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Abstract – Mistuning in cyclic symmetric systems increases severely the forced response of system and
splits the modes. This paper concerns with nonlinear behavior of mistuned cyclic systems. A nonlinear,
mistuned model based on the method of multiple scales is proposed and formulated in which nonlinearity
and mistuning parameter is assumed to be in of low order. Next, two mistuned systems were considered and
solved by the multiple scale technique. Numerical results demonstrate that mistuning can lead to repeating
and scattering of jump phenomena during the excitation frequency whereas in tuned cyclic system it occurs
simultaneously (synchronously).
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1 Introduction

Many unique and interesting phenomena occur in the
dynamic response of nonlinear systems. Nayfeh, studied
mathematically phenomenon such as jump that only can
be observed in nonlinear systems [1]. Nayfeh in 1995 [1],
Strogatz in 1994 [2], Verhulst in 1999 [3] and Rand in
2003 [4] studied the nonlinear oscillations. Also, local-
izing the nonlinear modes recently studied, this intro-
duces the concept of nonlinear normal modes (NNMs)
that in general relates to the synchronous and periodic
study of nonlinear dynamical systems. The original the-
ory for NNMs was conceived by Rosenberg in the early
1960s and may be considered as a direct extension of the
concept of (real) normal modes of conservative linear sys-
tems [5]. Rosenberg defined NNM motion for a discrete
system as a “vibration in unison”, during which all co-
ordinates oscillate with the same period, and reach their
respective extreme simultaneously. Normal mode bifurca-
tions have been investigated for discrete oscillators, where
it has been shown that the number of modes for a non-
linear system may exceed the number of degrees of free-
dom [6]. Such a feature has no counterpart in linear the-
ory. Papers published have shown that localized nonlinear
normal modes exist for weakly coupled, nonlinear cyclic
structures consisting of discrete oscillators [7], Moreover,
investigations by King and Vakakis have demonstrated
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the existence of nonlinear mode localization for flexible
structures in the absence of structural disorder [8]. The
works by Vakakis et al. offer overviews of the various
methods of constructing nonlinear normal modes [9].

A nonlinear extension of the concept of mode shapes
was proposed by Rand [10], Shaw and Pierre [11], Vakakis
et al. [9] and Vakakis [12]. Weakly nonlinear systems were
thoroughly analysed using perturbation theory [13–15].
Perturbation methods include for instance the method
of averaging, the Lindstedt–Poincare’ technique and the
method of multiple scales and aim at obtaining asymp-
totically uniform approximations of the solutions. Dur-
ing the last decade or so, one has witnessed a transition
from weakly nonlinear structures to strongly nonlinear
structures (by strongly nonlinear systems, a system for
which the nonlinear terms are the same order as the lin-
ear terms is meant) thanks to the extension of classical
perturbation techniques [16, 17] and the development of
new methodologies [18–21].

Several references have reported work on linear vibra-
tions of cyclic systems [22, 23]. Nonlinear vibrations of
cyclic systems, including the response to standing and
traveling wave (TW) excitation, nonlinear localized re-
sponses, and so on, have been considered in works by
Vakakis, Bajaj, and other researchers [24, 25]. The dy-
namics of weakly coupled, nonlinear cyclic assemblies are
investigated in the presence of weak structural mistun-
ing. The method of multiple scales is used to obtain a set
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of nonlinear algebraic equations which govern the steady
state, synchronous “modallike” motions for the struc-
tures [26].

The use of asymptotic techniques to find approxi-
mate solutions was addressed in several works; Vakakis
et al. [29] used an averaging method, Gendelman et al. [28]
used a multiple scale method, Mikhlin and Reshet-
nikova [29] used an expansion method in combining with
a Mathieu equation comparison to investigate the stabil-
ity of periodic solutions. Moreover Vakakis and Rand [30]
proposed a method to derive exact solutions for systems
with cubic nonlinearities based on the use of elliptic func-
tions. Experimental results were also presented [31, 32]
in which the nonlinear device is made of a geometric
nonlinearity.

Several authors, including Vakakis et al. [27] or
Mikhlin and Reshetnikova [29] used the concept of Non-
linear Normal Modes (NNM) and their stability to explain
this result. The concept of nonlinear normal modes was
first introduced by Rosenberg [33] and has been the sub-
ject of many investigations in the past years. Several au-
thors [9–11] demonstrated that the use of NNM in study-
ing the dynamics of nonlinear (and in particular strongly
nonlinear) systems has interesting applications both in
free and forced responses.

One of the well-established analytical techniques for
solving engineering vibration problems, which are repre-
sented by ordinary differential equations, is the method
of multiple scales (MS). This method can be applied to
find approximate solutions to a wide range of nonlinear
problems. The main idea of the MS method is to split
up the single independent variable into several new in-
dependent variables. The method allows the construction
of a set of perturbation equations that can be solved un-
der the condition of removal of secular terms. In order to
analyze nonlinear vibrations of structural elements many
have used the method of multiple scales which has been
known to give a uniformly valid approximation as long as
a specific system parameter is small.

One perturbation method that has received consider-
able attention for the NNM computation is the method
of multiple scales [34–39].

In addition, nonlinear mode localization in periodi-
cally coupled oscillators due to nonlinear effects has also
drawn increased attention [40, 41].

In the work by Samaranayake et al. a model of a
weakly coupled multi degree-of-freedom cyclic system is
studied for its primary resonance. The system possesses
cubic nonlinearities, and the method of averaging is used
to derive the amplitude or the averaged equations [42].
An approximate method to calculate the envelopes of the
frequency response functions is developed in a study by
Sextro et al. [43]. An example of a nonlinear system with
cyclic symmetry is a bladed disk assembly with friction
dampers. Regions where localization can occur with a
high probability are calculated by this method.

Bladed disks may be used in several engineering sys-
tems such as fans, impeller pumps, turbine generators
and jet engines. Ideally, these systems are tuned and all

blades are identical but, in practice there always exist
small, random differences among the blades due to man-
ufacturing tolerances, in-operation wear, and so on that
can make to destroy the cyclic symmetry of bladed disk.
It is well known that even a small amount of mistuning
can induce a large forced response known as mode local-
ization and modal analysis shows that double eigenvalues
appear in tuned cyclic symmetric structures which would
be split in mistuned systems [22].

Judge et al. [44] have reported the results of an ex-
perimental investigation on the effects of random blade
mistuning on the forced dynamic response of bladed disks.
The primary aim of the experiment is to gain understand-
ing of the phenomena of mode localization and forced re-
sponse blade amplitude magnification in bladed disks.

Petrov et al. [45] formulated friction element under
variable normal load conditions. The multiharmonic bal-
ance method (MHBM) is utilized for linearization of the
nonlinearity to calculate the equivalent forcing vector as
well as the tangent stiffness matrix.

An efficient method for analysis of nonlinear vibra-
tions of mistuned bladed disk assemblies has been devel-
oped by Petrov and Ewins [46]. This development has
facilitated the use of large-scale finite element models for
realistic bladed disks, used hitherto in analysis of linear
vibration, to be extended for the analysis of nonlinear
multiharmonic vibration. Ciğeroğlu and Özgüven [47] de-
veloped a one-dimensional dynamic micro-slip element in
which the inertial effects of the damper are included.
The steady-state solution of the shear layer is deter-
mined by solving the nonlinear partial differential equa-
tions analytically.

Yan et al. [48] have used experimental mode anal-
ysis and mode correction to calculate some low-order
modes of tuned blade and the disk with cone-flange.
Beachkofski [49] used reduced order models to probabilis-
tic rotor life assessment.

A damping strategy for bladed disks of turbomachin-
ery involving a friction ring is investigated by Laxalde
et al. [50]. Shin et al. [51] investigated the vibration
localization phenomena due to mistuned coupling stiff-
ness. Salhi et al. [52] present a methodology to identify
the modal properties of mistuned bladed disk from tip-
time data. Zhou et al. [53] present an adaptive control
strategy based on passive piezoelectric shunt techniques
for mistuned bladed disks. Resonant shunted piezoelec-
tric patches are attached onto the disk between adjacent
blades to reduce the blade vibration through blade-disk
coupling. An essentially nonlinear piezoelectric shunt cir-
cuit is proposed by Zhou et al. [54] for the practical re-
alization of nonlinear energy sink, and then applied to a
mistuned bladed disk for blade vibration reduction.

In this paper, a formulation based on perturbation
theory was used to find out the steady state solution of
a cyclic system with nonlinear springs due to mistuning.
The system parameters are considered to be lumped. The
system is a simple representation of a real bladed disk
system. Next, a multiple scale technique was employed for
solving nonlinear equations. Finally, two cyclic systems
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Fig. 1. Nonlinear cyclical symmetry systems dynamic model.

were considered and the tuned and mistuned responses of
them were calculated and compared.

2 Problem formulation

The equation of motion for the nth pendulum of the
model shown in Figure 1 can be written in the following
form [1]:

mnÿn + cnẏn + knyn + Kn(yn − yn+1)

+ Kn−1(yn − yn−1) + μny3
n = Fn (1)

where mn, cn, kn, μn, Kn and yn denote the mass, damp-
ing coefficient, linear grounding stiffness and (cubic) non-
linear grounding stiffness, (linear) coupling stiffness con-
necting the n and n + 1 pendulum and displacement of
the nth pendulum, respectively. For the cyclical symme-
try based system following relations are true:

y0 ≡ yN , yN+1 ≡ y1, n = 1, . . . , N (2)

As it is clear dots means that the derivatives are with
respect to the time. Here, we use the following change of
variable for each non-dimensional equation (i.e., rescal-
ing time with respect to the isolated (linear) natural fre-
quency of the first pendulum):

τ =
√

k1

m1
t (3)

By substituting Equation (3) into Equation (1), the fol-
lowing non-dimensional equation is obtained [1, 9]:

y′′
n +

cn√
m1

√
k1

× m1

mn
y′

n +
knm1

k1mn
yn +

Knm1

k1mn
(yn − yn+1)

+
Kn−1m1

k1mn
(yn − yn−1) +

μnm1

k1mn
y3

n =
m1Fn

k1mn
(4)

where the prime means derivatives with respect to τ .

In this paper, the perturbation method for nonlin-
ear problems is used. The external forces applied to each
member are assumed to be harmonic with a small am-
plitude. The objective is to calculate the effects of small
mistuning to cyclical symmetry of nonlinear systems. For
this purpose, without lose of generality, a perturbation is
considered in all physical parameters including the stiff-
ness of spring, mass of each pendulum and damping co-
efficients. Assuming the properties of the first pendulum
as parameters for nondimensionalization, the changes of
physical parameters for other pendulum with respect to
the first pendulum can be written as [1]:

kn

k1
= 1 + εk̂n + O(ε2),

mn

m1
= 1 + εm̂n + O(ε2),

cn√
m1

√
k1

= 2ξε + O(ε2)

Kn

k1
= εK̂ + O(ε2),

μn

k1
= μ̂ + O(ε),

Fn

k1
= fnε

3
2 cos(Ωτ) + O(ε2) (5)

where k̂n and m̂n are mistuning parameters correspond-
ing to the stiffness and mass, respectively. Also ε is
a small dimensionless parameter and non-dimensional
(where |ε| � 1). In Equation (5) mistuning, damping
force, amplitude of harmonic force and coupling stiffness
are assumed to be small. With using Taylor expansion for
small ε we have:

2ξε + O(ε2)
1 + εm̂n + O(ε2)

= 2ξε + O(ε2),

1 + εk̂n + O(ε2)
1 + εm̂n + O(ε2)

= 1 + ε(k̂n − m̂n) + O(ε2)

εK̂ + O(ε2)
1 + εm̂n + O(ε2)

= εK̂ + O(ε2),

μ̂ + O(ε)
1 + εm̂n + O(ε2)

= μ̂ + O(ε) (6)

By substituting Equations (5) and (6) into Equation (4)
and assuming small but finite oscillations (yn = ε1/2xn),
one may obtain the following set of ordinary differential
equations governing the forced response of the weakly
coupled, weakly mistuned, nonlinear cyclic assembly:

x′′
n +2ξεx′

n +[1+ε(k̂n−m̂n)]xn +εK̂(2xn−xn−1−xn+1)

+ εμ̂x3
n + O(ε2) = fnε cos(Ωτ) (7)

where n = 1, . . . , N .

3 Approximate solution using method
of multiple scale

One of the techniques for solving nonlinear equations
is the method of multiple scale [1]. Multiple scale method
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is a global perturbation scheme that is useful in systems
characterized by disparate time scales, such as weak dissi-
pation in an oscillator. These effects could be insignificant
on short time scales but become important on long time
scales. Classical perturbation methods generally break
down because of resonances that lead to what are called
secular terms.

Let us first define independent time variables as [1]:

T0 = τ, T1 = ετ, T2 = ε2τ, . . . (8)

Therefore, the d
dτ operator will take the following form:

d
dτ

=
∂

∂T0

dT0

dτ
+

∂

∂T1

dT1

dτ
+ . . .

=
∂

∂T0
+ ε

∂

∂T1
+ O(ε2) = D0 + εD1 + O(ε2) (9)

Similarly, for the higher order derivatives we have:

d2

dτ2
= D2

0 + 2εD0D1 + O(ε2) (10)

The response of Equation (7) is considered as [1]:

xn(τ, ε) = xn(T0, T1, . . .) =
∞∑

p=0

εpxn,p(T0, T1, . . .)

= xn,0(T0, T1) + εxn,1(T0, T1) + O(ε2) (11)

By substituting Equations (9) to (11) into Equation (7),
the following relations are obtained:

(D2
0 + 2εD0D1)(xn,0(T0, T1) + εxn,1(T0, T1))

+ 2ξε(D0 + εD1)(xn,0(T0, T1) + εxn,1(T0, T1))

+ [1 + ε(k̂n − m̂n)](xn,0(T0, T1) + εxn,1(T0, T1))

+ 2εK̂(xn,0(T0, T1) + εxn,1(T0, T1))

− εK̂(xn−1,0(T0, T1) + εxn−1,1(T0, T1))

− εK̂(xn+1,0(T0, T1) + εxn+1,1(T0, T1))

+εμ̂(xn,0(T0, T1)+εxn,1(T0, T1))3 +O(ε2) = fnε cos(Ωτ)
(12)

Equating the terms of different ε order (coefficients
ε0, ε1, . . .) from both sides of Equation (12), the following
equation is obtained for the largest scale (i.e ε0):

D2
0xn,0(T0, T1) + xn,0(T0, T1) = 0 n = 1, . . . , N (13)

For terms of order (ε1), one can obtain:

D2
0xn,1(T0, T1) + 2D0D1xn,0(T0, T1) + xn,1(T0, T1)

+2ξD0xn,0(T0, T1)+(k̂n−m̂n)xn,0(T0, T1)+2K̂xn,0(T0, T1)

− K̂xn−1,0(T0, T1) − K̂xn+1,0(T0, T1) + μ̂x3
n,0(T0, T1)

= fn cos(Ωτ) (14)

Since higher order terms have small effect on the system
response, it is sufficient to consider terms up to order

of ε0. For this purpose, the first response of Equation (12)
is obtained for all components. Because of weak couplings
between the components, the equation for each member
can be separated and the response is:

xn,0(T0, T1) = An(T1)ejT0 + Ān(T1) e−jT0 (15)

where j =
√−1. To obtain the second order response, we

rewrite the external harmonic force as:

fn cos(Ωτ) =
fn

2
(
ejΩτ + e−jΩτ

)
(16)

By substituting Equation (15) and Equation (16) into
Equation (14), finally, it will transform to the following
equation:

D2
0xn,1 + xn,1 = −2j(D1An + ξAn)ejT0

− (2K̂ + k̂n − m̂n)AnejT0 + K̂An−1ejT0 + K̂An+1ejT0

− μ̂A3
n
e3jT0 − 3μ̂A2

n
ĀnejT0 +

fn

2
ejΩτ + C.C. (17)

Without losing generality, we use the following assump-
tion for the response analysis of the system around the
resonance:

Ω = 1 + σε → Ωτ = T0 + σT1 (18)

where σ is the detuning frequency which is the deviation
from the natural frequency. By substituting Equation (18)
into Equation (17), we obtain:

D2
0xn,1 +xn,1 =

[
−2j(D1An + ξAn)− (2K̂ + k̂n − m̂n)An

+ K̂An−1 + K̂An+1 − 3μ̂A2
n
Ān +

fn

2
ejσT1

]

× ejT0 − μ̂A3
n
e3jT0 + C.C. (19)

As we know, the coefficients of ejT0 which are not zero,
create secular terms which lead to infinite response. As a
result, the coefficients of secular terms are set to zero.

− 2j(D1An + ξAn) − (2K̂ + k̂n − m̂n)An + K̂An−1

+ K̂An+1 − 3μ̂A2
n
Ān +

fn

2
ejσT1 = 0 (20)

It is clear that Equation (20) is a first order nonlinear
differential equation system with independent variable
T1and dependent variables An, where n = 1, . . . , N .

The following general answer is proposed for Equa-
tion (20) in which coefficients an and βn are functions
of T1:

An =
an

2
ejβn (21)

By substituting Equation (21) into Equation (20), the
following equation is obtained:

− 2j

[
a′

n

2
ejβn +

an

2
× j × β′

nejβn +
an

2
× ξejβn

]

− (2K̂ + k̂n − m̂n)
an

2
ejβn + K̂

an−1

2
ejβn−1

+ K̂
an+1

2
ejβn+1 − 3μ̂

a3
n

8
ejβn +

fn

2
ejσT1 = 0 (22)
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By multiplying Equation (22) in e−jβn we have:

− j (a′
n + an × j × β′

n + ξan) − (2K̂ + k̂n − m̂n)
an

2

+ K̂
an−1

2
ej(βn−1−βn) + K̂

an+1

2
ej(βn+1−βn) − 3μ̂

a3
n

8

+
fn

2
ej(σT1−βn) = 0 (23)

And using the Euler equation (ejα = cos(α) + j sin(α)):

− j (a′
n + ξan) + anβ′

n − (2K̂ + k̂n − m̂n)
an

2
+ K̂

an−1

2
[cos(βn−1 − βn) + j sin(βn−1 − βn)]

+ K̂
an+1

2
[cos(βn+1 − βn) + j sin(βn+1 − βn)] − 3μ̂

a3
n

8

+
fn

2
[cos(σT1 − βn) + j sin(σT1 − βn)] = 0 (24)

And then separating the complex equation into real and
imaginary parts, the following equations are obtained:

− (a′
n + ξan) + K̂

an−1

2
sin(βn−1 − βn)

+ K̂
an+1

2
sin(βn+1 − βn) +

fn

2
sin(σT1 − βn) = 0 (25)

anβ′
n−(2K̂+k̂n−m̂n)

an

2
−3μ̂

a3
n

8
+K̂

an−1

2
cos(βn−1−βn)

+ K̂
an+1

2
cos(βn+1 − βn) +

fn

2
cos(σT1 − βn) = 0 (26)

Equations (25) and (26) are a set of 2n first order nonlin-
ear differential equations with 2n unknowns (an and βn).
After solving this set of equations by numerical meth-
ods, the final response for each member can be written
as xn = an

2 ej(βn+T0) + C.C. where for special condition it
may represent a harmonic response.

To obtain the steady state response of Equations (25)
and (26), the following change of variable is assumed:

γn = σT1 − βn (27)

By substituting the above equation into Equations (25)
and (26), the equations are rewritten in the form of:

a′
n = −ξan + K̂

an−1

2
sin(γn − γn−1)

+ K̂
an+1

2
sin(γn − γn+1) +

fn

2
sin(γn) (28)

anγ′
n = σan − (2K̂ + k̂n − m̂n)

an

2
− 3μ̂

a3
n

8
+ K̂

an−1

2
cos(γn − γn−1) + K̂

an+1

2
cos(γn − γn+1)

+
fn

2
cos(γn) (29)

To have a steady state solution, the parameters a′
n and

γ′
n are set to zero. As a result, we will have the follow-

ing expression for the steady state response of nonlinear
equations:

xn = an cos(Ωτ − γn) (30)

Regarding to Equation (18), the above simplified equa-
tions are only valid for frequencies around the reso-
nances. However, in nonlinear systems, the system re-
sponse around the natural frequency is not maximum
and the system may experience super and sub harmonic
resonances.

4 Numerical results

In this section, two circular symmetric models were
reviewed and the influence of the mistuning on the general
properties of the steady state response was investigated.

4.1 Three-degree-of-freedom system

In order to create the random pattern, a new param-
eter was defined as:

K̂n = 2K̂ + k̂n − m̂n (31)

By defining this parameter, it is possible to mistune all the
components of the system simultaneously. Assuming the
following values for the three-degree-of-freedom system:

ε = 10−3, ξ = 0.50, μ̂ = 25, K̂ = 7, K̂1 = 7, K̂2 = 10,

K̂3 = 16, σ = 0 → Ω = 1, fn = 1n = 1, 2, 3

And then solving Equation (7) by direct integration tech-
nique, the blades response for the tuned and mistuned
systems can be calculated. Figure 2 shows the blade re-
sponse for the tuned and mistuned systems as a function
of time.

For the case of 3DOFs system, the set of Equa-
tions (28) and (29) can be written in matrix form as:

See equation (32) next page.

Since the stimulating forces have the same phase, the
three-degree-of-freedom tuned system responses are all
exactly the same. Figure 3 shows the response amplitude,
an for all three tuned pendulums.

Next, the system mistuned under a random pattern.
For the tuned system, it was assumed that K̂1 = K̂2 =
K̂3 = 14. Other parameters of the system are set as:

ξ = 0.50, μ̂ = 25, K̂ = 7, fn = 1n = 1, 2, 3 (33)

For the mistuned system, the mistuned parameters were
K̂1 = 7, K̂2 = 10, K̂3 = 16. It is noteworthy that
according to Equation (5), the mistuning parameters
K̂, k̂n, m̂n and K̂n all will multiply by ε. In other words,
large difference between these values does not mean
large changes in system physical parameters such as
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Fig. 2. Response amplitude, xn, for all three mistuned pendulums versus t.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a′
1

a′
2

a′
3

γ′
1

γ′
2

γ′
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ξ K̂
2

sin(γ1 − γ2)
K̂
2

sin(γ1 − γ3) 0 0 0

K̂
2

sin(γ2 − γ1) −ξ K̂
2

sin(γ2 − γ3) 0 0 0

K̂
2

sin(γ3 − γ1)
K̂
2

sin(γ3 − γ2) −ξ 0 0 0

0 K̂
2a1

cos(γ1 − γ2)
K̂
2a1

cos(γ1 − γ3) − 3µ
8

0 0

K̂
2a2

cos(γ2 − γ1) 0 K̂
2a2

cos(γ2 − γ3) 0 − 3µ
8

0

K̂
2a3

cos(γ3 − γ1)
K̂

2a3
cos(γ3 − γ2) 0 0 0 − 3µ

8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a2
1

a2
2

a2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

sin γ1 0 0

0 1
2

sin γ2 0

0 0 1
2

sin γ3

1
2a1

cos γ1 0 0

0 1
2a2

cos γ2 0

0 0 1
2a3

cos γ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f1

f2

f3

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

− K̂1
2

+ σ

− K̂2
2

+ σ

− K̂3
2

+ σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

k1, m1, K1, . . . , kn, mn, Kn. The calculated responses are
depicted in Figure 4 for forward and backward motions.
In this figure, the solid line graphs are the responses of
the tuned system. It is clear that mistuning of the sys-
tem have altered the response of each blade substantially.
The responses of each blade experience three jump phe-
nomena during forward or backward. Although the jump
will happen for all blades in almost the same frequencies,
the amplitude of vibration for each blade is different in
all mistuning parameter range. The difference in vibra-
tion amplitudes mainly relate to the mistuning stiffness
parameter K̂n.

The response amplitude of blades for both tuned and
mistuned systems can be calculated from Figure 4 for
case of σ = 0. The maximum response of both tuned and
mistuned systems can also be obtained from the responses
depicted in Figure 2. These values are compared with each
other in Table 1. Actually, the former is evaluated from
the perturbation method while the latter is calculated by
direct integration technique. As indicated in the table,
the results obtained from both techniques are in good
agreement. The maximum difference is less than 3.5%.

Figure 5 shows the response of the 3 DOFs system
for tuned and mistuned cases (μ̂ = 0). As indicated in
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Fig. 3. Response amplitude, an, for all three tuned pendulums.

Fig. 4. Response amplitude, an, for all three mistuned pendulums.

Table 1. Comparison of direct integration and perturbation method.

System type Amplitude Direct integration Perturbation method % Difference
Tuned an 0.3764 0.3677 2.3

Mistuned

a1 0.5868 0.5743 2.1
a2 0.5408 0.5235 3.2
a3 0.4492 0.4371 2.7
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Fig. 5. Response amplitude, an, for all three mistuned pendulums (for μ̂ = 0).

Table 2. Maximum response amplitude an, for all three pendulums.

System type μ̂ σ Max a1 Max a2 Max a3 Max an

Tuned

μ̂ = 0
increase 1 1 1 1
decrease 1 1 1 1

μ̂ = 25
increase 0.9978 0.9978 0.9978 0.9978
decrease 0.5766 0.5766 0.5766 0.5766

Mistuned

μ̂ = 0
increase 1.1587 0.9892 0.7735 1.1587
decrease 1.1587 0.9892 0.7735 1.1587

μ̂ = 25
increase 1.0593 1.0083 0.9137 1.0593
decrease 0.6246 0.5723 0.4825 0.6246

the figure the location and the amplitude of the maxi-
mum response of the mistuned system have changed in
comparison with the tuned system.

The maximum response of the blades for different sce-
narios is given in Table 2. As indicated in the table, the
maximum response for the mistuned case is larger than
the tuned one. In tuned case, the response of all three
blades is the same. For μ̂ = 0, the maximum response
of all blades is equal to unity for either increasing or de-
creasing the vibration parameter σ. For μ̂ = 25, the max-
imum response of all blades when σ is increasing is equal
to 0.9978 while when σ is decreasing, the maximum re-
sponse is equal to 0.5766. However, for mistuned system,
the maximum response of each blade is different and the
blade with the highest mistuning has the largest max-
imum response. For our case study, the most mistuned
blade is the first one and this blade has the largest max-
imum response.

4.2 Twelve-degree-of freedom system

For a system with twelve blades, nonlinear algebraic
system of equations was numerically calculated using a

code developed in Matlab environment. In this exam-
ple, the grounding stiffness parameter, K̂n for all blades
was set to 14 (i.e. K̂1 = . . . = K̂12 = 14). For the mis-
tuned case, these parameters were selected randomly in
the range of 4 to 24; these values are given in Table 3.

Again responses of all twelve blades are plotted in
Figure 6 for forward and backward system excitation, by
solving Equations (28) and (29) for the case of 12DOFs
system.

It can be seen from figures that the first jump for all
blades almost happen in a specific frequency. The first
jump frequency for increasing and decreasing mistuning
frequency are –22 and –30 Hz respectively. However, the
second jump in both case happen in a wide frequency
range. Figure 7 shows the blade response of both tuned
and mistuned systems for the 12 DOFs system with μ̂ = 0.

Table 4 tabulated the maximum response of the blades
for both tuned and mistuned systems. Again, the max-
imum response for mistuned system is larger than the
tuned one. For the tuned system the response of all blades
are the same while for the mistuned system each blade has
different response amplitude. In our example, the eleventh
blade has the highest perturbation and the highest vibra-
tion response.
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Table 3. Values of K̂n for the twelve-degree-of freedom mistuned system.

K̂n K̂1 K̂2 K̂3 K̂4 K̂5 K̂6 K̂7 K̂8 K̂9 K̂10 K̂11 K̂12

Value 8 21 16 6 24 19 18 10 12 22 4 20

Fig. 6. Response amplitude, an, for all twelve mistuned pendulums.

Fig. 7. Response amplitude, an, for all twelve mistuned pendulums (for μ̂ = 0).

5 Conclusions

Mistuning, imperfections in cyclical symmetry of
bladed disks are an inevitable occurrence due to many
factors including manufacturing tolerances and in service
wear and tear. It can cause some unpredictable phenom-
ena such as mode splitting, mode localization and dra-
matic difference in forced vibration response.

In order to investigate the effects of mistuning on non-
linear cyclical symmetric systems, the method of multiple
scales is used for finding the forced and steady state vibra-
tion response of a nonlinear mistuned lumped model. For
tuned system, all blades experience jump phenomenon
at the same time and with equal amplitude. In addition,
the results show that only one jump will happen for the
tuned system during the excitation. The results indicate
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that jump phenomenon occurs several times during the
forward and backward excitation of the mistuned nonlin-
ear system. Moreover, the amplitude of vibration for each
blade is different.
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