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Abstract
A novel algorithm designed to compute efficiently and

accurately the HF electromagnetic scattering from open-ended
waveguide cavities is presented. The cavity is converted into a
stepped-waveguide model so that the field spectrums are
propagated, forward and backward, along each waveguide section.
As boundary conditions for perfect electric conductors are applied
via image theory, they are of local nature and take into account
only the first order interactions between each pair of waveguide
sections. Accordingly, additional forward-backward iterations
must be performed if multiple interactions are to be taken into
account. Finally, the RCS due to the interior irradiation is
calculated by a Kirchhoff-based aperture integral. Good
agreement with Method of Moments and Hybrid Modal solutions is
found, as well as with experimental data, for 2-D and 3-D cavities.

Introduction
The analysis of EM scattering from open-ended waveguide

cavities has received strong attention in the last years in relation
with RCS reduction and target signatures. For RCS analysis of
complex targets, duct structures such as jet engine intakes can
often be modelled by more simple waveguide cavities.
When the dimensions are electrically small, numerical

techniques such as Finite Elements Method (FEM) [1 ] can be
applied leading to rigorous solutions. In electrically large cavities,
however, HF approximations must be used due to the large
number of integral equations involved. In cavities with regular
uniform geometry, modal methods have proved to be efficient over
a broad range of frequencies [2]. In the case of more arbitrarily
shaped cavities, geometrical optics based ray-shooting [3] or
Gaussian Beam (GB) 141 approaches can be used to deal with
smooth non-uniform geometries, but they are limited to very high
frequency problems. Recently, several hybrid schemes [5] have
been reported to treat cavities which can be modelled by uniform
waveguide sections connected by arbitrary transitions.
We present in this paper an alternative technique which can be

considered as an evolution of previously existing spectral
methods, namely the Spectral-Iterative Technique (SIT) [6] and
the Spectral Incremental Procedure (SIP) [7]. The new technique
provides the approximate RCS of simple cavity structures in a
broad frequency range with a progressive refinement of the
solution. This particular feature adapts the computational cost to
the complexity of the cavity. The algorithm, however, accounts
only for the interior irradiation, so that asymptotic methods
should be employed to include first order edge effects.

Bidimensional Algorithm
An arbitrary 2-D cavity is plotted in Fig. la. To begin with, a

segmentation process must be carried out as indicated in Fig. lb
in order to turn the original geometry into a stepped-waveguide
cavity consisting of several straight sections, each corresponding
to a parallel plate waveguide piecewise.

Once the modelling is completed, incident fields due to a plane-
wave excitement are found via Kirchhoffs Approximation and the
field components which will be propagated throughout (EZ or HZ
for the TMZ and TEZ cases) are sampled over the aperture. Local
boundary conditions must be applied prior to the first
propagation. A symmetrization procedure related with classical
image theory, specular for the TEZ polarization and anti-specular
for the TMZ, is thus applied with respect to both conductors
leading to periodical field distributions.

I Ez

(a)

- :~~~~~L7LtLL{[ 2.-
(bi--

Fig. 2. Sampling and symmetrization procedurefor the TA polarization; (a) E-field sampling. (b)
And-specular symmetrization is applied. (c) Ff-based spatial periodical extension

Plane-wave spectrums of the resulting fields, obtained via FFT,
are propagated in a single step through the current waveguide
section.

Uz(kx;yo) =fU.(x,yo) ekx dx

U(kx;y1) = (kx;y)eyo

U5(x,y) =Ez(x,y) or

(la)

(lb)Hz(x,y)

The fields in the spatial domain, recovered via IFFT on the final
plane, include the forward contribution of the equivalent currents
along the conducting walls forming the section.

Uz(x,y1=-Y2,(kx;y) e dkx (2)

In order to adjust the sampling to waveguide sections of
different width, keeping samples over both conducting walls, an
interpolation process must be carried out along the boundary
between consecutive sections. Reflected field samples are to be
stored if the following section is narrower than the previous one,
while additional samples must be padded with zeros if it is wider.
In the new section, symmetrization is again applied to guarantee
the fulfilment of local Boundary Conditions. This procedure is
repeated for every waveguide section as described in Fig. 3a.
Once the cavity end is reached, an analogous Backward

Propagation procedure starts with the fields reflected in the
termination end-plate. If further iterations are to be carried out,
new reflected fields must be saved again as indicated in Fig. 3b.

(a) (1)

Fig. 3. (a) Forward Propagation procedure in an arbitrary 2-D caWty modelled with 7secrions. (2)
Backward Propagation procedure.

A first order solution for the outwardly travelling fields is
obtained after the initial iteration (forward + backward). An
improved solution for the currents and the scattered fields,
including higher order effects between different parts of the

(a) (b)

Fig. 1. Segmentation process in an arbitrary 2-D caviry,- (a) Originial cavity. (b) Stepped-lwaeguide 380
model



cavity, may be obtained by additional forward + backward
iterations. The scheme is analogous to that of the first iteration,
although in the additional forward propagations there is no
incident fleld. The only excitement is due to the reflected fields
stored in the previous backward iteration, which would represent
higher order terms in a series expansion of the currents. The
outwardly travelling fields obtained at each iteration must be
coherently added over the aperture to form a higher order
solution. As the amplitude of the successive wavefronts decreases
constantly, a progressive convergence of the solution is achieved.
Finally, the RCS can be calculated by an Aperture Integration
based again on the Kirchhoff Approximation.

Results for Bidimensional Cavities
HF backscattering pattern of a short double-bend S-shaped

cavity for the TMZ polarization is shown in Fig. 4, where
comparison is established with reference solutions. Excellent
agreement is observed with GB method and hybrid-modal results
[4J, with a single iteration.
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Fig. 6. Geometry ofthe offset rectangular cavity; Comparson betwen BIM/Modal. expenment ISI
and Spectral results a2 iterations, cavty modelled with 30 sections), f=10 GHz, 00-Polwarion.
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Fig. 4. RCSpatterns ofa short double-bend S-shaped cavity. TM' polanzation; (a) hybrid-
modal reference, - - -: GB shooting method (4). (b) Spectral, I iteration, model with 22 sections.

Extension to 3-D Cavities
Modelling procedure for non-uniform rectangular cross-section

geometries (Fig. 5) is analogous to that previously described for 2-
D cavities. The cavity is converted into successive straight
waveguide sections. Boundary conditions are forced again via
specular or anti-specular images combined with FFT 2-D
periodicity properties. Given that only two of the six vectorial
components of the fields are linearly independent, only two
different matrixes must be propagated by the 3-D algorithm.

(a) b

Fig. 5. Modelling procedure in a 3-D cavity with rectangular cross-section; (a) Original cavity. (I)
Stepped-waveguide moel.

Results for Tridimensional Cavities
Shown in Fig. 6 is the comparison between numerical results

generated by the Spectral Algorithm and the hybrid BIM/Modal
approach, together with experimental measurements [51, for an
offset rectangular waveguide cavity with two similar transition
bends at 10 GHz. Good agreement is observed in the principal
plane for small aspect angles until additional diffraction effects
and exterior scattering come into play.
A tapered waveguide cavity composed of a sectoral section with

an open-end connected to an uniform section with a planar
termination has also been analyzed. Results at 10 GHz are
validated in Fig. 7 against RCS measured and modal patterns [21.

Discussion and Conclusions
The Spectral Iterative Algorithm presented in this paper has
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Fig. 7. Comparison betwen measured, Modal (12 and Spectral (2 iterations, cavry modelled wZd
20 sections) RCS patterns, f=JO GHlz. (a) Geometry. (b) 00-Polarizaon, -=45' scan. (c) 44-
Polaization, r=90% scan.

shown remarkable features:
- The Algorithm requires I-D vectors in 2-D problems and 2-D

matrixes in 3-D problems, leading to reduced storage and CPU
necessities.

- Geometrical uniformity of the cavity under analysis is
exploited: In simple bodies, the number of sections required is
small whereas in complex bodies many sections must be used in
the stepped model. Hence, computational cost depends on the
geometrical complexity.

- The algorithm is iterative with successive refinement. The nth
iteration appends to the result the fields due to multiple
interaction of order (n+l) between waveguide sections.
As main drawbacks we should mention that:
- The fields are distorted by the stepped shape of the cavity. In

order to reduce the distortion, the modelling resolution must be
increased resulting in a higher number of sections and, thus, in
more FFT calculations.

- Boundary Conditions are restricted to PEC or PMC (No
dielectric loadings).

- Image theory is only applicable in presence of plane
conductors. Thus, the algorithm is applicable only when the cavity
can be modelled by successive waveguide sections.
The computational cost relies mainly on three parameters

which are closely interrelated:
- Number of sections used in the stepped model of the cavity,

which depends on the geometrical complexity of the original
geometry.

- Number of forward-backward iterations, which decreases with
higher frequency. For electrically large cavities, a single forward-
backward iteration might be enough.

- Sampling rate. A certain oversampling factor over the Nyquist
rate must be used so as to broaden the spectral window to
account for some of the slower evanescent modes. The higher the
sampling rate, the larger the dimension of the matrices whose
FFT has to be computed. Values ranging from 64 to 512 have been
utilized in the results presented.
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