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Abstract— In this paper, a singular LPV system with 

multiple time varying delays in state is considered. The system 

is subject to input disturbances and actuator faults. First, the 

considered system is transformed to polytopic representation 

and then a polytopic proportional-integral unknown input 

observer (PI-UIO) is designed for it. This observer can estimate 

both the system states and the actuator faults in the system. 

The conditions for disturbance decoupling and also the 

existence and convergence of the PI-UIO are combined and 

then obtained in a set of LMIs in the polytope vertices. 

Actuator fault diagnosis is achieved via the fault estimates 

provided by the observer. The applicability of the proposed 

scheme is illustrated via a numerical example. 

I. INTRODUCTION 

The increasing demand for safety, reliability and higher 

efficiency in different industrial plants has turned fault 

diagnosis systems to be important. Model based approaches 

such as unknown input observers (UIOs), H filters and 

parity space methods have been widely developed in recent 

years[1, 2]. These methods are based on analytic redundancy 

which is provided by the mathematical model of the system. 

Faulty situation is detected when the input-output behavior 

of the system deviates from what is expected from the 

system nominal model. Unmodeled dynamics and unknown 

inputs can also lead to such a deviation; thus robustness of 

these methods is an important matter to be considered in the 

design procedure of fault diagnosis algorithms.  

Estimation of the size of fault which is the last step in 

diagnosis is needed for adapting the controller with the 

faulty situation in order to preserve the stability and 

performance of the controlled system. Fault estimation has 

been carried out with different approaches. Descriptor 

approach has been used to estimate sensor faults in which 

the faults are considered as auxiliary states and are estimated 

with a suitable unknown input observer designed for the 

augmented system [3-5]. For estimating actuator faults, 

different approaches such as proportional-integral (PI) 

observer [6-8] and adaptive observer [9-11] have been 

applied. The advantage of adaptive observer compared with 

the PI observer is that it can estimate time varying faults in 
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addition to constant faults. In the current study, 

proportional-integral observer will be developed to estimate 

both the system states and actuator faults in singular delayed 

linear parameter varying (LPV) systems. 

Singular delayed LPV systems have attracted the attention 

of the researchers recently [12-17]. These systems can 

present a general class of nonlinear systems which have both 

delayed dynamics and algebraic constraints between state 

variables in the LPV format. LPV representation makes it 

possible to extend various results obtained for LTI systems 

to nonlinear systems which have been linearized along the 

trajectory of parameter variations. Singular delayed LPV 

systems have been used to model open flow canal systems 

and sewer systems [16, 17]. The stability, robust stability 

and filtering of continuous singular delayed LPV systems 

have been considered in [12-14] while the criteria for 

stability and stabilization of discrete counterparts have been 

obtained in [15]. Unknown input observer (UIO) for these 

systems has been designed in [16, 17]. The designed UIO 

has been used to detect and isolates actuator faults. To the 

best of authors’ knowledge, estimation of the size of 

actuator faults via PI observer for these systems has not been 

considered previously. Fault estimation is important to 

design and implement active fault tolerant controllers. 

In this paper, singular delayed LPV systems subject to 

disturbances and actuator faults are considered. 

Proportional-integral unknown input observer (PI-UIO) is 

developed for these systems. This observer provides state 

and fault estimates while decouples the effect of unknown 

inputs on the estimation. The conditions for unknown input 

decoupling and existence of such an observer are mixed 

with the conditions for convergence of the estimation error 

and formulated in a set of LMIs in the vertices of the 

polytope of parameter variation domain. 

This paper is organized as follows: In Section II, the 

problem is formulated. Section III is devoted to 

proportional-integral unknown input observer design. In 

Section IV, the main result of the paper is presented. A 

numerical example is used to illustrate the paper results in 

Section V. Section VI concludes the paper. 

II. PROBLEM FORMULATION

In this paper, a singular delayed LPV system with the 

following formulation is considered:   
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where ( ) nx t  , ( ) uk
u t  , ( ) my t  , ( ) dk

d t  and 

( ) fk
f t  are state vector, input vector, output vector, 

disturbance vector and actuator fault vector respectively. In 

(1), 
n nE   is a constant square matrix that may have rank 

deficiency ( rank( )E r n  ). ( ( ))jA t for 0, ,j s , 

( ( ))B t , ( ( ))R t  and ( ( ))F t are matrices with appropriate 

dimensions which depend on the time varying parameter 

vector ( ) lt  that is real time measurable. C is a constant

matrix with appropriate dimensions. ( )j t  for 1, ,j s are 

time varying state delays and 0 0  . j

m  and 
j  for 

1, ,j s  are the maximums of delay values and their rates 

of change. m is the upper bound of all j

m . ( )t  is a 

continuous vector-valued initial function. The time varying 

parameter vector is bounded in a hyperbox as follows: 

( ) ( 1, , ).m M

k k kt k l      (2) 

Assumption 1. System (1) is assumed to be admissible [16]. 

System (1) can be presented in the following polytopic form: 
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where 2lh   is the number of subsystems in the polytopic 

representation. 
jiA , iB , iR  and iF  for 1, ,i h  are 

matrices describing the dynamics of the subsystem in the thi

vertex of the hyperbox. ( ( ))i t   for 1, ,i h  are different 

subsystem weights which satisfy the following convex 
properties: 

0 ( ( )) 1i t    (4) 
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III. PI-UIO DESIGN

In order to estimate the states and actuator faults in system 

(1), the following PI-UIO is considered: 
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where ˆ( ) nx t  , ˆ( ) my t  , ( ) nz t  and ˆ( ) fk
f t   are 

state estimate, output estimate, observer state and fault 

estimate respectively. 
jiN , 

jiL , iG , iW , i and 2H are 

observer matrices with appropriate dimensions that the 

procedure for calculating them will be provided as it is 

detailed in the following. 

The state estimation error is: 

ˆ( ) ( ) ( )e t x t x t   (7) 

that according to (3) and (6) becomes: 

2 2( ) ( ) ( ) ( ) ( ) ( ) ( ).ne t x t z t H Cx t I H C x t z t       (8) 

If there exists a matrix 
1

n nH  which satisfies the 

following condition: 

1 2 ,nH E I H C  (9) 

then (8) is converted to 

1( ) ( ) ( )e t H Ex t z t  (10) 

and the error dynamics is described by means of 

1( ) ( ) ( ).e t H Ex t z t   (11) 

Substituting (3) and (6) in (11) and then doing some 

mathematical manipulations result the following equation: 
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If the following conditions are satisfied: 

1 2 nH E H C I  (13) 

1 1ji ji jiH A N H E L C  (14) 

1i iG H B (15) 

1 0iH R   (16) 

1i iW H F (17) 

then the observer error dynamics can be written as 
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where ( )fe t  is the fault estimation error defined as: 

ˆ( ) ( ) ( ).fe t f t f t  (19) 

For slow varying faults (with the assumption ( ) 0f t ), the 

fault estimation error dynamics is reduced to: 

ˆ( ) ( )fe t f t  (20) 

and using the observer formulation (6), it is transformed to: 
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According to (18) and (21), the state estimation error 

dynamics and the fault estimation error dynamics are 

coupled to each other. So, to consider this coupling, (18) and 

(21) are augmented as follows: 
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Now, a lemma is introduced for convergence of the PI-UIO 

(6) in terms of stability of (22): 

Lemma 1. The LPV delayed system (22) is considered with 

0j

m   and 1j  as maximum bounds on the size and rate 

of ( )j t  for 1, ,j s . This system is stable with decay 

rate 0  if there exist positive definite matrices P and 
jQ

for 1, ,j s  such that the following LMIs for 1, ,i h  

are hold: 
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is considered in which : ( )te e t    where [ ,0]m   . 

The exponential convergence of (22) is equivalent with 

( , ) 2 ( , ) 0t tV t e V t e     (25) 

which with some manipulations results in the sufficient 

condition (23) and the manipulations are omitted because of 

space limitation. 



For calculating the PI-UIO matrices, (13) and (16) are 

augmented as follows: 
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( )n n mH   , ( ) ( )dn m n hk

Y
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  and ( )dn n hk 
 . 
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The solution of (26) is: 

( )n mH Y K I YY 

    (28) 

where ( ) ( )dn hk n m
Y

     is the pseudo-inverse of Y . The 

term ( )n mK I YY 

  adds additional degree of freedom to the 

solution which helps to design a suitable PI-UIO. Equation 

(28) can be partitioned as: 
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1 1Y Y T  , 

2 2Y Y T  , 1 1V VT  and 2 2V VT  are 
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and considering (29), it is written as: 

10 1 .ji ji ji jiN H A KV A K C    (32) 



IV. MAIN RESULT

Based on the material provided so far, the main result of the 

paper is introduced. 

Theorem 1. If there exist positive definite matrices P and 

jQ  for 1, ,j s  and matrices M and 
jiM  for  0, ,j s  
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1, ,i h : 

0 1 2

1

2

* 0 0

0* * 0

* * *

i i i i

s

s

Q

Q

Q

    
 
 
  
 
 
 
 

(33) 

where 

 

 

10 0 10

0 1 0 1

0 1

{
0 0

0 } 2 ...

i ii

i i

i s

H A H F
sym P M V A V F

M C P Q Q

 
   

 

    

and for 1, ,j s : 

 

10

1

0
0

0 0

0

jii

j ji

ji

H A
P M V A

M C

 
      

 



2
(1 )

j
m

j j jQ e Q
 

  

and { } TSym Y Y Y   is used to simplify the notation, then 

the PI-UIO (6) with exponential decay rate 0   for 

system (3) exists. The matrices K , 
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and then the matrices 
jiN , 2H , iG , iW  and 

jiL  are calculated 

based on (32), (29), (15), (17) and (30) respectively. 

Proof. By considering (17) and (32), the matrices of 

augmented system (22) are formulated as: 
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Applying Lemma 1 on system (22) and substituting (38) and 

(39) in LMIs (23), a set of nonlinear matrix inequalities are 

obtained due to multiplicative terms of some variables. The 

following variables are introduced to resolve the 

nonlinearities: 
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By using these change of variables, (33) is obtained which 

assures the PI-UIO convergence. When (33) is solved with 

suitable solvers, the PI-UIO matrices can be calculated. By 
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So, K  is calculated as (34). 
jiK  for 1, ,j s  is calculated 

in a similar manner based on (37). According to (41): 
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and based on this, 
0iK  and 

i  are calculated from (35)-(36) 

respectively. Other PI-UIO matrices are calculated based on 

the equations stated in the theorem and the mathematical 

manipulation is described in Section III. 



V. EXAMPLE 

In this section, an example is presented to illustrate the 

applicability of the proposed method. The singular delayed 

LPV system (1) is considered with the following numerical 

values: 
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The value of state delay is ( ) 0.6 0.4sin( )t t   . The range 

of the two parameters are 1( ) [ 1,1]t   and 

2 ( ) [ 1.5,1.5]t   . This system is transformed to polytopic

representation with the method described in [16]. The set of 

LMIs (33) is solved with SeDumi solver [18] via YALMIP 

toolbox [19]. The decay rate is set to 0.5  . The PI-UIO 

matrices are calculated based on the equations described in 

Theorem 1. Although there are four subsystems, due to 

space limitation just the gain matrices for the first subsystem 

of PI-UIO are presented here: 

01

-2.3277    2.3970    2.7648   -0.9801

-2.3970   -2.3277   -1.2520    0.5008
,

-2.7648    1.2520   -2.3277   -0.6132

0.9801   -0.5008    0.6132   -2.3277

N

 
 
 
 
 
 

 

9

11

0.1692   -0.0680   -0.2367   -0.0628

0.0209   -0.0252    0.1965    0.1013
10 ,

0.0770    0.0006   -0.1489    0.0111

-0.0433   -0.0042    0.0705   -0.0023

N 

 
 
  
 
 
 

 

01

-9.0591   -0.4777    3.1530    5.2092

-4.8309    0.3975    1.9015    4.4386
,

-0.0368    0.0264    0.0362    0.0462

0.8272   -0.0230   -0.3052   -0.6283

L

 
 
 
 
 
 

 

11

1.4044   -0.2454   -0.2413   -1.1280

2.3614   -0.4745   -0.3585   -1.9096
,

-0.0472   -0.0154    0.0261    0.0330

-0.3058    0.0539    0.0522    0.2457

L

 
 
 
 
 
 

1

-63.1155   -2.3982   23.4940   38.2407
.

 28.2239   -0.5484   -6.6251  -24.7359

 
   

 
 

1

0.0908   -2.1787

-0.0666   -4.2032
,

-0.0866   -0.1324

-0.0181    0.4785

G

 
 
 
 
 
 

 

The values of 2H  and W are: 

2

0.2174   -0.1811    0.1270   -0.8889

0.6432   -0.4136    0.0526   -1.1360
,

0.1170    0.2625   -0.1719    0.3628

0.0163    0.0917    0.1280    0.2357

H

 
 
 
 
 
 

 

0.0371 0.6704

-0.0272    1.2933
.

-0.0353    0.0407

-0.0074   -0.1472

W

 
 
 
 
 
 

 

The system under consideration with the designed PI-UIO 

has been simulated in a 300 sec time interval. In the 

simulation, the input signals are 1( ) 1 sin( )u t t   

and 2 ( ) cos(0.2 )u t t . The variation of the two parameters 

are 1( ) sin(0.3 )t t  and 2 ( ) 1.5cos(0.8 )t t  . The

disturbance is a zero-mean noise with standard deviation 

equal to 0.5. Abrupt and incipient faults on the two actuators 

are considered as follows: 

1

1 30 80s

( ) ( 100) / 50 100 150s

0

t

f t t t

otherwise

 


   



2

1 170 220s

( ) ( 240) / 50 240 290s

0

t

f t t t

otherwise

 


   



 

The state estimation errors and fault estimates are depicted 

in Figures 1 and 2 respectively. 

Fig 1. State estimation error 

As it can be observed from Figure 1, the errors of state 

estimation converged to zero except the times that sudden 

faults happen in the system. In such times because the 



derivative of fault is very large, the assumption of slow 

varying faults ( ( ) 0f t ) is greatly violated so the state 

estimates are deviated from zero. This phenomenon can also 

be observed in Figure 2. 

Fig 2. Fault estimates 

When there is sudden change in faults, the fault estimate is 

deviated from its real value. But when the faults have 

constant values or changes with a limited slope (incipient 

faults), the fault estimates have good precision and the state 

estimation error converges to zero. Relaxing the assumption 

of slow varying faults is part of the future research which 

may be possible by extending the adaptive observer scheme 

proposed in [10] for singular LPV systems to the case with 

state delays. The approach of fault estimation proposed in 

this paper can be used as a direct alternative to fault 

diagnosis. In this approach, the faults are detected and 

isolated based on their estimated values. So, residual 

generation and residual evaluation are not needed which 

reduces the computational burden of the fault diagnosis unit. 

VI. CONCLUSION

In this paper, a polytopic PI-UIO was designed for 

singular delayed LPV systems subject to disturbances and 

actuator faults. The proposed observer can estimate system 

states and actuator faults while decoupling the disturbance 

effect on the estimation. The fault estimation approach is a 

suitable alternative for fault detection and isolation which 

has lower computational burden. The assumption of slow 

varying faults was needed to formulate the convergence of 

the observer. State and fault estimates are acceptable in the 

situations with limited-slope faults. Relaxing the assumption 

on fault derivative is part of future research which may be 

carried out with an adaptive observer scheme.  
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