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Abstract— This paper proposes a Double Seasonal Holt-
Winters (DSHW) forecasting model with an auxiliary Artificial
Neural Network (ANN) trained with a Genetic Algorithm (GA)
to model the DSHW residuals. ANN complements and improves
the DSHW prediction. The proposed model also includes an on-
line validation and reconstruction mechanism useful to detect
and correct missing and erroneous data. This mechanism
also impacts improving the DSHW prediction accuracy and
precision. The proposed model and validation mechanism are
applied to predict the time series generated by two moni-
tored flowmeters of two sectors of Barcelona’s drinking water
network (DWN). The accuracy and precision improvement of
the proposed method with respected to standard DSHW and
ARIMA approaches is provided.

I. INTRODUCTION

Drinking water demand analysis is a relevant activity that
impacts the human population wellness and the sustainable
and optimal exploitation of this resource. Nowadays the
water resource declared by Alma Ata as the most important
element for life [1]. However, it faces a serious shortage
problem due to the global warming produced by the climate
change. These facts lead to make active and strong efforts
oriented to optimize this resource. One research direction
is the optimization of the management of drinking water
delivery in urban areas.

Every year novel studies arise to model the human water
demand behavior to forecast the demand accurately with
certain safety (confidence). The interest of the scientific
community in the research of specialised algorithms to
forecast in the short-term the water demand for automatic
control hast not start growing (e.g., important contributions
related to this research topic are found in [2], [3], [4], [5] [6]).
These works evidence the importance of the operational and
water resources optimization. The proposed forecast models
are used to predict the short-term water consumption, and
then, the forecast is used as reference by mechanisms of
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operational control to dispatch only the necessary resource
avoiding the unnecessary emptying of water stores.

The works of Quevedo et al, [7], [8] demonstrate that
double seasonal Holt-Winters (DSHW) behaves similar to
seasonal ARIMA with patterns (SARIMA pattern). Although
SARIMA pattern was slightly better than DSHW, DSHW
does not require further analysis of water demand patterns
to perform reasonably good.

The most noticeable drawbacks of DSHW is the impossi-
bility of modelling certain nonlinear dynamics of time series
and the sensitivity to outliers and erroneous data from sensors
producing inaccurate forecasts. This problem is also present
in ARIMA models for complex behavior of time series such
as the wind speed. In [9], the ARIMA residuals modelling
for speed wind forecasting is addressed using also ANN.

This paper contributes with a DSHW based application
framework that provides an improvement of the DSHW
predictor using an artificial neural network (ANN) (called
DSHW+ANN), and a validation - reconstruction algorithm
based on confidence intervals. To improve the DSHW fore-
cast performance, the auxiliary ANN is implemented to
model the unmodeled nonlinearities by DSHW found in
drinking water demand time. The nonlinearities are found
by analysing the DSHW residuals. The confidence intervals
are computed using the residuals generated by the improved
DSHW.

There are time series difficult to model due to the high
nonlinearity, as consequence, the residuals generated by any
prediction model still preserve dynamic structure that is
detected measuring their correlation. In this work, ANN is
chosen to model the DSHW residual dynamics due to its
capability to model nonlinear time series without trend [10].
The zero trend and a probability distribution with zero mean
and certain variance [11], are characteristics present in the
residuals. In this work, we assume the residuals present a
Gaussian distribution with zero mean in order to estimate
the valid range of the confidence prediction.

This article is organized as follows: In Section II, the
Double Seasonal Holt-Winters method, the basics of ANN,
the GA training method for the residuals and the computation
of confidence intervals are described. Section III introduces
the ANN+DSHW approach for water demand time series.
Section IV shows the experiments and results of the pro-
posed method compared with ARIMA and DSHW. Finally,
Section V draws final conclusions and suggested future work
regarding the proposed framework.



II. RELATED METHODS

A. Holt-Winters

Holt-Winters is an exponential based method developed
by C.C. Holt (1957) and P. Winters in (1960) [12].

Exponential smoothing methods are based on the weighted
averages of past observations, with the weights decaying
exponentially as the observations get older.

The double seasonal Holt-Winters (DSHW) extension with
two seasonal components in time series is composed by four
equations: level `t, trend bt, and two seasonal equations
(s1t , s

2
t ) [13]. DSHW requires smoothing α1, α2, α3, ω, and

two seasonal parameter τ1, τ2 with the information about
time series periodicity. DSHW mathematical expressions are
as follows

`t = α1(yt/(s
1
t−τ1s

2
t−τ2)) + (1)

(1− α1)(lt−1 + bt−1)

bt = α2(`t − `t−1) + (1− α2)bt−1 (2)
s1t = α3(yt/(`ts

2
t−τ2)) + (1− α3)s

1
t−τ1 (3)

s2t = ω(yt/(`ts
1
t )) + (1− ω)s2t−τ2 (4)

ŷt+h = (`t + hbt)s
1
t−τ1+hs

2
t−τ2+h (5)

where ŷt+h is the h-th step-ahead forecast made from fore-
cast origin t. The parameters are optimized by minimizing
the sum of squared errors of one step-ahead residuals.

B. Artificial Neural Networks

Artificial neural networks (ANN) are models inspired on
the biological neural networks. ANN are widely used to solve
engineering problems as function modelling, regression and
system identification for control [14] [15]. In this paper, we
are interested in modelling a nonlinear time series produced
by the residuals of the one-step ahead DSHW.

The basic ANN architecture has an input layer with input
vector size, a intermediate or hidden layer that weights the
result of applying a basis or activation function to each value
of the input vector and the output vector that is the final
weighted sum of the values from the hidden layer. The most
used basis functions in ANN are Sigmoidal and Radial Basis
Functions [16].

The mathematical expression of a three layer ANN that
forecast ŷt+i is defined as:

ŷt+1 = f1(
n∑
i

wixi)

xi = f2(
h∑
j

wijyt−j)

(6)

where h is number of the neurons in the hidden layer, the
output layer corresponds to the forecast (ŷt+1)), and f1 and
f2 are sigmoid functions used as the activation functions. w
are the coefficients (or weight) connections.

, fk(x) is the k-th output layer of the neural network and
φ is the sigmoidal activation function. The weights w in (6)
are optimized to minimise the prediction errors.

The sigmoidal activation function is defined as follows

f(vi) = tanh(vi) (7)

where tanh is the hyperbolic tangent.

C. Training Artificial Neural Networks with Genetic Algo-
rithms (GA)

GA is an optimization technique inspired on Darwin’s
principle of evolution. GA mimics a simplistic version of the
process of biological evolution, which consists of creating a
population of individuals, where each individual represents
a prospective solution of the problem being solved [17]. GA
modifies this population using genetic operators: selection,
mutation, recombination, etc. This stage, called a generation,
repeats until a termination criterion is met. At the end of the
process, the best individual (i.e., the fittest one) found during
the evolution is returned as the solution of the problem.
Determining the best ANN architecture for forecasting is
an optimization problem that can be coded to be optimized
by GA. In this paper, we use GA as used in the work of
Rodriguez et al [18] to find the optimal ANN architecture
and its weights. GA defines the architecture of the ANN
and the weights of the neurons connections for the residuals
modelling problem. It has been proved that using GA to
design the net and perform the training process has a better
improvement than traditional methods [19], [20], [21]

D. Confidence Interval

The confidence interval (CI) is an statistical estimate that
defines the boundaries whose enclose the most frequent
observations of a probability distribution. In order to validate
the data, the boundaries act as a threshold defining the valid
data. CI is useful to measure the model uncertainty. In this
paper, we assume the CI belongs to a normal distribution
since the data sample are prediction residuals with zero mean
and should shape a Gaussian distribution if the prediction
model is correct. The definition of the CI is given by

yt ∈ [ŷt, ŷt] (8)

where ŷ
t

= ŷt − α σ√
N

and ŷt = ŷt + α σ√
N

. α is the
confidence degree, σ is the standard deviation, and N is
length of the population.

III. IMPROVED HOLT-WINTERS FORECASTING WITH
ANN RESIDUAL MODELING (DSHW+ANN)

To tune the Holt-Winters model and train the ANN resid-
uals, the required information has a format of time series
described by

Y = {y1, . . . , yt, . . . , yn} (9)

where y1, yt, yn are the first, current and last elements of the
time series. The residuals are stored in the vector r defined
as follows



r = {r1, . . . , rn} (10)

The residuals in (10) are obtained by using the one-step
ahead fitted Holt-Winters model,

rt+1 = yt+1 − ŷ′t+1 (11)

where the prediction ŷ′t+1 is given by

ŷ′t+1 = fdshw({yt−m, . . . , yt}) (12)

The residuals r are modeled training an ANN with evolu-
tionary computing in order to forecast the residuals with the
regressor fann defined as

r̂t+1 = fann({rt−m, . . . , rt}) (13)

Once we have DSHW and ANN forecasters, they are used
to make the one-step ahead prediction using

ŷt+1 = ŷ′t+1 + r̂t+1 (14)

The block diagram describing the the mechanism is shown
in Figure 1 where the blocks Holt-Winters and ANN contains
the forecasters described in Equation 12 and 13.
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Fig. 1. DSHW+ANN Forecast Model

Once the DSHW+ANN model is available, we proceed
to compute the confidence intervals by analyzing the set of
prediction errors defined as

e = {e1, . . . , et, . . . , en}. (15)

where the final residuals are given by

et = ŷt − yt (16)

In order to validate the incoming data, we consider the
two kind of erroneous data: missing data, and outliers. These
data are produced by malfunctioning of the sensors, therefore
they should be validated and then reconstructed before being
recorded and used by the forecasters. The validation process
is performed as follows

validate(yt) =

{
yt if yt ∈ [ŷt, ŷt]

ŷt if yt = ∅ ∨ yt /∈ [ŷt, ŷt]
(17)

where yt is valid only if it exists and is inside of the bounds
[ŷt, ŷ

t
]. Otherwise, the measurement is replaced by the

model estimation. Figure 2 summarizes in graphical manner
using a block diagram the validation/correction process. The
block diagram has three modules:
• the Operational Database that stores the valid time series

and residuals generated by means of Eqs. 9 and 11,
• the Forecast Model module with the DSHW+ANN

(Figure 1) and
• the Validation module that implements the validation

function of Equation 2.
The Operational Database block provides DSHW residuals

and validated time series information to the Forecast Model.
The Forecast Model also feeds the Validation module decid-
ing whether the estimated forecast ŷt+1 or the raw measure-
ment yt+1 should be stored in the Operational Database.
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Fig. 2. Validation process

IV. RESULTS

The proposed approach was tested with flow meter time
series from the database of Barcelona water transport net-
work provided by the company Aguas de Barcelona (AG-
BAR) [22]. This company supplies water to Barcelona city,
and also to the metropolitan area. It covers 23 municipalities
included in an area of 424 km2, with 4,645 km of pipes in
order to satisfy the water demand of about 3 million people.
The complete transport network contains: 63 storage tanks,
3 surface sources and 7 underground sources, 79 pumps, 50
valves, 18 nodes, and 88 demand sectors. The network is
controlled through a SCADA system with sampling periods
of 1 hour. In this work, we considered the data from
water demand flow meter sensors that present typical water
consumption behavior of urban areas. The experiments are
performed with the time series produced by the flowmeters
identified by labels p10017 and p10013 in the Barcelona



water distribution network. The time series length considered
to perform the experiments is one month in hourly scale (720
data), splitting the data in a set with 70% of the data (504
data points) and another set with 30% for the validation (216
data points).

The experiments report the effectiveness of the proposed
DSHW+ANN with the validation model by means of accu-
racy and precision compared with DSHW and ARIMA.

To use the validation model and reconstruct the false data,
first we need to model the behavior of the water demand time
series as best as possible. Then, we define a valid threshold
to detect incorrect data using interval estimate provided by
the Confidence Interval (8).

The experiments demonstrate the improvement of the
DSHW+ANN using the validation model with respect to
DSHW by reporting the forecast accuracy and precision.

The same training set is used to tune the DSHW and train
the ANN. Once the DSHW is trained, the residuals are used
to train the ANN using GA as described in Section II. DSHW
period parameters are τ1 = 24 and τ2 = τ1 × 7 (daily and
weekly seasonal parameters), and the model is obtained by
using the function dshw of the forecast package found in
the R software [23]. ANN is trained by using GA with the
evolutionary parameters reported in Table I.

The prediction of the DSHW model is depicted in Figure
3, which shows the water demand data using the solid black
line and the one-step ahead prediction performed by the
DSWH model using the dotted gray line. Figure 4 plots
the DSWH residuals obtained as difference of the previous
signals presented in Figure 3.

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●
●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●■

■

■

■
■■
■

■

■

■

■

■

■

■

■

■

■

■

■
■

■
■

■

■

■

■

■■■

■

■

■

■■

■

■

■■

■

■

■
■

■

■

■
■

■

■

■

■

■
■
■

■

■

■

■■

■

■
■■

■

■

■
■

■

■

■■

■

■

■

■

■

■

■

■

■

■

■■

■

■

■
■

■

■

■

■

■

■

■
■

■

■

■

■

■

■■

■

■

■

■■

■

■
■
■

■

■

■

■

■

■

■
■

■

■

■

■

■
■■

■

■

■

■
■

■

■

■
■

■

■

■

■■
■

■■

■

■

■

■

■

■■
■

■

■

■

■

■

■

■

■
■
■

■

■
■

■■

■

■

■

■

■

■

■
■
■
■

■

■

■

■

■
■

■

■

■

■

■

■

■

■

■

■

■

■

■

■
■■

■

■

■

■
■

■

■

■■

■

■

■

■
■

■

■

■

■

■

50 100 150 200
Time

0.2

0.4

0.6

0.8

1.0

Magnitude

Fig. 3. DSHW Model. The solid black line corresponds to the real data,
and the dotted gray line to the DSHW model.

The obtained residuals, are modeled with an ANN. The
design of the architecture of the ANN, and the training
process was developed by GA. The parameter of the GA
used to optimize the ANN function (6) are shown in Table
I.

The result of modelling the residuals using ANN is
depicted in the Figure 5, where the solid black line is the
residual time series and the dotted grey line correspond to
the ANN prediction. It is important to notice that in spite of
having noisy residuals with unclear dynamic structure, ANN
was capable to model them quite accurately. The experiments

100 200 300 400 500
Time

-0.1

0.0

0.1

0.2

Magnitude

Fig. 4. Holt-Winters Residuals

TABLE I
PARAMETERS OF THE GA

Concept Value
Length of data 720
Length of the validation set 216
range of inputs of the ANN 10 to 70
range of neurons in the hidden layer 20 to 70
Individual mutation probability 55%
Gen mutation probability 0.05%
Crossover probability 70%

for modeling the residuals were performed under a Python
plataform [24], using the library of Evolutionary Algorithms
[25].
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Fig. 5. ANN Model Residuals

The ANN residuals model is used together with the DSWH
model to improve the performance of the single DSHW. The
resultant performance of the DSHW+ANN (14) is presented
in Figure 6.

Figure 6 presents four signals: the upper and lower dotted
lines define the uncertainty threshold, the solid black line
corresponds to the real time series, and the dotted gray
line corresponds to the obtained model using DSHW+ANN.
To define the uncertainty threshold, we use the statistical
measure of the confidence intervals introduced in (8).

The histogram of the errors (defined as in (16)) is depicted
in the Figure 7. From Figure 7, it can observed two vertical
lines that define the uncertainty threshold with a 95 % of
confidence. All data outside this boundary is considered
false and then replaced with the forecast estimate of the
DSHW+ANN model.

978-1-5090-0657-1/16/$31.00 ©2016 IEEE 199
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Fig. 6. HW+ANN Model
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Once the DSHW+ANN model is available, we proceed
to quantify the improvements of the model. Reducing un-
certainty, we will allow improving the quality of the data
validation approach proposed in Section III. Table II and III
show the improvements in terms of accuracy and precision.
The first column of Table II and III, shows the different
forecasting models for comparison. The second column
expresses the certainty in area. The third column expresses
the inferior and superior limit of the confidence intervals,
and finally, the fourth and fifth column report the accuracy
in terms of MSE and MAPE.

Considering the two experiments, we obtain a general
improvement of more than 10% in terms of the uncertainty

TABLE II
RESULTS TIME SERIES OF FLOWMETER P10017

Precision Accuracy
Model/Meas. AREA CI MSE MAPE

DSHW 37.25 [−0.0877, 0.0878] 0.0019 7.0%
DSHW+ANN 32.25 [−0.0781, 0.0718] 0.0014 6.3%

ARIMA 108.575 [-0.2520, 0.2539] 0.0165 22.9%

TABLE III
RESULTS TIME SERIES OF FLOWMETER P10013

Precision Accuracy
Model/Meas. AREA CI MSE MAPE

DSHW 85.27 [−0.222, 0.2172] 0.01251 19.18%
DSHW+ANN 82.06 [−0.1966, 0.2236] 0.0116 20.2%

ARIMA 287.4 [-0.7123, 0.7543] 0.1397 83.89%

threshold area and more than 11% in terms of accuracy.
The results demonstrates that the water demand time series

have a complex dynamics not fitted completely by state-of-
the-art algorithms such as DSHW. The water demand time
series requires complex forecasting modeling for having a
higher performance required in the industry.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a GA trained ANN forecasting
model that complements and improves the DSHW one-
step ahead forecasting prediction accuracy and precision.
We also proposed to include a validation mechanism based
on confidence intervals that allows detecting missing and
erroneous data. The data validation is useful to robustify the
DSHW predictions since it is sensitive to inconsistent data
performing poorly.

Although there exist generalised Holt-Winters models that
capture a third or more seasonalities to improve the forecast
accuracy such as in [26], they are focused on improving the
global modeling for larger time series that put on evidence
the existence of a third seasonality (e.g., Besides the intraday
and intraweek cycles, it is also observed an intrayear seasonal
cycle in hourly time series), rather than improving and
refining the local modeling of the dynamics as we do in
this paper. We believe that the proposed approach can be
implemented straightforward to complement these kind of
models to improve the prediction performance in the short-
term.

The computation of the confidence intervals have further
practical implementations. They are useful for the safe op-
eration in control (e.g., distribution of the water considering
the worst case), and also for improving the precision of the
billing. Confidence intervals are defined by the upper and
lower bound, which delimit the certainty of the information
(certainty threshold) provided by the flow meters. Among
the uses of the certainty threshold, for example, the upper
bound could be used to determine the potential demand for
the next period, and the lower bound can be used to define
the certainty of the information provided by the flowmeter.

As future work we propose to prove the proposed approach
for other methods such as the triple seasonal methods and
include a comparison with the Gaussian Process DSHW
proposed in [6], and also to explore more reliable methods
for obtaining more accurate confidence intervals. Precise
confidence intervals improve the forecast precision provid-
ing safety to the operation of the drinking water demand
minimising the sacrifice of resources to keep a desired
quality of service. The authors suggest the use of different
probability distributions for specific water demand hour since
the uncertainty might be different at different moments; e.g.,
the uncertainty of the water consumption is less during the
night while the people sleeps than during the the middle
of the day while the people are working and the activity
is more unpredictable. Possibly the probability distribution
functions might obey to a Gaussian or another kind of
complex probability distribution shapes that are present at
different moments.
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