/41203%
28425%2926

[8] A. Ba and S. a. McKenna, “Water quality monitoring with online
change-point detection methods,” Journal of Hydroinformatics,
vol. 17, no. 1, p. 7, 2015. [Online]. Available: http://www.
iwaponline.com/jh/017/jh0170007.htm

[9] S. Rathi and R. Gupta, “Sensor Placement Methods for
Contamination Detection in Water Distribution Networks:
A Review,” Procedia Engineering, vol. 89, pp. 181–188,
2014. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S1877705814022905

[10] T. Escobet, J. Quevedo, V. Puig, and F. Nejjari, “Combining Health
Monitoring and Control,” Diagnostics and Prognostics of Engineer-
ing Systems: Methods and Techniques, no. 2002, pp. 230–255, 2012.

[11] T. Escobet, J. Quevedo, and V. Puig, “A Fault / Anomaly System
Prognosis using a Data- driven Approach considering Uncertainty,”
IEEE World Congress on Computational Intelligence, pp. 10–15,
2012.

[12] T. Escobet, V. Puig, J. Quevedo, and D. Garcia, “A methodology
for incipient fault detection,” 2014 IEEE Conference on Control
Applications, CCA 2014, pp. 104–109, 2014.

[13] I. Roychoudhury, G. Biswas, and X. Koutsoukos, “A Bayesian
approach to efficient diagnosis of incipient faults,” Proceedings of
the 17th . . . , vol. 1, no. Dx, 2006.

[14] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable
fault-tolerant control systems,” Annual Reviews in Control, vol. 32,
no. 2, pp. 229–252, 2008.

[15] R. P. Brent, Algorithms for Minimization Without Derivatives, N. En-
glewood Cliffs, Ed. Prentice Hall, 1973.

[16] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A
state space framework for automatic forecasting using exponential
smoothing methods,” International Journal of Forecasting, vol. 18,
no. 3, pp. 439–454, jul 2002. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0169207001001108

[17] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, and
M. Schwabacher, “Metrics for evaluating performance of prognostic
techniques,” 2008 International Conference on Prognostics and
Health Management, PHM 2008, 2008.


