UNIVERSITAT POLITECNICA DE CATALUNYA
EscorA TECNICA SUPERIOR D’ENGINYERIA INDUSTRIAL DE BARCELONA

Industrial Engineering Degree

, o
UNIVERSITAT POLITECNICA DE CATALUNYA “F"_‘tej
BARCELONATECH ?l: :l?
L. . . . b -
¥
Escola Técnica Superior d’Enginyeria ETSEIB

Industrial de Barcelona

Final Degree Project

Inertial stabilization system based on a
Gough-Stewart parallel platform

Aitor Ramirez Gémez

DESCRIPTIVE REPORT

Director:
Dr. Federico Thomas

Codirector:
Dr. Antonio Benito Martinez

January 2017

Inertial stabilization system based on a Gough-Stewart parallel
platform

by Aitor Ramirez Gémez
This project has been developed at Institut de Robotica i Informatica Industrial (IRI,

CSIC-UPC) and presented at Universitat Politécnica de Catalunya in order to achieve the
Industrial Enginyeering Degree title.

Director:
Dr. Federico Thomas

Codirector:
Dr. Antonio Benito Martinez

ETSEIB representative director:
Dr. Manuel Moreno-Eguilaz

INERTIAL STABILIZATION SYSTEM BASED ON A GOUGH-STEWART
PARALLEL PLATFORM

Aitor Ramirez Gémez

Abstract

The goal of this project is to develop a system able to control the balance of a par-
allel platform robot. The project includes 1) the Gough-Stewart parallel robot, created
and assembled at IRI’s lab; 2) 6 Dynamizel™ rotary actuators, to move the platform; 3)
and Arduino® UNO electronic board, to control the rotary actuators and to process data
provided by 4) an inertia measurement unit MPU-6050™ sensor.

In this project it is described how the communication between the devices and the
electronic board, which acts as the master, is established. It is specified what kind, and
how, the communication is performed between each device in order to send and receive
data. As the controller is implemented on Arduino®, the programming language required
is Processing.

Given the dimensions of the prototype, the project is not focused on the analysis of the
involved forces, but in its kinematics. Therefore, this work also details the algebraic ma-
nipulations needed to set the different configurations that the platform demands according
to the kinematics of the parallel robot.

Acknowledgements

I would like to thank Federico Thomas for letting me join the IRI’s team to develop this
project, and Antonio Benito Martinez; their guidance and support have been essential to achieve
the goals of this project. I would also like to extend my sincere thanks to all of the individuals
that have somehow contributed to the development of this project. To Patrick Grosch, to whom
I am indebted for all the technical support and the assistance provided whenever was needed.
To Daniel Castro for all the many headaches we have shared. To Manuel Moreno-Eguilaz for
accepting to be my representative director at my school and encouraging me to write these words
in English. To Berta del Hoyo for helping me to better express myself in a foreign language.
Last, but not least, to my parents for always having the patience I do not sometimes deserve.

iii

Table of Contents

1__Introductionl 1
L1 Motivation] e 1
M2 Goall . . . o o oo 2
[1.3 Scope and Assumptions|o 2

[1.3.1 The Gough-Stewart parallel robot| 2
1.3.2 The singularities| L 4

1.3.3 The Dynamixel™ rotary actuators| 4

- Mdriftl ... 4

L4 State-of-the-artl 5
[L5__Thesis structurel. e 8

2_Toolsl 9
2.1 Block diagram| 9
2.2 The hardware] 11

221 The IMU sensor: MPU-6050". i it 11
2.2.2 The computer board: Arduino® UNO|. 15
2.2.3 The rotary actuators: Dynamixel™ AX-124+/AX-12A[. 16
PR3 The SOFEWArelo e e e e e e 18
31 Arduino®IDEl 18
[2.3.2 Matlab® and Robotics Toolbox] v oo v v 19
2.3.3 Dev-C++ IDEl 22
2.4 The wiring of the elements|. L. 23

[3 Communication protocols| 25

8.1 Communication IMU - Electronic board| 26
3.1.1 Inter-Integrated Circuit (I°C)| 26

® s oml ..o 30

8.2 Communication Electronic board - Rotary actuators| 31
B2T1 Tnstruction Packets. 32
B.22 Status Packetsl o 33
13.2.3 The halt-duplex asynchronous serial communication interface| 35

4 Execution and controll 39

BT Thexoboll o o oo 40
[4.1.1 Definition, advantages and structure| 40

2 inematics of the parallel robot|. oo 0oL 43
4.2.1 _Inverse kinematics solutionl 45

53

54

59

62

63

4.3.1 Strategies of execution| oL 63
4.3.2 Architecture of the closed-loop|o oL 66
433 Controller] oL 67

6_Results] 69

[6 Environmental impact| 71

[r__Conclusions| 73
[c.1 Contributionsl e 73
[1.2 _Possible enhancements and future workl 73

»
A B Ao

[IB Images and tables’ sources|

P F Foun)
IC.1 Surface plots| e
|C.2° Fourier approximations|.o
|C.3 Fourier parameters| Lo e e

ID_Arduino Codel

[E Computing files|

77

79

81
82
85
88

List of Figures

11 The Gough-Stewart parallel robot|
2 Application example of a gimbal system| 00 L.

3 ock diagram of the proposed solution|
4 The MPU-6050"™ from [nvenSensel

- TM 1O1S] . . . e e e e e e
6 MPU-6050™ block diagram|
7___The Arduino® UNO electronic boardl

18 The Dynamixel™ AX-12+ rotary actuator|
19 The placing of the actuators and its linking in a daisy chain type connection|

10 Goal position settings in joint mode| L.
11 The Arduino® Integrated Development Environment (IDE)|.

14 T°Cprotocoll.
15 Example of interaction between Arduino® and MPU-6050™
116 Rotation cube simulation according to the Roll and Pitch values|
|17 Instruction packet and Status packet’s paths|
18 structure of the Instruction packet| oo o000
19 tructure of the Status packet|.o
20 Diagram of the communication driver|
21 Dynamixel™ s ping|.

R2 TAF244 drived

[23_ Some Gough-Stewart platforms from IRI's labj.
P4 Structure of the parallel robot’s mamipulators|« o v vt

25 Representation of an arbitrary transformation|.o 0L

[80__The 6-RUS manipulator| 000

[3T TFront and side view of the serial chain representing the manipulator's legs|
32 sth joints’ reference frame with respect the sth rotorf
33 Relationship between Roll-¢, Pitch-6 and o, A angles|
BZ_ Surface plots of a, with 165pect 10 0 8O X] - .« » o v o e e e e
5 Fourier series of each actuator for X= 5]
36 Pure pitch recovery (from left to right)|.
37 Pure roll recovery (from 1eft to TIght)| . . .« o o o oo
38 Strategy representation for the Fourier method|
39 ock diagram of the system’s closed-loop| o0
[0 ock diagram of a closed-loop controller|
41 Final experimetnal results| o Lo
42 Surtface plot, view 1|
43 Surface plot, view 2| Lo
44 Surface plot, view 3| oo o
45 Representation of the fitted curve at A=25]. L
46 Representation of the fitted curve at A=o5[.
47 Representation of the fitted curve at A=0

17

List of Tables

1 Dynamixel™s available instructions|. 32
2 Dynamixel™s possible execution errors|. 34
3 Parameters of the Fourier seriesl L. 59
4 Mechanical material for the robot construction| 7
b Blectronic material for the robot constructionl Lo 78
16 Labour costsl 78
|7 Figures” sources|. 79
B Tables"sourced 79

ix

1. Introduction Aitor Ramirez Gémez 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, robots can be found in the fields of medicine, the military, the industry or even in
the household sector. This leads to assume that robotic’s field is expanding, involving in many
other techno-scientific sectors and reaching, as well, the daily life. Drones, which were only used
in the military industry, are proof of this. All this reflects the control we have achieved over

robotics to this day.

Therefore, it is a field that expands the accessibility and capacity of the human being in
all possible and imaginable directions. Robotics, then, can be studied in all modalities, shaping
them in different ways and creating robots of all sizes, appearances, and functionalities; making

the analysis and the classification of robots a really diverse task.

This project, which leads the analysis of a 6 degrees of freedom parallel robot as an orien-

tation stabilizer, will be my first little contribution to this huge community.

g = \|

(A2

ND
Tl

AE3H

- «
- «

JAS

ETSEIB

Inertial
2 Stabilization System 1. Introduction

1.2 Goal

The goal of this project is to build a system able to control the balance of a Gough-Stewart
parallel platform robot. The platform must remain in its horizontal configuration, which is

parallel to the floor reference, whenever the robot is tilted. To achieve this goal we will work on:

1. An inertia measurement unit (IMU) sensor, able to measure the inertial data needed to

determine the platform orientation, or attitude, at any time.

2. An electronic board, to process the data received from the IMU and to send the processed

data to the actuators.

3. A platform controlled by a 6-RUS manipulator which will set the parallel platform attitude.

1.3 Scope and Assumptions

The scope, as well as the hypotheses that have been considered to develop this project, will be

described below.

1.3.1 The Gough-Stewart parallel robot

A Gough-Stewart parallel robot prototype has been chosen for the number of degrees of freedom
(DOF) needed to define the kinematic state of the platform. As an isolated solid body in a
three-dimensional space, the platform has 6-DOF (3 of translation and 3 of rotation), which
means that 6 independent variables are needed to define its pose, i.e. orientation and position.
For that reason, a Gough-Stewart parallel robot is ideal as it allows both to translate and to

rotate the platform due to the 6 degrees of freedom it provides.

This is clearly an advantage. However, restrictions will be found in the domain of the

kinematics equations of the robot (section 4.2), that limit the workspace of the platform.

Despite the advantage of providing 6DOF, this project will only work on the reconfiguration
of the platform orientation, not on its translation. As a possible extension of the work presented

here, it would be interesting to also take into account the translation movement of the platform.

It can be seen that the robot used in this project does not exactly correspond to a Gough-

Stewart parallel platform, as it actually uses sliding bars instead of rotary actuators. This

Sy
N4

>
ETSEIB

1. Introduction Aitor Ramirez Gémez 3

Figure 1: The Gough-Stewart parallel robot

mechanism is called 6-RUS and it makes a slight change in the geometry of the robot that has

important consequences in the calculations of its kinematics.

' \

\.
)
(A

[
f&3

«
- '«

ASY
T

ET

(72}
w

Inertial
4 Stabilization System 1. Introduction

1.3.2 The singularities

Dealing with singularities in a mechanism has always been a problem, as the kinematic perfor-
mance is drastically reduced and the mechanics can suffer a loss of controllability. Although it
is always a desire to get the robot far from those configurations, it is a really complex task to

obtain a method able to plan a movement free of singularities.

Two kinds of singularities can be found in a parallel robot; the serial and the parallel

singularities.

Regarding the parallel singularities, if they exist, they are the most difficult to identify.
J.-P. Merlet explains in his book Parallel Robots [I] how the jacobian of the kinematics of the
mechanics in question is used to find them. He also shows the finite particular cases of parallel
singularities existing in a Stewart parallel robot. Luckily, the range of configurations of the robot

is reduced enough to guarantee that the robot is always far from them.

Regarding the serial singularities, they are easier to detect. In our case, they only appear
when the arm of a rotary actuator is aligned to the bar attached to the platform. Fortunately,

those configurations are easy to avoid.

1.3.3 The Dynamixel™ rotary actuators

The complexity of this project has been highly reduced because of the fact that it does not take
into account the forces involved, only its kinematics, i.e., accelerations and higher order derivates
are not considered. This is due to the low mass moved by the motors in companion with the
rotors themselves after considering the motor reduction. On the one hand, the weight of the
different parts of the robot attached to the actuators is so small that its inertial force is much
smaller than the force of action of the actuators themselves. This allows to neglect the mass of
those parts, and therefore, the forces caused by them. On the other hand, the internal inertia of

the Dynamizel™ rotary actuators is already considered by the internal software of the device.

1.3.4 The MPU-6050™ drift

In this project it is obvious that a device able to somehow track the platform motion is needed.
This device is a sensor called Inertia Measurement Unit or IMU, and there are different types of
them. As it will be seen, IMUs have independent sensors inside (e.g. accelerometers, gyroscopes
or magnetometers) which can work together or separately to get different motion parameters.

=

sy
Ut

ETSEIB

1. Introduction Aitor Ramirez Gémez 5

Unlike a magnetic compass, the MPU-6050™ , which is the IMU sensor that will be used in
this project, does not seek the North pole. When it is used, it slowly drifts away from north.
We would need to periodically reorient it using a magnetic compass as an absolute reference.
Consequently, one of the parameters the IMU provides, called yaw, is not accurate enough to be

used it in this project.

1.4 State-of-the-art

The stabilization of an object, such as the platform under study, is becoming a very pursued
system due to the improvements it provides to certain device applications. Some of the generic

applications of this system can be found in many fields:

Audiovisuals

e Aerospace

Quadricopters

Industry

All of these applications have a common denominator in the development of their stabi-
lization system: an IMU sensor. An IMU, or Inertial Measurement Unit, is a device which
function is to track its own movement through estimations of position, orientation and velocity.
Eventually, two different types can be chosen when the mechanical system, in order to recover
the object orientation and/or position, needs to be built: the gimbal system and the strapdown

system.

GIMBAL SYSTEM

The gimbal systems are composed of an IMU and a series of gimbal actuators. The gimbals are
ring structures attached between them. On one end, the gimbal structure is rotated through a

rotary actuator and, on the other end, an encoder estimates their relative position.

This system can be useful when accuracy wants to be increased. However, the gimbal
structure can suffer from gimbal lockﬂ which is the loss of a degree of freedom due to the
alignment of the outer and the inner gimbals. Besides, it requires a constant recalibration,
higher costs and it only provides 3 degrees of freedom, only focused on the reorientation of the

object.

n the webside https://en.wikipedia.org/wiki/Gimbal_lock, the gimbal lock phenomenon is detailed.

lg\
Yooy

Vs vV
d“x'b"
ETSEIB

https://en.wikipedia.org/wiki/Gimbal_lock

Inertial
6 Stabilization System 1. Introduction

This kind of system is extremely used in the aerospace sector, but also in a sector as day-

to-day as audiovisuals.

Figure 2: Application example of a gimbal system

STRAPDOWN SYSTEM

Regarding the strapdown systems, they are the most commonly used for the reduction of com-
plexity of the mechanic structure with respect to the gimbal system, as well as for its versatility

since the mechanics are replaced by a programable software.

These systems are based on a microcontroller which is attached to the reference, along an
IMU sensor. Besides, this system presents cheaper costs and less power consumption. However,

in this case a mechanism that reconfigures the object orientation needs to be built.

This project will be addressed to develop a compensator based on the strapdown system,
since the IMU will be placed in the reference of the platform controlled by a robot with 6 degrees

of freedom.

THE ROBOT

There are several mechanisms capable of orientating and translating an object. They could be

classified in two great sections: the serial robots and the parallel robots.

The difference between them lies in the kinematic chain that relates the different joints of
the mechanism. If the kinematic chain is arranged in series, the change in one manipulator
orientation influences the rest of the manipulators. Otherwise, if the kinematic chain is arranged

in parallel, the behavior of one manipulator does not affect the rest of them.

, 20

Sy
Ut

ETSEIB

1. Introduction Aitor Ramirez Gémez 7

The reasons that led the project to choose the parallel control are exposed later on, in
section 4. However, there also exist a lot of types of parallel robots, classified by the degrees
of freedom they have, and the mechanism which provides them. Depending on the application,
there are 3-DOF, 4-DOF, 5-DOF or 6-DOF which movements are performed by different kinds
of manipulators. The type of these manipulators could be considered as a subsection to classify

the final robot.

Then, the robot prototype used in this project is a 6-DOF parallel robot, with 6-RUS type

of manipulators, with a strapdown system implemented.

Yoy
YA

ET

(72]

EIB

Inertial
Stabilization System 1. Introduction

1.5 Thesis structure

The rest of this report is structured as follows:

e In Chapter 2, it is explained which tools have been used to achieve the proposed goal.

There, the connection of all the integral elements to have a general view of the project
and the steps that will be followed in the next chapters are showed. It is also explained
the utility of the handled hardware devices, and how they work; The software employed to

develop the main code is also detailed, as well as simulations and additional computations.

In Chapter 3, it is explained which kind of communication each device requires and how
they interact with the Master, an Arduino® UNO electronic board. The specific connec-
tions of each element will be shown, and the different kinds of simulations realized to check

the connectivity between them and to familiarize oneself with the use of these devices.

In Chapter 4, all the necessary mathematical deductions needed in the project are ex-
plained. This includes the inverse kinematics of the parallel robot, simulations of the
platform movement carried out in Matlab® simplifications using Fourier transformations
as an alternative of the implementation of the inverse kinematics, and how the Jacobian
transpose of the inverse kinematics is finally used to set the movement of the robot. It is

also exposed the adopted control strategy and how it has been adjusted.
In Chapter 5, some images of the final experimental results are shown and described.
In Chapter 6, the environmental impact of this project is mentioned.

In Chapter 7, conclusions are drawn, as well as the contributons of this project and possible

improvements for the future.

This report has also four appendixes which are: the budget of the project, the images

and tables’ sources, the files of the simulations and the calculations used in Matlab® and the

implemented code.

g
04

=

Y

A
ETSEIB

2. Tools Aitor Ramirez Gémez 9

CHAPTER 2

TooLs

Once the goal of the project is defined and the state-of-the-art is revised, it is possible to think
about which elements will be needed to develop the project. The final used elements will be
slightly described below and essentially distinguished in two categories: the hardware and the

software.

The work experience of the technicians in IRI, their availability of the license permissions
and their contact with suppliers made decisive the election of the devices and the programs that
were finally used in this project. Needless to say, different alternative elements and methods

were tested before taking a choice.

2.1 Block diagram

Figure. [3| presents an outline of the entire system where the role played by each device is and

the data exchanged between them is shown.

rd \|

r
)
et

- '«

NAIY

Lg%
"

ET

(72]

EIB

Inertial
Stabilization System

2. Tools

10

JUUIAOUL
MUDYIII

doppmdiuvwt § 137-9

12YODJSNIDIS

12YODJUOYINLISUL

§Nq 1IdS
SNOUOIYIULSD

xa)dnp-fipy

10YODJSNIDIS
A2414D
UOYDIIUNUULOD
10YODJUOONLISUI
1od [D142§

UONDIULIO 2]UD U] ISUDY))

o
2
5
3
<
]

213Uy Youd
213uy 1104

snq [pL1dS D]

Figure 3: Block diagram of the proposed solution

2. Tools Aitor Ramirez Gémez 11

2.2 The hardware

This section is divided according to the different elements involved in the system. These elements
are: an IMU sensor, which takes information from the environment; an electronic board, which
processes the data from the IMU; and a set of rotary actuators, which execute the convenient

movements of the platform according to the processed data.

2.2.1 The IMU sensor: MPU-6050™

Inertia Measurement Units, or IMUs, are sensors able to track their own movement and/or to
detect their own orientation thanks to an accelerometer, a gyroscope, a magnetometer and/or
pressure sensors which react to physical motion parameters. This type of sensor is the most
commonly used nowadays in all kinds of electronic gadgets and devices, e.g. smartphones, game
controllers or even wearables, and it is not strange to also find them in the robotics field, as they

have a prolific number of applications.

There are lots of different IMU sensors. However, in this project, the Motion Processing
Unit™ MPU-6050™ from InvenSense (Fig. [5]), which is the most commonly used for its reliability

and accuracy, apart from being significantly cheap, is implemented in a GY-512 breakout board.

Figure 4: The MPU-6050™ from InvenSense

MPU-6050™ is a 6DOF IMU, which means that it has an accelerometer and a gyroscope
incorporated, both with 3 axes; and combines them with a 9-axis Digital Motion Processor™
unit (DMP™). The function of the DPM™ is to do complex calculations with the sensors’ values
directly on the chip, which reduces the computational load of, in this case, the Arduino®’s
microcontroller. The interest of having a 9-axis DPM™ implemented is because the MPU™ has
the possibility to access to an external magnetometer or other sensors through an auxiliary bus

explained in section 3.1.

9 ==\
oy
9O

o
ETSEIB

Inertial
12 Stabilization System 2. Tools

The gyroscope measures angular rates (¢, 6, ¢) expressed in degrees per secon (dps).
Then, angle of travel (¢, 0, ¢) can result from integrating the gyroscope values with respect
to time. This can be used to measure simultaneously roll, pitch and yaw values in order to
track changes in orientation. However, errors in bias estimation or integration must be taken
into account, as the tracking of the relative movement is independent from the gravity and it

results in an inherent error or drift.

PITCH (0) ROLL ((/))x

Figure 5: MPU-6050™ axes and rotations

The accelerometer measures accelerations, i.e., acceleration components caused by the
device motion and acceleration caused by gravity; and these measurements are usually expressed
in Gs, which are multiples of the Earth’s gravitational force (1G = 9,88%). Therefore, the
accelerometer is able to determine the static device orientation comparing the gravitational
force projected in each axis. Nevertheless, the device orientation during complex motion periods
is harder to calculate, as the signal mixes the summation of linear acceleration, centripetal

acceleration and gravity.

In addition, the Motion Process Unit™ contains a temperature sensor used to measure its

die temperature to compensate for error due to temperature changes.

2The main characteristics of the MPU-6050™ are described in https://store.invensense.com/Datasheets/

invensense/RM-MPU-6000A. pdf

N
Fopey

Vs v
"ax_l-,"
ETSEIB

https://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf
https://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf

2. Tools Aitor Ramirez Gémez 13

The sample rate of these sensors is programmable from 8000 down to 3.9 samples per second,
depending on the time required to process the measurements. The latests measurements data
coming from those sensors can be directly read in their data registers but, if their analysis and
their treatment takes too long, some of the following measurements could be discarded and not
analyzed. To minimize this problem, the MPU-6050™ contains a 1024-byte FIFO accessible
buffer. It works as a memory space where data can be temporary stored. Its main function is to
prevent the system from running out of data in asynchronous broadcasts or due to the system
process speed. It can be configured to determine which data shall be stored, and which not, but
it must be said that an interruption routine should be implemented to warn the system that the
FIFO has new data ready to be read. This warning is performed through the INT pin of the
Motion Process Unit™. Finally, FIFO can suffer from overflow which is an important issue to

take into account later on.

All these elements interact with each other as shown in Fig. [6]

CLKIN 1
2 CLOCK [— Clock MPU-60X0
CLKOUT!
Self
test Interrupt INT
Status
Register
(lcs)
Self Y Accel Sl
i ave 12C and ADO / (SDO)
Interface SCL /(SCLK)
SDA/(SDI)
e
test o (Config)
egisters
= ?_, Master 12C | AUX_CL
= o e 1 ot
| T
§ Registers
3
Self g FSYNC
| [rom] |
E=AR
Calibration Digital Motion
Self Processor
test *— | Z Gyro | _.{ ADC }_. (DMP)
Temp SensorH ADC }—»
[e]
Pump
L 20 J\13 ,L1s ,]\10 J\s
A S S S S
CPOUT VDD GND REGOUT [VLOGIC]
Note: Pin names in round brackets () apply only to MPU-6000
Pin names in square brackets [] apply only to MPU-6050
Figure 6: MPU-6050™ block diagram
et

- «
-« '«

NAIY

¢
RED
Fece

ET

(72]

EIB

Inertial
14 Stabilization System 2. Tools

The problem of tracking the orientation provided by the MPU™ is a complex task already
solved in Motion Sensors Instructz’onﬂ where InvenSense company provides a step-by-step expla-
nation on how this can be achieved through a combination of the different sensors. This method
is called Sensor Fusion, and its goal is to calculate a quaternion from which the orientation,

gravity vector, Euler angles, etc; can be derived.

Regarding some basic characteristics, this IMU usually operates at 3.3V but some of them,
like the one used in this project, can also work at 5V. The communication protocol used in this
IMU is the Inter-Integrated Circuit (I2C), that will be explained in Chapter 3. However,
some other IMU sensors from InvenSense can also work with Serial Peripheral Interface bus

(SPI) communication protocols.

There are two different ways to read the orientation angles of the IMU sensor through a few
previous calculations: the Euler angles (ZYZ following Robotics toolbox nomenclature)
and the Yaw-Pitch-Roll angles (XYZ). Both can be used to reach the same attitude of a
rigid body in a 3-D space, but different angle values need to be applied to each rotation axis.
However, both can suffer from a gimbal lock, which refers to a loss of a degree of freedom when

some axis align.

Over the time, sensors usually suffer changes in their measurement output due to bias in-
stability and/or gain drifting caused by environmental factors e.g. temperature changes. An
initial calibration and a periodic calibration are required to maintain the sensor perfor-
mance. The codeﬂ which provides the offset calibration values taken into account to calibrate

the MPU-6050™ is included in the bibliography of this project.

3Maths behind the tracking problem are solved in https://store.invensense.com/datasheets/invensense/

Sensor-Introduction.pdf
*Code source: https://turnsouthates.wordpress.com/2015/07/31/arduino-mpu6050/

’ Q \
Sy
ST
ETSEIB

https://store.invensense.com/datasheets/invensense/Sensor-Introduction.pdf
https://store.invensense.com/datasheets/invensense/Sensor-Introduction.pdf
https://turnsouthates.wordpress.com/2015/07/31/arduino-mpu6050/

2. Tools Aitor Ramirez Gémez 15

2.2.2 The computer board: Arduino® UNO

Arduino® computer board is an open code platform, low cost, and very extended in the robotics
community for medium-level electronic prototypes. The hardware includes an electronic board
with a microcontroller and different peripherals such as digital and analog input/output ports,
PWM generators, an 12C communication port, a serial port, etc. However, different kinds of

Arduino® boards exist, all of them with their own characteristics.

An Arduino® UNO, as shown in Fig. [7] has been chosen since its technical characteristics
are enough to develop this project. However, a more powerful Arduino® board would be needed
to improve the results obtained in this project because the size of its RAM could become a
restrictive parameter. Indeed, new communicative pins would be needed as they all are already
in use. It would also be relevant to consider that Arduino® UNO only has one serial port, which
means that it will not be available for checking and printing data to the computer’s screen for
a significant part of the project as the serial port will be used to communicate with the rotary

actuators.

Figure 7: The Arduino® UNO electronic board

The main functions of the Arduino® computer board will be:

1. To communicate with the IMU sensor to get the pitch and roll of the sensor. These values
will be explained with more detail in the IMU - Arduino® communication section (sec.

3.1).

2. To process these two values to get the actuation angles (according to the kinematics of the

parallel robot) for the rotary actuators.

3. To communicate with the rotary actuators to send the processed data to accomplish the

final function of the parallel robot.

9 ==\
oy
9O

o
ETSEIB

Inertial
16 Stabilization System 2. Tools

2.2.3 The rotary actuators: Dynamixel™ AX-12+/AX-12A

Leaving the electronics aside, a mechanical system needs to be introduced to complete the final
function of the system, which is to make the platform remain in its horizontal orientation. As it
has been seen in section 1.3 and in Fig. [1} the parallel robot built at IRI’s lab is a variant of the
Stewart platform as it does not use prismatic actuated joints, but rotary actuators. Then, in

order to set the configurations of the platform accurately, a high-performance actuator is needed.

Therefore, a Dynamixel™ AX-12+ rotary actuator (Fig. from the korean ROBOTIS
company has been chosen as it is ideal to accomplish the goals of this last stage. The Dynamizel™
AX-12+ is a high-performance rotary actuator ideal for small robotics applications. However,
this model is no longer available in the shop as it has been replaced by its brother the Dynamizel™

AX-12A, with exactly the same performance, but with a more advanced external design.

DYNAMIXEL

www robotis com

-
& 7

Figure 8: The Dynamixel™ AX-12+ rotary actuator

The Dynamizel™ AX-12+ has two operation modes: the joint mode (thought to set a
position of destination between 02 and 3002), and the wheel mode (to allow endless turn at a

specified speed). Some of its principal characteristics are:

e Resolution: 0.29°

e Potentiometer: 10 bits, 02 - 300° range

e Motor: Cored

e Communication Speed: 7343bps

e Feedback: position, speed, temperature, load, input voltage and current.

e Communication protocol type: half-duplex Asynchronous Serial Communication (8 bits, 1

stop, no parity)
LI

Sy
Ut

ETSEIB

2. Tools Aitor Ramirez Gémez 17

Six Dynamizels™ AX-12+ will be linked in a daisy chain type connection and placed to
create the parallel robot prototype shown in Fig. [0] This type of connection has its advantages
and its drawbacks, which have to be taken into account when communicating (Chapter 3) with

the actuators.

Figure 9: The placing of the actuators and its linking in a daisy chain type connection

The communication with the rotary actuator is established following the Dynamizel™ com-
maunication 1.0. El It will be done by sending and receiving binary packets called instruction-
Packet and Status packet respectively. All the information regarding the current status and
the operation mode of the actuators is available in its control tableﬂ; and the way to interact
with the Dynamizel™AX-12+/AX-12A will be reading and/or writing on this table following the
protocols that will be explained in Chapter 3.

The motors will work in joint mode, which means that the actuators will request the angular
positions to move to. The Goal Position is a 16 bit data register whose addresses are 0x1E and
0x1F in the Control Table, i.e., the low byte (L) and the high byte (H), respectively. Then,
the Goal Position value must be decomposed in two bytes (one for each Goal Position register),
position 511, which is equivalent to 150° (0x1FF in hexadecimal format), should be sent in
two bytes: L = 0xFF and H = 0x01. The same example expressed in binary is perhaps more
understandable as 00000001 11111111 is easier to separate: the first byte (L) 11111111 which
read in hexadecimal format is 0xFF, and the second byte (H) 00000001 which read in hexadecimal

format is 0x01.

5Dynamixel™ protocol communication is specified in |http://www.trossenrobotics.com/images/|

Iproductdownloads/AX 12(English) . pdfl
5Dynamixel™s control table is shown in its datasheet http://www.pishrobot.com/files/products/|

Idatasheets/dynam1xe1_ax- 12a. pdfl

gy
Yo

ETSEIB

http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf
http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf

Inertial
18 Stabilization System 2. Tools

The possible Goal Position values that the Dynamizels™ can assume in joint mode are
compressed in a range from 0 to 1023. The angular range and the configured angular position

settings for each actuator are shown in Fig.

00
Value = 0 (0x00)

300°
Value = 1023 (0x3FF)

300 ~360° 150° 300 ~360°
Invalid Angle Value = 511 (0x1FF) Invalid Angle
o 300°

Value = 0 (0x00)

ID=13, 15,17 ID =14, 16, 18

Figure 10: Goal position settings in joint mode

2.3 The software
The usual practice when using an MPU-6050"sensor is to combine it with an Arduino® computer

board. This is why an Arduino®’s software has been chosen. Moreover, Matlab® software has

been used for simulation for the benefits it provides.

2.3.1 Arduino® IDE

The software of the Arduino® UNO electronic board provides an Integrated Development En-

vironment (IDE) based on the Processing language.

’ N\

&g

¢
&
-

et

<
< '«

&<
]

ET

(7]

EIB

2. Tools Aitor Ramirez Gémez 19

Inertial_Stab_System

void setup() {
A7put your code here to run once

void loop(d {
Aéput your code here to run repeatedly

Arduino Uno on /dev/tty.usbserial-AS03KXQQ

Figure 11: The Arduino® Integrated Development Environment (IDE)

As it is seen in Fig. an Arduino® sketch using IDE programmer consists of two main
functions: the setup() function and the loop() function. The setup function is used first to
initialize variables or to set up the pin modes of the Arduino® board, as the code in this function
will only be called once. The loop function, unlike the setup function, is called repeatedly and
it controls the board until it is powered off or reset. Besides these two functions, it is possible
to add secondary functions if needed. Therefore, in the loop function is where the body of the

program is implemented and where all the secondary functions are called.

Finally, the Arduino® IDE allows checking of the written code from possible code syntax

errors, and uploading the written code to the Arduino®’s microcontroller.

2.3.2 Matlab® and Robotics Toolbox

Matlab® software is a powerful mathematic tool, with its own programming language, that has

been absolutely helpful in lots of different aspects involving this project.

All the mathematical work done, and explained in Chapter 4, has been developed before
using this software as the implementation and verification of calculations becomes much faster
and easier. Among the basic benefits of the Matlab® software for the development of this project

are:

Matrix manipulation

Data representation through lineal and superficial graphics using 2D and 3D plots

Possibility of simulations

e Communication with other hardware devices including Dynamizels™

' N

r
)
¢

[
1&3

- «
-« '«

ALY
T

ET

(72]

EIB

Inertial
20 Stabilization System 2. Tools

Besides, toolbozes can be added, as the Robotics Toolbox [2], developed by Peter Corke and
used in section 4.2.1. Once the Robotics toolboz is downloaded’] and added to the Matlab®’s
path, it is ready to be used. This toolbox offers algebraic help for all the matrices transformations
needed to set the kinematics in a really simple and understandable way. The common way to
express a displacement transformation of an arbitrary 3x1 position vector p, which involves a
translation and a rotation, is:

pi=R-po+d, (2.1)

where R is a 3x3 rotation matrix and d is the translation vector.

However, the Robotics toolbox provides a more compact way to express exactly the same
operation. The matrices that will substitute the operations of eq. (2.1) are called homoge-
neous transformations (T) and have 4x4 dimension. Through these matrices, the general

transformation operations (eq. [2.1)) would look like as follows:

P, =T-7), (2:2)
If T is a 4x4 matrix, then p7 must be a 4x1 vector. They are represented as follows:
T R3yx3 d3x1 (2.3)
0 0 0 1
5 i
P = (2.4)
1

Despite the fact that the matrix representing a rotation about any axis can be found, there

exist three basic “pure” rotation matrices, each one regarding to each cartesian axes (x, y and

z):

"In the webside http://www.petercorke.com/Robotics_Toolbox, Corke’s Robotics toolbox can be downloaded

’ Q \
Sy
ST
ETSEIB

http://www.petercorke.com/Robotics_Toolbox

2. Tools Aitor Ramirez Gémez 21

1 0 0

Ry(0)=| 0 cos —sind (2.5)
0 sinf cosf
cos@ 0 —sinf

R,&O=| 0o 1 0 (2.6)
sinf 0 cosé
cos) —sinf O

R.(0)=| sinf cosf® 0 (2.7)

0 0 1

An arbitrary rotation can be decomposed into sequences of the form R, - R, - R,. Hence,

this sequence can be used to apply a transformation to a IR® vector frame from its initial

attitude to its final attitude. However, to make these rotation matrices (eq. and [2.7))

to be incorporated in a homogeneous transformation, the commands trotx(6), troty(¢) and

trotz(f) of the robotics toolbox will be used. Likewise, the command transl(cf) is used to

incorporate the translation vector d in a general homogeneous transformation, only involving

the translation term (the last column) and R becoming an identity matrix. Summing up,

transl([z,y, z]) =

trotx(0) =

troty(0) =

trotz(0) =

1 0 0=z

0 1 0]y

0 1]z
0 00 T
1 0 0 0
0 cosf —sinf |0
0 sinfd cosf |0
0 0 0 1
cosf§ 0 —sinf |0
0 1 0 0
sinf 0 cosf |0
0 0 0 1
cosf —sinf 0|0
sinf cosf 010
0 0 110
0 0 0|1

(2.8)

(2.9)

(2.10)

(2.11)

rd \|

«
- '«

N
5

¢
g
Fegs

£€C

ET

(72]

EIB

Inertial
22 Stabilization System 2. Tools

These four operations (trotz(), troty(), trotz() and transl()) are combined by multiplying
them to get a general transformation matrix T, which involves both a rotation and a translation.
To reverse the direction of transformation, we only need to invert the matrix or the sequence of

product and the sign of their arguments.

There are different ways to face an orientation problem with the Robotics toolbox. One
can work through Fuler angles, Roll-Pitch-Yaw angles, quaternions, or just implementing the
transformations one by one as it has been showed here. However, in all cases, rotations must be
applied in the right order as it is known that the rotation sequence is non-commutative.
Nevertheless, this issue can be overlooked due to the fact that, as explained in section 4.2.4,
a sequence of rotation commutes provided that the angles are small enough. In this case, the

rotation sequence can be permuted at will.

2.3.3 Dev-C++ IDE

This is a free integrated development environment for programming in C and C++. It is used
as a support for the blind parts of the project, where communication with the PC from the
electronic board is not available and the implemented code in the Arduino®’s microcontroller

is first tested in this environment to verify the correctness of the algorithm.

rd Q \|
ey
ST
ETSEIB

23

Aitor Ramirez Gémez

2. Tools

f the elements

iring o

2.4 Thew

NS NS
H3IAIEA

NOILYDINNWWOD

YredvL

0L

ANALOG IM.

8l

:
L

ATL

6l

w0509-NdW

Rx®Em Arduino”

uol12auu0d adAy ureyH-Asieq

HYOSN3S LINN
ANIWIINSYIW VILEINI

Qy¥v0o4d DINOYLD3T3 ONN «ONINAYY

VTL-XV/+TL-XY w13XIWYNAQ

Figure 12: Wiring diagram

24

Inertial
Stabilization System

2. Tools

I

&g

¢
&
-

<
-

&<

ET

(7]

\

et

e

EIB

3. Communication protocols Aitor Ramirez Gémez 25

CHAPTER 3

COMMUNICATION PROTOCOLS

The way to communicate to a device is always the same, the only thing that changes between
the devices is the registers of their “language” and the amount of words in it. In this chapter it
is detailed how to understand the “language” of communication established among the devices.
It will be explained how those protocols work and which hardware implementations had to be

added to achieve the communication according to their protocols.

In the first section, it is examined the interaction between the IMU sensor and the Arduino®
electronic board, which is governed by the InvenSense communication protocoﬂ In the second
section is examined the interaction between the Arduino® microcontroller and the Dynamixel™
AX-12+ rotary actuators, which communication is governed by the ROBOTIS communication

protocol. Besides, the tests and/or simulations needed to check the communication between the

elements is detailed.

All this is explained in the same order that the data follows, which begins in the IMU sensor

and concludes in the rotary actuators.

81n footnote n?2 (page 12), the MPU-6050™ communication protocol is also specidied.

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
26 Stabilization System 3. Communication protocols

3.1 Communication IMU - Electronic board

In practice, the code in charge of solving all the problems in section 2.2.1 has already been written
by Jeff Rowbergﬂ who has done a great job developing a base code able to show readable yaw-
pitch-roll and FEuler angles, among others. Moreover, it is also implemented a filter, which
cleans the raw values, and an interruption routine, where other program behavior can be
added, such as the code developed in this project. The magnitude of this base code is too large
to consider the understanding of it in the scope of this project. Thus, this code will be treat as

a black bozx, just looking at how outputs respond to inputs.

Although this code section is not explained, it can be useful to understand how to interact
with the IMU sensor from an Arduino® board. The IMU sensor’s main task is to convert specific
physical parameters into readable binary data which can be processed and analyzed to build up
a response. As it has been said in section 2.2.1, the IMU used in this project has two main sensor
types: a gyroscope and an accelerometer. Both of them can work separately to get simple data

or together (Sensor Fusion) to get more complex information.

An Arduino® UNO board provides different kinds of communication protocols: the Serial
Peripheral Interface protocol or SPI, the Serial Communication through the serial port and the
Inter-Integrated Circuit protocol or I2C. In Chapter 2 it has already been mentioned the I?C
communication protocol required for the IMU sensor. In the following section it is explained

how it works.

3.1.1 Inter-Integrated Circuit (I2C)

It is time to understand how to access to the internal registers and memory of the Motion Process
Unit™ as all the data of interest is stored somewhere there. The way to access is using I2C
(400 kHz), but it must be reminded that SPI (1 MHz) can work in other Motion Process Units™

from InvenSense.

9Rowberg’s code source: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

’ Q \
Sy
ST
ETSEIB

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

3. Communication protocols Aitor Ramirez Gémez 27

12C INTERFACE

The I?C interface is a two open-drain and bi-directional connection consisting of the follow-
ing signals: serial data (SDA) and serial clock (SCL). In generalized I?C implementations,
attached devices can develop two basic roles, i.e. 1) the master, device which puts an address in
the bus in order to interact with 2) the slave device with the matching address, which acknowl-

edges the master.

THIS PROJECT’S SCOPE N POSSIBLE FUTURE IMPROVEMENTS
SDA
SCL [
Master device Slave device 1 : Slave device 1 Slave device 2 Slave device 3
ARDUINO® MPU-6050™ . Wi Should be linked like Should be linked like cee
. this, if needed this, if needed
XDA J . .
XCL

Figure 13: 12C block diagram

As shown in Fig. other slave devices could be attached through the I?C bus if needed
to improve the master performance with new data. In addition, MPU-6050™ provides limited
capabilities as an I2C master to an optional external magnetometer sensor to improve its own
performance. InvenSense explains how auxiliary I?C bus works and the operation modes it
provides in the MPU-6050™ Datasheeﬂ However, this project does not deal with any of these

two cases.

Therefore, MPU-6050™ always acts as a slave device when communicating to the microcon-
troller, which acts as the master. The SDA and the SCL lines of the Arduino® UNO board are
A4 and A5 analog pins, respectively.

The slave address of the MPU-6050™ is 110100X which is 7 bits long. The LSB bit of the 7
bit address is determined by the logic level on pin AD0. This allows two Motion Process Units
to be connected to the same I?C bus. When used in this configuration, the address of the one
of the devices should be 1101000 (pin ADO0 is logic LOW) and the address of the other should
be 1101001 (pin ADO is logic HIGH).

1OMPU-6050™ datasheet can be found in http://www.invensense.com/wp—content/uploads/2015/02/

MPU-6000-Datasheetl.pdf

by
9O

o
ETSEIB

http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

Inertial
28 Stabilization System 3. Communication protocols

12C PROTOCOL

What happens on those SDA and SCL lines is governed by the I2C data protocol. If it is looked
closely, there are only bits moving through the bus in both directions. Those bits develop their

own function depending on which line (SDA or SCL) they are transmitted.

e SDA: This line is where all the exchanged words between master and slave are transferred.

e SCL: This line broadcasts a clock signal which synchronizes the word exchange on the

bus. This signal is generated by the master device.

As it has been said before, these two lines are open-drain, i.e. pull-up resistors need to be
attached so the lines are set to HIGH. That fact is important to understand how data signals
are transferred. The following figure shows how a conversation between master and device looks

like.

7 bits + 1 bit 8 bits 8 bits 8 bits
. 80|81 |82 | B3| B4 B3 |86 [rw| A | 87| 88 | B |B10]B11[B12] B13]814] A |B15|BI6BI7|BIS| BIgB20]B21]B22] A |;| A .
Start Device Address Ack. Internal Register Data Stop
Cond. Address Cond.

Figure 14: 12C protocol

As seen before, each word in a message is an 8-bit sequence, and each of these sequences
refers to a different type of frame. The first sequence (from bit A0 to A7) is the address frame
and indicates the slave address which the message is being sent to. The following 8-bit sequences
(bit A8 to A15, A16 to A23, and so on) are the data frames, which carry the information. It must
be remembered that bit transmissions are carried out most significant bit (MSB) first and the

SDA signal should not change when SCL is HIGH to avoid false Stop Conditions of transmission.

e Start Condition: To initiate the broadcast, a starting condition needs to befall: the
master device must leave the SCL signal HIGH while the sending device pulls SDA signal
from HIGH to LOW. When this happens, the master device puts all devices on notice that

a transmission is about to start.

o Address + R/W: After the initial warning, the next 7 bits always refer to the device
address followed by a R/W bit which indicates if it is a Read = HIGH or a Write = LOW

operation.

’ Q \
Sy
Ut
ETSEIB

3. Communication protocols Aitor Ramirez Gémez 29

e Acknowledge: After each 8-bit sequence, it follows a bit called NACK/ACK, sent by the
receiving device which takes control over the SDA line. If the receiving device either did
not receive the data correctly or did not know how to parse it, the NACK/ACK bit is set
HIGH. Otherwise, if the message was understood by the receiving device it pulls the SDA
line LOW, and the control over the SDA line is returned to the sending device to carry on

the message.

e Internal Address Register: In most cases, another 8-bit sequence referring to an internal
register address of the slave device comes after the first NACK/ACK bit. In this case, the
internal registers of the MPU-6050™. As it happened before, after this 8-bit sequence it
follows a NACK/ACK bit.

e Data: After the addressing sequences have been sent, data can begin being broadcasted.
As many 8-bit data sequences as they are required are sent until data is transmitted.
Between each data sequence the sending device, which at this moment can be either the
master or the slave depending on the selected mode in the R/W bit, must wait for the

NACK/ACK bit.

e Stop Condition: To end the broadcast a stopping condition needs to befall: the master
device must leave the SCL signal HIGH while the sending device pulls SDA signal from
LOW to HIGH.

An example of this kind of communication can be seen more closely in the next figure
(Fig. , where the Arduino® device asks to read the gyroscope data measurements from
the MPU-6050™. Specifically, the master device asks to read the low byte (L) of the gyroscope
data measurements from the x axis. Gyroscope’s measurements, as well as accelerometer’s
measurements, are classified in 6 consecutive registers: two for each axis referring to the low
byte (L) and the high byte (H) of the data.

Ack. Ack. Ack.
1 1 0 1 0 0 0 0

LSB [

Start Device address: Data: Stc ’_I)_
condition MPU-6050™ 234 (decimal) condition

Figure 15: Example of interaction between Arduino® and MPU-6050"™

rd \|

r
)
et

- '«

NAIY

Lg%
"

ET

(72]

EIB

Inertial
30 Stabilization System 3. Communication protocols

3.1.2 Matlab® simulation

In order to verify that communication between the microcontroller and the sensor, and also to
better understand Jeff Rowberg’s code, a simple simulation has been developed through the

Matlab® software.

The PC must be connected to the Arduino® UNO electronic board through the serial port
to be able to read Yaw-Pitch-Roll angles, which is the data of interest, obtained using Jeff
Rowberg’s code. These angle values should be printed in degrees on the Serial Monitor of the

Arduino® IDE once the code is executed and the communication is correctly performing.

Then, it is time to open the serial port through Matlab® to deviate the data coming from the
Arduino® UNO to the Matlab® program. Once it is receiving the information, a simulation can
be developed processing and analyzing the information. As the orientation angle values are the
data sent by the MPU-6050™, the simulation consists of a red cube reproducing the orientation
changes of the Motion Process Unit™. The code implemented for this simulation can be found

in the appendix.

Figure 16: Rotation cube simulation according to the Roll and Pitch values

It must be noted that, at the beginning, Yaw values were taken into account in the
simulation, but then ignored due to the drifting problem (section 1.3.4) could already be

witnessed.

Sy
Wt

ETSEIB

g ==\

3. Communication protocols Aitor Ramirez Gémez 31

Since the microcontroller is now linked to the sensor and to the PC, this simulation could
be developed. Later, the serial port will not be available as it will be used for other functions.
That will block Arduino® from being able to broadcast data to the PC to print it, which means
that the rest of the code will be developed blindly. Here it is where Dev-C++ software can be
useful when writing the code in its IDE first, and looking at how the system responds to similar

simulated inputs.

3.2 Communication Electronic board - Rotary actuators

As stated above in the description of this Chapter, the Dynamixel™’s interaction with other de-
vices is governed by ROBOTIS communication protocol. The Korean company sets it by sending
and receiving encapsulated data packets, called Instruction packets and Status packets, fol-

lowing the Dynamizel™ communication 1.0 descriptions.

instructionPacket

X - ~
rxmm Arduino

Main Controller
Dynamixels™

statusPacket

Figure 17: Instruction packet and Status packet’s paths

Despite the valuable information that received data packets (Status packets) can provide to
the system, it was not possible to take advantage of the actuators status data in its maximum
performance. The limitations of Arduino® UNO are the only reason why Status packet could
not be used as it was pretended. However, the two kinds of data packets (sent and received)
established in this protocol will be looked closely as the written code offers the chance to work

with both of them.

' N

r
)
¢

[
1&3

- «
-« '«

ALY
T

ET

(72]

EIB

Inertial
32 Stabilization System 3. Communication protocols

3.2.1 Instruction Packets

Instruction packets are encapsulated data sent by the microcontroller to control the operations

of the rotary actuator. It follows the structure shown below.

|OXFF| | OxFF|[ID|| LENGTH || INSTRUCTION|| PARAMETER 1] ... || PARAMETER N||CHECK SUM

Figure 18: Structure of the Instruction packet

e Heading: The value 0xFF indicates the beginning of the instruction. The second value
O0xFF is a check value which means that, if both OxFF are received together, the following

values are the content of the data. Remember that Ox refers to the Hexadecimal base.

e ID: This byte is the rotary actuator identifier value. Each Dynamixel™ has its own ID, i.e.
a value between 0 and 253 that identifies them. The Instruction packet travels through all
the rotary actuators, but it is only executed in the Dynamixel™ which ID matches the ID
value of the Instruction packet. It should be mentioned that Broadcast to all the actuators
is possible if ID value is set to 254 in the Instruction packet, but no Status packet will be

received.

o LENGTH: Refers to the Instruction packet’s length, i.e. the number of bytes included in
the packet and calculated as “the number of parameters the INSTRUCTION needs plus
27.

o INSTRUCTION: This field determines which operation is going to take place depending
on its value. The board can use seven different functions, detailed in table [I} to control

the Dynamixel™ behavior.

Values Parameters Name Function
0x01 0 PING No action. Used to obtain a Status packet.
0x02 2 READ DATA Reading values from the actuator’s registers.
0x03 at least 2 WRITE DATA Writing values to the actuator’s registers.
0x04 at least 2 REG WRITE Writes a value to the actuator without executing.
0x05 0 ACTION Triggers the action registered by REG WRITE.
0x06 0 RESET Control Table is reseted to the Factory Default values.
0x83 at least 4 SYNC WRITE To control many actuators at the same time.

lTM 9

Table 1: Dynamixel™’s available instructions

’ Q \
Sy
ST
ETSEIB

3. Communication protocols Aitor Ramirez Gémez 33

e PARAMETERS: As seen before, there can be 0 parameters, 2 parameters, 4 parameters
or even more depending on the INSTRUCTION that is going to be sent. In case they
are needed, the first parameter always refers to the first register address that wants to be
read/wrote in the Control Table. Then, the function of the following parameters differs
with the INSTRUCTION value. If, for example, WRITE DATA is going to take place, the
second parameter refers to the data that must be written in the starting address sent; the
third parameter (if there is one) is the data that must be written in the following address;
and so on. If, otherwise, READ DATA is going to take place, the second parameter refers

to the length of the data to be read from the starting address location sent.

o CHECKSUM: This value is the result of a method to check if there has been loss of
information while sending data. The value is computed as CHECKSUM = ~ (ID +
LENGTH + INSTRUCTION + PARAMETER 1 + ... PARAMETER N), where “~”
represents the NOT logic operation. If the calculated value is larger than 255, the lower

byte is defined as the CHECKSUM value.

An example of Instruction packet which writes data to a Dynamixel™ with ID = 13 should

look like this:

0xFF 0xFF 0x0D 0x05 0x03 0x1E OxFF 0x01

This Instruction packet sets the actuator to the position 0x1FF, which angular value is 150°.

3.2.2 Status Packets

Status packets are encapsulated data sent from the Dynamixels™ to the microcontroller once the

Instruction packet is received. Its structure is organized as follows:

|OXFF| | OxFF|[ID|| LENGTH | ERROR|[PARAMETER 1]|...|[PARAMETER N||CHECK SUM

Figure 19: Structure of the Status packet

The Heading, the ID, the LENGTH and the CHECKSUM fields are exactly the same
as above. Likewise, the PARAMETERS field is used if additional information is requested.
This information comes from actuators, refers to some of the current status parameters of the

actuators, and varies depending on the Instruction packet sent. For example, if the internal

vy
ANAY

o
ETSEIB

Inertial
34 Stabilization System 3. Communication protocols

temperature of the Dynamixel™ with ID = 13 is to be read, the returned Status packet should

look as the following.

0xFF 0xFF 0x0D 0x03 0x00 0x20 0xDB

The data of interest is always placed in the PARAMETERS field, and the value read is
0x20. Thus, the current internal temperature of Dynamixel™ with ID = 13 is aproximately
32°C, which is 0x20 in hexadecimal format. However, there is a new field called ERROR which

differs from the Instruction packet ones and also provides important data.

e ERROR: Some bit of this byte is set to HIGH if an error has been produced during the
execution of the Instruction packet. Depending on that bit, different errors can be read

according to the following table.

Bit Name Details

0 Input Voltage Error Set to 1 if the voltage is out of the operating voltage range defined in
the Control Table.

1 Angle Limit Error Set to 1 if the Goal Position is set outside of the range.

2 Overheating Error Set to 1 if the internal temperature of the unit is above the operating

temperature range defined in the Control Table.

Range Error Set to 1 if the instruction sent is out of the defined range.
4 Checksum Error Set to 1 if the CHECK SUM of the instruction packet is incorrect.
5 Overload Error Set to 1 if the specified maximum torque can’t control the applied
load.
6 Instruction Error Set to 1 if an undefined instruction is sent or an ACTION instruction

is sent without a REG WRITE instruction.
7 0 —

Table 2: Dynamixel™’s possible execution errors

IMPLEMENTED CODE

The following set of functions are programmed and implemented in the code to control the Dy-
namixels™ from the Arduino® microcontroller. These functions allow to exchange data between

the system and the actuators according to the data packet structures just explained above.

e void instructionStatus(ID, LENGTH, INSTRUCTION): Calls the instruction-
Packet function first and the statusPacket function after, giving them the required values
if needed. The PARAMETERS field of the Instruction packet must be filled before calling
this function according to the INSTRUCTION value.

Y
ETSEIB

3. Communication protocols Aitor Ramirez Gémez 35

e void instructionPacket(ID, LENGTH, INSTRUCTION): Generates a full In-

struction packet and sends it to the Dynamixels™.

e byte statusPacket(void): Receives a Status packet from the Dynamixels™ as a reply of

an Instruction packet.

3.2.3 The half-duplex asynchronous serial communication interface

Once the structure of the encapsulated data is understood and a program to build the data pack-
ets is developed, it is time to think about how these data bytes are going to be sent from the
Arduino® UNO electronic board. As the I2C bus is required to communicate with MPU-6050™,
the Dynamixel™ actuators require a different kind of communication: the Serial Communica-

tion protocol.

Like its own name indicates, the Serial Communication protocol requires an available serial
port of the main device which, in this project, is the microcontroller. Arduino® UNO seems
to provide 2 serial ports: one through the USB port, another through two special digital pins.
Despite both of them are operational, they are actually the same serial port, which means that
the two ports cannot be used at the same time. The USB port is implemented then to facilitate
the connection with a PC if needed, but the TX/RX pins are more commonly used to connect

the main device to the rest of the other peripherals.

However, other Arduino® boards such as Arduino® Mega provides more than one serial
port available to be used simultaneously. This fact enables the microcontroller to interact with
two units through the serial ports allowing, in this case for example, to send and receive data
from the Dynamixels™ actuators via one port and showing the status information of the system
on the PC’s screen via the other port. Adding the PC communication would facilitate the work
in a large extent and, in the end, it would become a useful tool to improve the performance and

control.

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
36 Stabilization System 3. Communication protocols

Half-duplex asynchronous
serial communication bus

10k

5V

Figure 20: Diagram of the communication driver

In Figure the implementation of a driver to control the actuators from the Arduino®
serial port is shown. The function of the driver is to convert the serial port signal which is duplex,
i.e. the two communication lines mentioned before (TX/RX), to a half-duplex signal which is
a unique communication bus that alternates reception and broadcast function. Therefore, this
bus is attached to the first Dynamixel™ data pin, along with the VDD (12V) and GND lines, as
shown in Fig. The other 3 pins are linked to the next Dynamixel™ following the daisy chain
type connection shown in Fig. [12}

P PIN1: GHD
B PINZ: VDD
p= PIN3: Data

PIN1: GMND
P PIN2: VDD
PIN3: Data

Figure 21: Dynamixel™ ’s pins

The communication driver used is the integrated circuit 74F244, an octal buffers/line drivers
with 3-state outputs (see Fig. . A function has been implemented to control the state of the

driver similar to those implemented for Instruction and Status packets.

|’ \

‘.
)
¢

(=N
f&3

-
- '«

WA
A4

ET

(/2]

El

3. Communication protocols Aitor Ramirez Gémez 37

Vec 2G Y1 2Ad4 1Y2 2A3 1Y3 2A2 1v4 2A1
20| [19] {18 |17 16| 15| |14| [13] [12]|| 11

TR e
(ol & & &

1{12][3|[4||[S||6]]|7][|8]||9]]|10
iG 1A1 2v4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND

Figure 22: 74F244 driver

IMPLEMENTED CODE

e communication mode: This function controls the three states of the driver depending

on the parameters entered. The possible parameters are:

1. TX MODE: The function sets the TX FNABLFE pin to 0 and the RX ENABLE pin
to 1 if an Instruction packet is going to be sent from the Arduino®. This allows the

Arduino® board to send the data to the Dynamixels™ through the T'X pin.

2. RX MODE: The function sets the RX FNABLE pin to 0 and the TX ENABLE pin
to 1 if a Status packet is returned from the Dynamixels™. This allows the Arduino®

board to receive the data through the RX pin.

3. HIGH IMPEDANCE MODE: The TX ENABLE and RX ENABLE pins are set to
1 if no data is to be broadcasted. This blocks the data traffic through the serial

communication bus.

' N

-
-« '«

N
5

¢
g
(5%

£€C

ET

(72]

EIB

38

Inertial
Stabilization System

3. Communication protocols

s

&3

¢
&
-

<
-

ALY

ET

(7]

\

et

e

EIB

4. Execution and control Aitor Ramirez Goémez 39

CHAPTER 4

EXECUTION AND CONTROL

This chapter addresses the problem of determining the angular value of the Dynamixel™ ac-
tuators corresponding to the platform orientation. From now on, the term revolute joint will
be used to refer to the Dynamixel™ actuators, as well as end-effector to refer to the moving
platform. The relation giving the actuated joint coordinates for a given pose of the platform is

referred to as the inverse kinematics problem, and this chapter deals with its solution.

Fourier series along with linear interpolations, or the Jacobian transpose method are other
alternatives to solve the kinematics problem that will be also examined. This is due to the
problems that arise when implementing the corresponding code of the actual kinematics of the
robot in the Arduino® microcontroller. Again, the Matlab® software will be of great help to

study the different alternatives.

Finally, the closed-loop system of the final solution will be presented, as well as the possible

hypothetical implementations to improve the accuracy and performance of the system.

rd \|

r
)
¢

b&‘?
1&3

Tl

- «
- '«

ET

(72]

EIB

Inertial
40 Stabilization System 4. Execution and control

4.1 The robot

The main aim of this project is to control the orientation of a platform, which will be governed
by a robot. Due to the nature of this goal, and other aspects that will be introduced in this
Chapter, a parallel robot is chosen to develop the task, in particular a Gough-Stewart parallel
robot. There are a few different types of parallel robots. Nonetheless, the one used works as a

6-RUS manipulator [I], already presented in the introduction.

Next, the Gough-Stewart, or just Stewart, robot with its principal characteristics is intro-

duced.

4.1.1 Definition, advantages and structure

DEFINITION

The Gough-Stewart parallel platform is one of the many kinds of parallel robots that have been
invented. This particular robot provides 6 degrees of freedom, granted by six independent sliding
actuators, which enable the platform to rotate around any rotation axis of its workspace. This
previous fact allows the robot to control the compensations of an object that does not need to
be necessarily attached on the platform surface. In addition, it also enables to compensate both
rotation and translation in any direction which could allow the platform to remain static in the

tridimensional space.

Figure 23: Some Gough-Stewart platforms from IRI’s lab

|’ \

&3

¢
&
-

et

- '«

NASY
e

ET

(7]

EIB

4. Execution and control Aitor Ramirez Goémez 41

Therefore, our parallel robot is a mechanical system which connects the platform to the fixed
base through multiple serial kinematic chain. Then, in a Gough-Stewart parallel platform these
kinematic chains are equal, each controlled by only one actuator. When solving the inverse
kinematics, we will realize the important advantages of a parallel robot against a pure serial

robot.

ADVANTAGES OF PARALLEL ROBOTS

When comparing the robustness and accuracy of both types of robots, it can be perceived the
important advantages of the parallel ones. Moreover, the load capacity is incremented and,
as a consequence, the speed and acceleration capacity is higher in a serial robot of the same

dimensions. Some of these advantages are:

1. Simple and closed kinematic chains with few joints.
2. Better distribution of the supported loads.

3. Accuracy, since the positioning errors of each manipulator is damped due to the global

average of all the involved serial kinematic chains.
4. Inertial forces are small enough to be neglected in most applications.

5. More stiffness.

As a principal disadvantage, the parallel robots exhibit a quite reduced workspace with respect

to their serial counterparts.

STRUCTURE OF THE GOUGH-STEWART PLATFORM

The parallel robot prototype developed at IRI’s lab has some relevant characteristics, since it
is designed to be a portable gadget. These characteristics have led to assume certain approxi-
mations (sec 1.2), which influenced the development of this project. To begin with, the robot
requires to have little dimensions to be portable. As previously mentioned in section 1.2.3, and
reminded in the Advantages of parallel robots, this fact largely reduces the complexity of the
problem, as the dynamics of the robot are not considered. In addition, an orientation compen-
sator needs to instantaneously run in real time, which means that the actuators should operate
at a significantly high speed. As the consequence, the manipulator should have simple kinematic

chains to be easily controlled.

by
9O

o
ETSEIB

Inertial
42 Stabilization System 4. Execution and control

Figure 24: Structure of the parallel robot’s manipulators

Note that each serial kinematic chain in the robot is not the typical crank and connecting
rod mechanism because the bar acting as connecting rod can move in more than 2 dimensions

of the space. However, the principle of the mechanism is similar.

The kind of parallel manipulator used is called 6-RUS, and the serial arms attached to the
actuators dispose of two spherical joints, one at each end, which provides an extra degree of
freedom. Therefore, the arm can move in a three-dimensional space to guarantee the 6 degrees
of freedom of the platform. In addition, the initial setup of the actuators’ rotors provides faster
movements to the platform in their home position, which means that reaction times are smaller

than in other manipulation systems.

As a counterpart, the serial kinematic chain of this kind of manipulator introduces serial
singularities. They arise when the actuators’ rotor and the arm acting as connecting rod get
aligned. In this disposition, the mechanism has two feasible ways to carry on the movement and

the system suffers from a loss of performance.

|’ \

&3

¢
&
-

Teel

< «
- '«

P23

ET

(7]

EIB

4. Execution and control Aitor Ramirez Goémez 43

4.2 Kinematics of the parallel robot

In this section we define how the problem of reorienting the platform is mathematically treated
according to the mechanics of the robot. At this point, it is assumed that all the communica-
tions between the different devices is already established. Therefore, the solution can be found
following two possible directions: 1) an abductive procedure, giving an input to the system
and looking at how it responds, or 2) an inductive procedure, concluding in a motion planning
according to the desired output. These two ways to solve the problem rely on the resolution of

the forward kinematics and inverse kinematics of the robot, respectively.

INVERSE KINEMATICS VS FORWARD KINEMATICS

The inverse kinematics consists in establishing the value of the joint coordinates, in this case the
parameters of the Dynamixel™s actuators, corresponding to the desired platform configuration.
Usually, this relation is simple for parallel robots, and it will be seen that only 2° solutions
can be found for the same configuration of the platform (each serial kinematic chain has two
solutions for the inverse kinematics). Observe that dealing with this problem in serial robots

becomes a really difficult task due to the amount of different solutions that can be found.

The forward kinematics faces the problem of determining the pose of the platform of the
parallel robot from its actuated joint coordinates. In a dual way to the inverse kinematics, the
solution for this problem is not unique in parallel robots, i.e., there are several ways of assembling
a parallel manipulator for a set of actuated joint coordinates. However, in serial robots this
problem is not an issue as it can be easily solved as a concatenation of transformations due to
the fact that all joints are actuated. Then, it can be concluded that the solution of the forward

kinematics problem for a serial chain is unique.

By the nature of this project, the problem demands to be solved through the inverse kine-
matics of the robot as the platform should be reoriented according to the desired orientation,
which is now the input of the system given by the MPU-6050"™. For the type of manipulator
used (6-RUS, the solutions of the inverse kinematics determine which are the values for the joint

variables or, in other words, the angular position of the actuators.

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
44 Stabilization System 4. Execution and control

WORKING WITH REFERENCE FRAMES AND HOMOGENEOUS TRANSFORMATIONS

This section deals with all the algebraic work needed to solve the inverse kinematics of the
parallel robot used in this project. Matlab® software, along with the Robotics toolboz and the

functions introduced in section 2.3.2, are of great help to achieve this goal.

Reference frames will be used to describe a rigid body’s pose, i.e., its position and attitude.
These reference frames must be defined before starting with the algebraic work. To represent
the pose of a body in a IR? space, homogeneous transformations matrices 7 (sec. 2.3.2) will be
used, adding two reference indexes (i and j), each one referring to different coordinate frames
which will be attached to some part of the body. Therefore, IT; matrices will denote the pose

of the frame i with respect to the frame j.

. jRi jOi
iT, = (4.1)
01><3 1
<
A

\/
<<

Figure 25: Representation of an arbitrary transformation

Remember that IR; is a 3x3 matrix that describes a rotation, the one needed to orientate
the frame ¢ with respect to the frame j. This matrix can be conceived as the result of a pure
rotations, as explained in section 2.3.2, or directly as a unitary change basis matrix from i to j

as follows:

an
ey
ST
ETSEIB

4. Execution and control Aitor Ramirez Goémez 45

T

Ri=| & 9 4 [| & & % (4.2)

10; = | iy, (4.3)

4.2.1 Inverse kinematics solution

The calculations to solve the inverse kinematics problem of a 6- RUS manipulator are set forth in
this section. It must be remembered that at this point the communication between the devices
is already established, which means that the MPU-6050™ is already sending data. This data are
the Roll and Pitch angle values of the platform, in other words, the known parameters of the
inverse kinematics. In the following calculations, the subindex b refers to base, p to platform, j

to joint, and r to rotor.

ABSOLUTE FRAME OF REFERENCE

Absolute reference
frame

Rotors’ I i
height

Figure 26: Absolute reference frame

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
46 Stabilization System 4. Execution and control

To start with, an absolute reference frame must be defined somewhere in order to express
the rest of the relative frames. The most intuitive point to place it is in the center of the robot

base, at the Dynamixels™ rotor height to make calculations easier.

PLATFORM POSE WITH RESPECT THE BASE: PTR,

Once the absolute reference frame is defined, other relative frames can be expressed as the 1T
matrices showed before (eq. . Using the known Roll-¢ and Pitch-6 parameters, a relative

frame of reference for the platform’s actual pose can be defined.

1 0 00 1 0 0 0 cos# 0 —sinf | 0
01 0|0 0 cos¢p —sing |0 0 1 0 0
PTR, = ¢ ¢ : (4.4)
0 0 1|H 0 sing cos¢ |0 sinf 0 cosf |0
0 0 0|1 0 0 0 1 0 0 0 1

Figure 27: Platform’s reference frame

FRAMES OF THE SPHERICAL JOINTS WITH RESPECT TO THE BASE: bTPj

Now, the platform reference frame should be translated from its center to each spherical joint.
The result will be six bTPj matrices, which will describe the pose of each joint j with reference

to the base b.

’ Q \
Sy
Ut
ETSEIB

4. Execution and control Aitor Ramirez Goémez 47

1 00 L2
. . 0 1 0|—-LONG
TP, =" TR, - (4.5)
0 0 1 0
0 0 0 1
PTyy
1 0 0 -—L2
. . 0 1 0|—-LONG
TPj; =" TR, - (4.6)
0 0 1 0
00 0 1
cos(—%) —sin(=2%) 00 1 00 L2
sin (—2%) cos(—%) 010 0 1 0|-LONG
bTPj3 — bTRp . (3) (3) . (47)
0 0 1|0 00 1 0
0 0 01 0 0 0 1
cos(—2F) —sin(—2F) 00 1 00| -—L2
sin (—2& cos (—2& 00 0 1 0|—-LONG
"TPj, ="TR, - %) %) : (4.8)
0 0 1|0 0 0 1 0
0 0 01 00 0 1
cos(—4) —sin(—4) 00 100 L2
sin (—4x cos (—4x 00 0 1 0|—-LONG
bTPjs =PTR, - =%) =%) : (4.9)
0 0 1|0 0 0 1 0
0 0 01 00 0 1
cos(—4) —sin(=4T) 010 1 0 0| -L2
sin(—4%) cos(—4F) 010 0 1 0|-LONG
"TPjs = "TR, -) =) : (4.10)
0 0 110 0 0 1 0
0 0 01 00 0 1

Yoy
Vet

ET

(72]

EIB

Inertial
48 Stabilization System 4. Execution and control

Figure 28: Joints’ reference frames

FRAMES OF THE ACTUATOR’S ROTORS WITH RESPECT TO THE BASE: °TB,

The same should be done with the rotor of each actuator. Six PT'B, matrices should be found,
one for each rotor. Notice that the PT B, matrices will be defined to have one axis on the AAg

bar of the manipulator in its home position, as it will make the calculations easier.

1 00 L1 cos(—%) —sin(=2%) 00
0 1 0|—-RADI sin(—2%) cos(—2F) 010
"TB. = : %) %) (4.11)
00 1 0 0 0 10
00 0 1 0 0 01
1 0 0| -IL1 cos(3F) —sin(EF) 00
0 1 0|—RADI sin(2F) cos(%F) 010
"TB,y = :)) (4.12)
00 1 0 0 0 110
00 0 1 0 0 01
cos(—2F) —sin(—2F) 00
. 27 27
sin (—4°F cos (—=F 00
PTB,s = =5 =5 PTB., (4.13)
0 0 10
0 0 01
LI
Ty
Y
ETSEIB

4. Execution and control Aitor Ramirez Gémez 49
cos(—%) —sin(=2%) 00
sin (—2& cos (— 2 0]0
PT By = %) =5 PTB,, (4.14)
0 0 110
0 0 01
cos(—4) —sin(—4) 00
EYs %S
sin (—=+ cos (—=¢ 00
PTB,5 = =%) =%) PTB,. (4.15)
0 0 110
0 0 01
cos(—4) —sin(=4) 00
sin (—24& cos (—4r 00
PTB,¢ = =) =) PTB,, (4.16)
0 0 110
0 0 01

Figure 29: Rotors’ reference frames

' N

r
)
¢

WA
143

T

-« '«

ET

(72]

EIB

Inertial
50 Stabilization System 4. Execution and control

RESOLUTION OF THE INVERSE KINEMATICS

At this point the problem is reduced to find and to solve the equations that relate to the
actuators’ rotor pose to the spherical joints’ pose. These two elements are physically related
through the 6-RUS manipulator, which means that the transformation matrix that relates them
is not that obvious. Then, in order to find the mathematical relationship, the manipulator must

be analyzed in more detail.

Figure 30: The 6-RUS manipulator

As it can be seen in Fig. the rotor movement is transmitted through the mechanism
A AyB. The problem of the inverse kinematics is to determine the angle & between the mechanism

A Ay and the vector of the rotor frame placed in the initial position of the mechanism (Fig. [31)).

r \

&3

¢
&
-

et

- '«

NASY
e

ET

(7]

EIB

o1

Aitor Ramirez Goémez

4. Execution and control

’ riyji
, A Y SR
{ B = (", ”Zji) B i B
Front Side
IABI | i 11ABII
N
E1IAA I
1
A

Figure 31: Front and side view of the serial chain representing the manipulator’s legs

Figure|31|shows Ay B as the projection of AgB onto the orthogonal plane to the rotor vector
i. The following operation will describe the spherical joint frame with respect the corresponding

rotor frame. However, the only interest is to get the relative position of the joint with respect

the rotor. (Subindex i refers to each rotor (r) - joint (j) couple as the following equations are

analogous to each serial chain).
0 0 rixji
. 0 0 ri iy
Hrp; - = ("TR,;)™'-*TPj; - - ¥ (4.17)
0 0 ri Zj;
1 1 1

Vector ("z;; ,riyﬂ , rizji) is the joint B displacement with respect to the rotor reference

frame placed in A. This vector can be used to calculate the parameters needed to solve the

problem.

\|

r
)
¢

[
163

rd

Tl

«
- '«

NAIY

EIB

(72]

ET

Inertial
52 Stabilization System 4. Execution and control

Figure 32: ith joints’ reference frame with respect the ith rotor

The length (||AgB]|) of the AyB projection can be found through the following operation:

1A0Bl| = /Il A0 BI]* = *iyj; (4.18)

Examining the angular relationships, it can be found that two values for « lead to the same

solution:

a=p+~ (4.19)

Where S and 7 can be found applying the cosine theorem, as follows:

B = arctan < Zﬂ) (4.20)
rlxji
2 rio. . \2 ri, \2 _ 2
-~ arecos <<||AA0||> + (a0 + (o) — (1 A0BID) (421)
2 |Adol] - v/ (zji)? + (125:)

r \

&g

¢
&
-

et

- '«

&<
]

ET

(7]

EIB

4. Execution and control Aitor Ramirez Goémez 53

In order to understand why two solutions can be found, it should be realized that the
mechanism BAg imposes that point Ag lies on a sphere, due to the spherical joint, centered at
B with radius ||AoB]||. In the same way, the bar AAy imposes that point Ay is constrained to
lie on a circle centered at A with radius ||AAg|| lying in the plane perpendicular to the rotor
axis of the actuator. This sphere and circle intersect in two points. Hence, the whole inverse

kinematics admits generally 26 = 64 solutions for each platform configuration.

Then, choosing one of the 64 possible solutions depends on the home position. Looking at
the circumference drawn by A Ay, the solution will be the angle which sets the mechanism closer

to its home configuration. Therefore:

=B+~ (4.22)
ay=8—~ (4.23)
as =B+~ (4.24)
ay=pB-7 (4.25)
as =B+ (4.26)
ag=fB—7 (4.27)

4.2.2 Problems writing Arduino® code

Several problems arise when implementing this section of the code on the Arduino® UNO

microcontroller. The most important are:

e Basic math operations: Arduino®’s software does not provide really powerful math-
ematic libraries, which means that most of the operations showed above (i.e. matrix

operations) would have to be build on our own.

e Out of workspace range: If the robot is tilted exceeding a certain inclination, the

tTM

Motion Process Unit™ would send Roll-¢ and Pitch-0 values out of the workspace range

of the robot. As a consequence, software limits should be introduced.

e Long code: Reminding section 2.2.1, the Motion Process Unit™ provides a FIFO buffer
which stores the motion parameters to avoid running out of values in between. Therefore, if
one value from the MPU™ takes too long to be analyzed due to the length of the Arduino®
code, the FIFO could suffer from underflow problems.

rd \|

r
)
et

- '«

NAIY

Lg%
"

ET

(72]

EIB

Inertial
54 Stabilization System 4. Execution and control

SOLVING PROBLEMS

Different ways can be taken to solve these main problems. In order to be able to work
with matrices, and solving the first issue, a C++ library called Eigen can be downloaded and
installed to make it operative on an Arduino®. There is also a Websit which explains how
basic functions can be used, such us how to generate a n-vector, a nxn-matrix; or how to operate
with cross and scalar products. However, it gets hard to work with it as Debugers are not

available for this library, which means that syntax errors in the code are hard to find.

The problem of working out of the range is easy to solve, just giving upper and lower limit

values to the actuators.

It takes longer to solve the third problem because, as it has already been mentioned, the
written code provided by Jeff Rowberg to control the Motion Process Unit™ was treated as a
black box. It seemed unfeasible to us, in the short run, to modify Jeff Rowberg’s code referring
to the length of the FIFO buffer. The only section that could be modified is the way the inverse

kinematics is solved.

It must be said that, in order to verify if the buffer was the main problem before changing
the way the kinematics is solved, other kinds of inverse kinematics were applied, such as the
platform translation, which code is quite shorter. The conclusion remained the same as it

worked normally.

Therefore, the following two sections are possible alternatives studied in order to replace

the large calculations of the inverse kinematics problem presented above.

4.2.3 Alternative 1: The Fourier method

If one starts thinking about how to relate the actuators angular position depending on the
attitude of the platform, to plot the inputs and outputs parameters is the most intuitive operation
to begin with. In this case, Matlab® will be essential to represent the relationships between the

input parameters and the output parameters.

HEigen’s support webside: https://eigen.tuxfamily.org/dox/GettingStarted.html

’ Q \
Sy
ST
ETSEIB

https://eigen.tuxfamily.org/dox/GettingStarted.html

4. Execution and control Aitor Ramirez Goémez 55

SIMPLIFICATION OF THE PROBLEM USING MATLAB®

Now, we are going to plot the relationship between the the output variables, i.e., the rotor
angular position of each actuator (i, ag, as, a4, as, ag), with respect to the input variables of

the inverse kinematics, i.e. the Roll-¢ and Pitch-0 angles.

Therefore, using the inverse kinematics already solved and computed in the Matlab® soft-
ware, six 3D-plots are represented. It must be noticed that the angles represented in the following
plots are not directly ¢ and 6, since this study has been done using a different solution for the
inverse kinematics that later on were replaced by the solution explained in section 4.2.1. Never-
theless, those other angles (o and \) are analogous to ¢ and . The inverse kinematics solution
used for this alternative is placed in the appendix, and Fig. [33]shows how to find o and X angles,

being vector n orthogonal to the platform.

<

A

N>
Ss

A
<

X
Pitch-0

Figure 33: Relationship between Roll-¢, Pitch-0 and o, A angles

The following figures present each of those plots. They represent a; with respect to o and .

' N

r
)
et

-« '«

NAIY

L
"

ET

(72]

EIB

Inertial
56 Stabilization System 4. Execution and control

Angle values (SERVO ID:13)

Angle values (SERVO ID:14)

b)

Angle Value [rad]
Angle Value [rad]

Os¢<2n[rad] O0sg<2n[rad]

Os<As=w/11 [rad] 04 0

Angle values (SERVO ID:15) pl | (SERVO ID:16)
ngle values :

e)

Angle Value [rad]

Angle Value [rad]

4
03

4 0 Os¢<2n([rad]

0shsw/1 [rad] 0=c <2x[rad]

OsA=n/11 [rad] 04 0

Angle values (SERVO ID:17)
Angle values (SERVO ID:18)

g)

g’ § 0"3 <z 4 7
- s RN

£ ""5:',"'3{}'11

L

04 0 O=g<2x[rad]

Osg<2n[rad]
O<Ais=<n/11 [rad] O<Ais=n/11 [rad] 04 0

Figure 34: Surface plots of «; with respect to o and A

The reason why three plots are centered at 0, and the other three are centered close to -3

(actually -7 = -3,1415..), is due to the home position of each actuator.

,ED
Sy
Ut
ETSEIB

\

4. Execution and control Aitor Ramirez Goémez 57

Looking at the appendix with respect to these plots, two facts can be verified. On the one
hand, it seems that changes in o make a to follow a sinusoidal curve presenting a different
phase shift in each actuator. On the other hand, it can be seen that X is related to the amplitude

of the oscillating function.

The important fact is that sinusoidal curves with different amplitudes but same phase shift
could be found if slices of these plots are made along the A axis. Moreover, the changing rate
of the amplitude is linear. These two facts combined lead to the first alternative for the inverse

kinematics problem.

If a few of those sinusoidal curves could be parameterized, linear interpolations would be
implemented to interpolate the empty spaces between these curves. It means that all the inverse
kinematics would be stored as a few sinusoidal curves for each actuator, which will be fast to

compute and would not take up much memory in the microcontroller.

Since to fit a sinusoidal function “by hand” does not seem appropriate for obvious reasons,

the best way to achieve it is through the Fourier transform.
PARAMETERIZING THE SINUSOIDAL CURVES

The Fourier transform is a tool that permits to decompose a periodic signal into an infinite
series of sine and cosine functions as follows:

f(z) = % +Z [an - cos(n-w-x)+ by sin(n-w-)] (4.28)

n=0

The more terms, or order, added in the sum, the more accurate is the Fourier approximation
to the periodic function. Therefore, it is only needed to find a few parameters (ag, a1, b1, ...,

an, by) to approximate the sinusoidal curves found before.

To find these parameters is an easy task using Matlab® because it provides easy-to-use
functions to approximate a series of points through FFT (Fast Fourier Transform) transform of

the convenient order. The following figure shows the 2°d-order Fourier series for A = 11

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

o8

Inertial
Stabilization System

4. Execution and control

Angle Value [rad]

Angle Value [rad]

Angle Value [rad]

-a.

Fourier Model when o. = w/11; SERVO (ID:13)
T T T

Fourier Model when o= /11; SERVO (ID:14)

Angle Value [rad]

Fourier Model when o= n/11; SERVO (ID:15)
T T T

2 3 4 5 6 7
0 <0< 2n(rad]

Fourier Model when o= /11; SERVO (ID:16)

Angle Value [rad]

1 2 3 4 5 6 7 _'0
0<o<2n[rad]

Fourier Model when o. = n/11; SERVO (ID:17)

2 3 4 5 6 7
0<o<2n(rad]

Angle Value [rad]

Eote
9O

ETSEIB

Fourier Model when o. = n/11; SERVO (ID:18)

0<o<2n[rad]

Figure 35: Fourier series of each actuator for A = &

2 3 4 5 6 7
0<o<2nrad]

11

4. Execution and control Aitor Ramirez Goémez 59

The Fourier parameters found for these functions are:

@ a1 by as by w
fis(x) | -2,195 -0,6818 -2,082 -1,543 1,308 0,3596
f1a(x) | -0,9467 1,175 1,849 0,9861 -1,766 0,3596
fis(x) | -3,261 0,2638 0,4085 0,007474 -0,009917 1,014
fie(x) | 0,1143 -0,6335 -0,7205 -0,02923 0,08123 0,9993
fir(x) | -3,256 0,6301 -0,7235 0,02998 0,08096 0,9993
fis(x) | 0,1196 -0,3433 0,9026 -0,05162 -0,05562 1,014

Table 3: Parameters of the Fourier series

In the appendix, more graphs and parameters of Fourier approximations applied to other

slices than those shown in Fig. can be found.

IMPLEMENTED CODE

Finally, if this alternative is implemented, a 2"%-order Fourier series is enough in practice. As

an alternative, a simple linear interpolation can be calculated as explained next.

4.2.4 Alternative 2: The Jacobian method

In this section, the final solution to solve the inverse kinematics problem is described. This
alternative reduces the solution to a single matrix, which multiplied by (¢, 8)T gives the angle

values of the actuators (a1, as, as, oy, as, and «ag).

THE METHOD

As stated before, the configuration of the platform, is specified by the Roll-¢, Pitch-0 angles.
Note that the platform needs to be stabilized at ¢ = 0, § = 0, then it can be considered that
A¢p = ¢, and Af = 6.

Since there are six revolute joints, their angular positions have been defined as a vector &
= (Say, Sag, Sas, Say, Sas, Sag)T. Then, the robot will be controlled by giving specific target
angles to the joints '@ = (*aq, tag, tas, fay, tas, tag) T, where ta; is the target position for each

actuator.

rd \|

«
- '«

N
5

¢
g
Fegs

£€C

ET

(72]

EIB

Inertial
60 Stabilization System 4. Execution and control

Therefore, the inverse kinematics permits to express that each joint angle as a function of
¢ and 0; this can be written as:

‘a =%a(¢,0) (4.29)
And the desired change for the joints can now be expressed as:
Ad ="*ta —®a (4.30)

According to this, an iterative method can be used to converge to the stabilized pose. For this,
the functions given by (4.29| are linearized. This linealization leads to the Jacobian matrix J,

which is a function of the ¢ and 6 values, and is defined as follows.

dai day
56 60
Say dap
J(p.0) =] ° (4.31)
das dae
56 60

Then, J can be viewed as a 6x2 matrix that describes the changes of the joint angles with

respect to the platform orientation, or as a velocity relation between the revolute joints and the

end-effector (eq. [4.32)).

ay .
— g0 | ° (132)
0
0lg
Then,
fa 5
B 2 " 56
Sae 5t 5
ot @6

Therefore, the difference of the joints angles can be estimated through:

Aa1
~ J(¢,0) (4.34)
AO[@‘

Sy
ST
ETSEIB

4. Execution and control Aitor Ramirez Goémez 61

How TO FIND THE JACOBIAN MATRIX

To mathematically find J, the joint equations of the kinematics should be derived with respect
to the entry values, which are the ¢ and 8 angles, and then it should also be evaluated by them.
To find and derive those equations are not goals of this project. However, different ways to reach
J can be found. It has been previously mentioned that the Jacobian could be considered as a
matrix which describes the behavior of the joint angles due to the changes produced

in the entry values.

According to this statement, the resolution of the inverse kinematics previously calculated
can be used to develop a Matlab® code (placed in the appendix) in charge to build the Jacobian

matrix following these easy steps:

First, the code places the platform in its initial configuration, where all the joint values are
known. Just after that, a small enough increase is applied to ¢ = ¢ + A¢, and the solution of

the inverse kinematics (Acay) is placed in the first column of J.

Later on, the same process is applied to 6, and the solution (Ady) is placed in the second

column of J.

Joo=| Ady Ady (4.35)

The Matlab® code developed builds a 6x3 Jacobian matrix, in which the interaction caused
by Yaw-v is added. This is done, in case of using a magnetometer, to correct the MPU-6050™
drifting.

IMPLEMENTED CODE

More approximations need to be done when implementing the corresponding code of this method
on an Arduino® microcontroller. As previously stated, a J matrix is a function of ¢ and 6
values, which means that different Js should be calculated for each platform orientation in order

to perform accurately.

However, it has been seen that to find the Jacobian for each entry value, the inverse kine-
matics resolution showed in section 4.2.1 requires to be executed, or in other words, requires to
be implemented in the Arduino® code. As it can be understood, this cannot be carried out
since these methods have been developed under the premise that the resolution for the inverse

kinematics cannot be used.

oy
ANAY

o
ETSEIB

Inertial
62 Stabilization System 4. Execution and control

4.2.5 Matlab® simulation of the final solution

Before implementing this method on the microcontroller, a few simulations were carried out on

Matlab® to verify the above calculations and its performance.

In section 3.1.2 and 3.2.3, the problem of the simultaneous communication between the
PC, the actuators and the microcontroller was mentioned. Due to the introduced limitations,
the microcontroller cannot simultaneously interact with Matlab® and the Dynamixels™, which

means that the simulation must be performed offline.

To this end, the pseudoinverse, or Moore-Penrose inversﬂ of J must be introduced
since the Jacobian is not squared, and the standard inverse is not defined. The pseudoinverse
computes the solution which better fits to a linear system of equations that lacks a unique solution
in terms of minimum squares. It is used then, to recalculate the position of the platform once
the difference of the joints’ angles estimated through the Jy ¢ matrix are applied. Just after this,
using an iterative method, the new joints’ angles will be estimated, and the pseudoinverse will

be used again to recalculate the platform position. And so on, until the error is small enough.

25 i § s 25

24 24
S : X .

15 S ‘ 15 %
‘ vt ‘ £

s s

1
05
0
05

1 ! 1
v A5 s M v RN

Figure 36: Pure pitch recovery (from left to right)

Figure 37: Pure roll recovery (from left to right)

12MathWork’s webside http://es.mathworks.com/?s_tid=gn_logo| can be visited for Moore-Penrose informa-

tion and support.

’ Q \
Sy
Ut
ETSEIB

http://es.mathworks.com/?s_tid=gn_logo

4. Execution and control Aitor Ramirez Goémez 63

4.3 The control

The control of the system is the most appealing process of any project. After the resolution of
the strategy that will be used, incorporating the calculations effectuated in the previous section,
the system is supposed to develop its function. This means that the control will determine how

the system will operate in order to achieve its goals.

The most common application of a compensation system is to stabilize a photograph or a
video camera, in both, accuracy, the well-functioning, the versatility and the reaction speed will

define if it is a good stabilization system or if it is not.

In order to control all those parameters, which will make the system valuable, there exist
several methods to follow, all of them based on what it is called closed-loop control. This
method forces to feedback the system, usually through any type of sensor, to work directly with
the committed error in every cycle. To treat this committed error as a parameter, something
known as controller is implemented, which modifies this parameter in order to reach the final

state of the system quicker, more accurately and fluidly.

4.3.1 Strategies of execution

It is obvious that each actuator will execute different movements, as well as positioning itself
in different angular values for each configuration of the platform. In the same way, it can be
deduced that the strategy of the movements is different for each manipulator. However, the

control parameters of each manipulator will go through very similar cycles.

Distinct possible alternatives have been previously explained to solve the inverse kinematics.
Subsequently, it will be specified the strategies that should be followed for each of the alternatives
proposed.

STRATEGY FOR THE FOURIER METHOD

It must be reminded that this method was developed following a resolution for the inverse
kinematics different from the one finally used. This resolution is based on the location of the

normal vector to the platform (Fig. [33)), apart from its projection on the plane z, y.

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
64 Stabilization System 4. Execution and control

Then, this resolution aims to redirect the normal vector rotating the platform so that the

vector is parallel to the z-axis. The rotation of the platform is performed around a very specific

axis. (Fig.

S|
<

Figure 38: Strategy representation for the Fourier method

The o and)\ values are the ones represented in figure |33) which are analogous to ¢ and 6.

Since this action was unable to be executed through the complete resolution of the kine-
matics, the relationship between the input parameters o, A and the outputs @ was used. These
relations, which were presented in the plots of Fig. are representations of all the possible
solutions inside the two-dimensional workspace granted by the input parameters. Eventually,
the representations were approximated through 2"d-order Fourier series, used to assign values
to the actuators depending on the o parameter entered. Obviously, not all the surface has
to be approximated through Fourier, since changes in A are linear, and the solutions between

approximations can be estimated through linear interpolation.

The only thing that needs to be carried is a 2"d-order Fourier series which will be evaluated

in ¢’s values, and which parameters are chosen depending on \’s.

’ Q \
Sy
ST
ETSEIB

4. Execution and control Aitor Ramirez Goémez 65

STRATEGY FOR THE JACOBIAN METHOD

If the previously method seeks a position relationship between the end-effector and the
actuators’ rotors, this method searchs a velocity relationship between both of them. As it has
been exposed in section 4.2.4, this relationship is achieved by linearizing the system through the
Jacobian matrix. Besides, it has been seen before that J is a function of ¢ and 6, which means

that a different Jacobian matrix for each platform position exist.

In order to develop a feasible strategy to be implemented in the limited microcontroller, a

few approximations will be assumed, which will be considered negligible near the work zone.

Thus, it will be assumed that only the Jacobian matrix for ¢ = 0 and § = 0 (Jo in its
initial state) will be found through Matlab® since the microcontroller itself can not calculate
them. Therefore, only this matrix will have to be implemented in the strategy, which means that
the performance of the robot in a region close to these values will be quite accurate. Otherwise,

if ¢ or 6 deviate from this region, the solution of this method will carry a significant error.

However, in order to reduce the approximation error of the method, the plane-region created
by the achievable ¢ and 6 values can be divided in 9 equal areas, for example. Then, the
kinematics would be governed by 9 different Jacobian matrices, each one calculated in the center
of each area. The Jy ¢ matrix chosen for the kinematics depends on which zone of the region

the platform parameters are closer to.

HYSTERESIS LOOP

This attempt to reduce the error can lure on vibrations and perturbations in the physical pro-
totype caused by the edge values of the region mentioned before. If ¢ or 8 were placed on those
edges or quickly permuting between zones, the inverse kinematics would lead to slightly different

solutions; successively changing the joint values.

Therefore, an hysteresis loop should be defined between every zone, and implemented in

the Arduino® code, in order to solve the vibration problems.

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
66 Stabilization System 4. Execution and control

SATURATION VALUES

Eventually, both are iterative methods which demand this implementation. Unlike the resolution
of the inverse kinematics problem, in these methods there is no way to know if an impossible
configuration for the platform is being executed. This leads to find the joint values from which
the platform movement (about 18%) begins to be blocked by the joint restrictions. In order to
keep the manipulators away from dangerous configurations, these positions define the saturation

values for the actuators, which will be also implemented in the code.

This task can be empirically done since joints’ unions are made not of rigid materials, but
of plastic; avoiding vibration problems coming from complex configurations, and not breaking

up the robot while experimenting.

4.3.2 Architecture of the closed-loop

Each of the six actuators’ system will present its own control strategy, independent from the rest
of them, represented by the block diagram shown in Fig. In order to set the configuration of
the end-effector quickly and fluidly, a closed-loop controller will be placed after the error signal,

which will adjust the position signal for the actuators’ rotor.

(Ap’, AB’) (a,+Aa,, ..., a+Aa,)
e = (/Aqb, A6) / (Aa,, / , Aa,) /
0,0
()_ PD J +[Afoarfsg ca Actuators
(aj, . aé)
0.0) Sensor

Figure 39: Block diagram of the system’s closed-loop

As it is a tiny and light prototype, the resistance forces due to robot’s inertia (sec. 1.2.3)

can be overlooked, as well as the resistance forces due to gravity.

’ Q \
Sy
Ut
ETSEIB

4. Execution and control Aitor Ramirez Goémez 67

4.3.3 Controller

Considering the final strategy applied for the element set, the last stage of this project is to
develop a control system in to accurately perform and enhance robustness. For this, a PID
controller would be ideal since their adjustment can be empirically done through several methods
and they are significantly easy to perform. It must be noted that 100Hz will be the sampling
frequency, as it is imposed by the IMU’s FIFO rate.

This controller is a control loop feedback mechanism, which aims to manipulate an internal
variable to reduce or erase the error of the system and to influence in the dynamic response
between stable states. It is done through the continuous calculation of an error parameter e
as a differential value between a desired target point and a measured process variable. These

corrections are based on three terms:

e Proportional (P): This term accounts for present values of the error, and induces a

quicker (or slower) response.

e Integral (I): This term accounts for past values of error, and aims to reduce the error of

the final state.

e Derivative (D): This term accounts for possible future trends of the error based on its
current rate of change. Its main goal is to induce a fluid operation of the system, avoiding

oscillations or possible instability.

P K e()

+ t
_Setpoint—b@f Error | | K, J- e(r)dr Output—»
0

A

I D dz(tz)

Figure 40: Block diagram of a closed-loop PID controller

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

Inertial
68 Stabilization System 4. Execution and control

The weighted sum of these three terms is used to adjust to the behavior of the system.
Therefore, the controller only influences in the control variable e, which means that it does not
need to know how the entire system works. This makes this type of controller a really versatile

implementation.

These three terms can work separately, or together assembled in any combination, depending
on what it is desired to be controlled. However, the omission of any of the terms must be well

justified.
CONTROLLER SETTING

As far as this project is concerned, it seems not possible to verify the accuracy of the robot
since all the information regarding the status of the system is stored in the Arduino® board
and it is not possible to be extracted. The serial port cannot be connected to the actuators
and to the PC at the same time, which means that the IMU’s values cannot be showed and
analyzed in order to build a complete PID controller and reduce the error, in addition to a well
performance. Therefore, the implementation of the Integral term may not have sense in the

controller’s development as the exact error (e) can not be known, nor analyzed.

This leads to develop a simple PD controller to basically control the operation speed and
the cushioning in order not to destabilize the system. Besides, its adjustment must be arranged

manually for the same reason.

rd Q \|
ey
ST
ETSEIB

5. Results Aitor Ramirez Gémez 69

CHAPTER 5

RESULTS

Pictures from the final results are shown below. In the Conclusion chapter, the discussion of

results is done quantitatively, as the final values can not be observed and analyzed.

Figure 41: Final experimetnal results

In the previous images, the recovery of the platform’s orientation can be seen whenever the
base is tilted. The wood base attached to the robot was used to reduce the inertial forces caused

by the Dynamixel™s actuators, preventing the system from sinusoidal entries.

' N

r
)
¢

[
1&3

- «
-« '«

ALY
T

ET

(72]

EIB

70

Inertial
Stabilization System

5. Results

I

&g

¢
&
-

<
-

&<

ET

(7]

\

et

e

EIB

6. Environmental impact Aitor Ramirez Gémez 71

CHAPTER 6

ENVIRONMENTAL IMPACT

The environmental impact caused by this project is minimal, since it started from an already built
robot and worked with previously assembled devices (Arduino®, GY-512 board [MPU-6050™],
Dynamixels™ AX-12+). The only thing generated in the laboratory was the communication
drive to connect the Dynamixels™ AX-12+ to the Arduino® board. Nevertheless, the ISO

regulation that specifies the possible environmental impact turned really difficult to find.

Besides that, there has been no need to generate anything other than the paper used for
printing the descriptive report to facilitate the checking and the correction. Moreover, some of
the device’s companies ensure compliance with environmental regulations, such as the Arduino®

and InvenSense, which products are RoHS and Green compliant.

Sy
YA

ET

(72]

EIB

72

Inertial
Stabilization System

6. Environmental impact

s

&3

¢
&
-

<
-

ALY

ET

(7]

\

et

e

EIB

7. Conclusions Aitor Ramirez Gémez 73

CHAPTER 7

CONCLUSIONS

7.1 Contributions

In this project a system to stabilize a moving platform to a given orientaton has been developed
using a Gough-Stewart parallel platform with 6 degrees of freedom. To this end, microcontroller
Arduino® has been programmed, to obtain the required values for the actuators, according to
the measurements obtained using an Inertial Measurement Unit sensor. This problem essentially
reduces to solve the inverse kinematics of the used platform within the workspace of the robot
in a feasible way given the limitations of the Arduino®. Despite the lack of a system able to
qualitatively detect the robot performance in order to enhance its control, the parallel robot

performs correctly in all performed experiments.

7.2 Possible enhancements and future work

Throughout the development of this project many complications have emerged. Most of them
connected to the devices which, in more than one occasion, have had to be replaced in a quite
advanced point of the project. These last-minute changes have introduced important delays.
The limited time and the choice of the devices, still not the most appropriate, have made us
take the most pragmatic choice to have a system working at the end of the project. Here it is an
enumeration of the possible improvements which should be implemented to have a more robust

system if someone else wants to continue with this researching project.

rd \|

r
)
¢

[
1&3

- «
- '«

ALY
T

ET

(72]

EIB

74

Inertial
Stabilization System 7. Conclusions

g
04

. Arduino® UNO is clearly the bottleneck in this project because of its limited computational

capacity. This particular model only provides a single serial port, which has been proved
to be insufficient if we want to connect it to a PC and to other devices simultaneously
through the serial port. This has prevented the visualization of the different variables
during a significant part of the project, as well as the adjustment of a PID controller.
The computational capacity of the microcontroller has also introduced limitations in the
computation of the inverse kinematics. To improve this, other alternatives of electronic

hardware should be studied, such as the Arduino® Mega.

. The goal of this project has been to compensate the orientation of the platform prototype,

which means to work on two generalized coordinates. In some way, this is understood as
an untapped potential by the robot since it provides 6 degrees of freedom and only two
are used. A possible future study is to develop an stabilization system which compensate
both rotations and translations, as well as the possibility of changing the rotation center.

This would maintain the platform completely static, although in a reduced workspace.

Another improvement to increase the compensation possibilities of the developed robot,
a magnetometer could be introduced along with the IMU sensor to minimize the drifting

problem. Therefore, the Yaw angle could be also stabilized.

Concerning to Rowberg’s code for the IMU sensor, it would be an interesting task to fully
understand all possibilities it provides. In this project, this code has been treated as a black
box as it would take a significant and unavailable amount of time to completely understand
it. However, mastering this code would have meant a completely different development of
the project. The lack of time to fully understand this code was the main reason why other
alternatives were planned, instead of the real resolution, which led to apply approximations

and assumptions that slightly hindered the performance of the robot.

In case Jeff Rowberg’s code is kept as a black box, it would be interesting to find a way to

avoid the linearization of the equations to reduce the approximation errors.

According to the assumptions taken in section 1.2, the dynamics and possible perturbations
that could affect somehow the system were not taken into account. The dynamics of
the system should be included in the analysis to assess its influence. In the same way,
interactions with the different mechanical parts, such us the joints, should be considered.

In this scenario, more powerful actuators could be implemented.

=

Y

A
ETSEIB

BIBLIOGRAPHY Aitor Ramirez Gémez 75

[1]

2]

[12]

[13]

BIBLIOGRAPHY

J.-P. MERLET, “Parallel robots,” Springer, Second edition, pp. 95-102, 2006.

P.I. CORKE, “Robotics, Vision & Control,” Fundamental algorithms in MATLAB: Second
edition, Springer, 2011.

AGINAGA GARciAa, J, “Andlisis de precision de manipuladores paralelos,” (Doc-
toral Thesis), 2011. Recovered from: http://www.imac.unavarra.es/jokin/web/pages/

curriculum/docs/TesisJokin.pdf

SAMUEL R. Buss, “Introduction to Inverse Kinematics with Jacobian Transpose, Pseu-
doinverse and Damped Least Squares methods,” IEEE Trans., 2004. Recovered from:
https://groups.csail.mit.edu/drl/journal_club/papers/033005/buss-2004.pdf

BaJip, T; MIHELJ, M; LENARCIC, J; STANOVNIK, A and MUNIH, M, “Robotics,”, Springer,

2010, pp. 9-22.

JouN J. CRAIG, “Robética,” PEARSON EDUCACION, Third edition, Mexic, 2006, pp.
62-164.

RaAsoy Ni1uBO, A, Planificacion y ejecucion de trayectorias libres de singularidades en

robots paralelos 3-RRR, (Master Thesis), 2015.

BONET MuNoz, A, “Control de la posicid i balanceig d’una bola sobre un pla emprant una

plataforma del tipus Gough-Stewart,” (Degree Thesis), 2015.

J. M. HiLKERT, “Inertially stabilized platform technology: concepts and principles”, IEEE
Control Systems Magazine, vol. 28, 2008.

M. K. MASTEN, “Inertially stabilized platforms for optical imaging systems,”, IEEE Control
Systems, vol. 28, 2008.

JIMENEZ CALVO, J., “Disernio y desarrollo de una plataforma estabilizadora para una cdmara
embarcada en un vehiculo,” (Degree Thesis), Madrid, 2014. Recovered from: https://wuw.

iit.comillas.edu/pfc/resumenes/53be49cf8£07d. pdf
“Gimbal Lock.” https://en.wikipedia.org/wiki/Gimbal_lock

“Gyroscope’s drift.” https://en.wikipedia.org/wiki/Gyroscope

rd \|

R
&3)

&<
x LL]
\?¢<

ET

(72]

EIB

http://www.imac.unavarra.es/jokin/web/pages/curriculum/docs/TesisJokin.pdf
http://www.imac.unavarra.es/jokin/web/pages/curriculum/docs/TesisJokin.pdf
https://groups.csail.mit.edu/drl/journal_club/papers/033005/buss-2004.pdf
https://www.iit.comillas.edu/pfc/resumenes/53be49cf8f07d.pdf
https://www.iit.comillas.edu/pfc/resumenes/53be49cf8f07d.pdf
https://en.wikipedia.org/wiki/Gimbal_lock
https://en.wikipedia.org/wiki/Gyroscope

76

Inertial
Stabilization System BIBLIOGRAPHY

[14] “MPU-6050®"s register maps and descriptions.” https://store.invensense.com/

Datasheets/invensense/RM-MPU-6000A.pdf

[15] “MPU-6050®, Motion sensors introduction.” https://store.invensense.com/

datasheets/invensense/Sensor-Introduction.pdf

[16] “Calibration code for the MPU-6050®.” https://turnsouthates.wordpress.com/2015/

07/31/arduino-mpu6050/

[17] “ROBOTIS e-Manual for Dynamixel™ AX-12A/AX-12+4.” http://support.robotis.com/

en/product/actuator/dynamixel/ax_series/dxl_ax_actuator.htm

[18] “ROBOTIS user’s manual for Dynamixel™.” http://www.trossenrobotics.com/images/

productdownloads/AX-12(English) .pdf

[19] “Dynamixel™ AX-12A/AX-124+ Datasheet.” http://www.pishrobot.com/files/

products/datasheets/dynamixel_ax-12a.pdf

[20] “MPU-6050®’s Datasheet.” http://www.invensense.com/wp-content/uploads/2015/

02/MPU-6000-Datasheetl.pdf

[21] “T4F244 Driver Datasheet.” http://www.mouser.com/ds/2/149/fairchildy,

20semiconductor_74£244-608438.pdf

[22] “Arduino®’s web page.” https://www.arduino.cc/

[23] “MathWorks web page.” http://es.mathworks.com/?s_tid=gn_logo

[24] “Jeff Rowberg’s code.” https://github.com/jrowberg/i2cdevlib/tree/master/

Arduino/MPU6050

[25] “P. Corke’s Robotics toolbox.” http://www.petercorke.com/Robotics_Toolbox

[26] “Eigen library” https://eigen.tuxfamily.org/dox/GettingStarted.html

, oD
1

v/,

——\
Y
s v

iy

A
ETSEIB

https://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf
https://store.invensense.com/Datasheets/invensense/RM-MPU-6000A.pdf
https://store.invensense.com/datasheets/invensense/Sensor-Introduction.pdf
https://store.invensense.com/datasheets/invensense/Sensor-Introduction.pdf
https://turnsouthates.wordpress.com/2015/07/31/arduino-mpu6050/
https://turnsouthates.wordpress.com/2015/07/31/arduino-mpu6050/
http://support.robotis.com/en/product/actuator/dynamixel/ax_series/dxl_ax_actuator.htm
http://support.robotis.com/en/product/actuator/dynamixel/ax_series/dxl_ax_actuator.htm
http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf
http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf
http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
http://www.mouser.com/ds/2/149/fairchild%20semiconductor_74f244-608438.pdf
http://www.mouser.com/ds/2/149/fairchild%20semiconductor_74f244-608438.pdf
https://www.arduino.cc/
http://es.mathworks.com/?s_tid=gn_logo
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
http://www.petercorke.com/Robotics_Toolbox
https://eigen.tuxfamily.org/dox/GettingStarted.html

A. Budget Aitor Ramirez Gémez 7

APPENDIX A

BUDGET

This appendix is addressed to provide an estimation of the development cost of this project,
which includes the construction of the parallel robot, the electronic devices and the used tools.
Next, the materials and electronic components, as well as their price and number of units are
enumerated. The costs are expressed in Euros (€), at the presentation date of the report,

without applied discounts.

Considering an engineering salary (40€/h), labour costs specified in table (@ rise to 14,400€.
Therefore, total costs involving also mechanical material (table[4)) and electronic material (table

b)) are 15,443.748€

Ref. Description Provider Unitary price Qty. Total price
680-230 White nylon rod, 1000mmx6mm RS Pro 8.22 6 49.32
689-401 Steel M6 Ball and Socket Joint RS Pro 4.118 12 49.41
423-9555 Velcro black, 20mmx5cm RS Pro 0.824 1 0.824
281-035 Plain socket screw, M4x12mm RS Pro 0.279 6 1.674
525-925 Plain washer, M4x0,8mm RS Pro 0.134 3 0.402
521-850 Wingnut, M4 RS Pro 0.172 3 0.516
837-284 Square nut, M4 RS Pro 0.0862 3 0.2586
Methacrylate plate + cut 50.00 1 50.00
Printed fixed base 50.00 1 50.00
Printed moving plataforma 60.00 1 60.00
Total mechanical material 262.404

Table 4: Mechanical material for the robot construction

rd \|

S
)

[
1)

«
- '«

JAS
e

ET

(72]

EIB

Inertial

78 Stabilization System A. Budget
Ref. Description Provider Unitary price Qty. Total price
A000066 Arduino® UNO board Diotronic,S.A. 20.57 1 20.57
RB-Suf-16 MPU-6050™ (GY-512 breakout board) RobotShop inc. 6.99 1 6.99
DXL0001 Dynamixel™ AX-12A kit Robética Global,S.L. 68 408
2492 Dynamixel™ cable 10cm Robética Global,S.L. 21.95 12 263.4
2126 12V power supply Robética Global,S.L. 49.95 1 49.95
210-4542 Breadboard 201x64x18,5mm RS Pro 23.83 1 23.83
CT2 Perfboard Diotronic,S.A. 3.23 1 3.23
630-437 IC 74F244 Amidata S.L.U. 0.91 1 0.91
1035025 Electric resistance 10k Diotronic,S.A. 0.02 2 0.4
758-7494 USB A to USB B cable RS Pro 2.83 1 2.83
020 DIL20 socket Diotronic,S.A. 0.15 1 0.15
016 DIL16 socket Diotronic,S.A. 0.12 1 0.12
797-9105 SPOX™ 5264, connector 3 way Amidata S.L.U. 0.09 2 0.18
687-7152 SPOX™ 5263, contact Amidata S.L.U. 0.03 4 0.12
687-8124 SPOX™ 5267, 3 way Amidata S.L.U. 0.064 1 0.064
896-7620 Molex male pin connector Amidata S.L.U. 0.04 15 0.6

Total electronic material 781.344
Table 5: Electronic material for the robot construction

Description Hours Total cost

MPU-6050™'s programming and simulations 70 2,800

Dynamixels™s programming 85 3,400

Communication driver construction 15 600

Inverse kinematics solution and alternatives purposed 125 5,000

Control of the system 65 2,600

Total labour costs 14,400

Table 6: Labour costs
ain
\.'Jx‘bb

ETSEIB

B. Images and tables’ sources Aitor Ramirez Gémez 79

APPENDIX B

IMAGES AND TABLES’ SOURCES

All figures and tables have been taken or created by me except the following ones:

Fig. Source

https://www.ormsdirect.co.za/wenpod-md2-studio-3-axis-gimbal
4 http://playground.arduino.cc/Main/MPU-6050
6 http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheetl.pdf
7 https://learn.sparkfun.com/tutorials/what-is-an-arduino
18 http://www.trossenrobotics.com/images/productdownloads/AX-12(English) .pdf
19 http://www.trossenrobotics.com/images/productdownloads/AX-12(English) .pdf
21 http://www.trossenrobotics.com/images/productdownloads/AX-12(English) .pdf
22 http://www.oncomponents.com/uploads/item_gallery/349_item.gif
40 https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1l.png

Table 7: Figures’ sources

Tab. Source
1 http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf
2 http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf

Table 8: Tables’ sources

rd \|

e
)

AS
<

[
1)

ET

(72]

EIB

https://www.ormsdirect.co.za/wenpod-md2-studio-3-axis-gimbal
http://playground.arduino.cc/Main/MPU-6050
http://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://learn.sparkfun.com/tutorials/what-is-an-arduino
http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.trossenrobotics.com/images/productdownloads/AX-12(English).pdf
http://www.oncomponents.com/uploads/item_gallery/349_item.gif
https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1.png
http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf
http://www.pishrobot.com/files/products/datasheets/dynamixel_ax-12a.pdf

80

Inertial
Stabilization System

B. Images and tables’ sources

s

&g

¢
&
-

<
-

&<

ET

(7]

\

et

e

EIB

C. Parameters from Fourier series Aitor Ramirez Gémez 81

APPENDIX C

PARAMETERS FROM FOURIER SERIES

' N

N
5

¢
&
-

-
-« '«

£€C
53,

ET

(72]

EIB

82

Inertial

Stabilization System

C. Parameters from Fourier series

C.1

Angle Value [rad]

Angle Value [rad]

Angle Value [rad]

Vs v
"ax_l-,"
ETSEIB

Surface plots

Angle values (SERVO ID:13)

OsAsn/11 [rad] O=g<2xn[rad]

Angle values (SERVO ID:15)

03

4 0 0=¢<2x[rad]
0<h=a/11 [rad]

Angle values (SERVO ID:17)

O=¢<2n[rad]

Os<is=m/11 [rad]

Angle values (SERVO ID:14) b)
s Y]
ST
sl

II[I,
A4
I',,"I‘[

Angle Value [rad]

0s=¢ < 2x[rad]
Os<i<m/11 [rad] 04 0

Angle values (SERVO ID:16)

e)

Angle Value [rad]

4

O=¢<2n[rad]
0=A=m/11 [rad] 04 0

Angle values (SERVO ID:18)

AN
N

\
A\\\\

Angle Value [rad]

0=<¢ < 2x[rad]
0sisw/11 [rad] 04 0

Figure 42: Surface plot, view 1

83

Aitor Ramirez Goémez

C. Parameters from Fourier series

Angle values (SERVO ID:13)

Angle values (SERVO ID:14)

b)

| [
NN

[peJ] enjep ajbuy

O0s=¢ < 2n[rad]

O=cg<2n[rad]

Angle values (SERVO ID:16)

151

Angle values (SERVO ID:15)

d)

) =)

S
[peJ] anjep s|buy

-0.

2.5

_ _,a.
4
[peJ] enjep ajbuy

O=¢<2n[rad]

Os=g<2n[rad]

g)

Angle values (SERVO ID:18)

[peJ] enjep o|buy

Angle values (SERVO ID:17)

i S
[ped] m:_m>, 9|Buy

-0.!

-4.

0=¢<2x[rad]

0=¢g<2x[rad]

Figure 43: Surface plot, view 2

Inertial
84 Stabilization System C. Parameters from Fourier series

Angle values (SERVO ID:13) Angle values (SERVO ID:14)

Angle Value [rad]
Angle Value [rad]

-4 L :

.
0 0.05 0.1 0.15 0.2 0.25 03 0.35 o 0.05 0.1 0.15 02 0.25 03 035
0shsm/11 [rad] 0=A=m/11 [rad]
Angle values (SERVO ID:15) d) Angle values (SERVO ID:16)
- 157 e)

Angle Value [rad]
Angle Value [rad]

L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 03 0.35) 0.05 0.1 0.15 0.2 0.25 03 0.35
0sA=m/11 [rad] O=i=m/11 [rad]

Angle values (SERVO ID:18)
Angle values (SERVO ID:17)

f) 150
g)
-2.5-
k=3
B g
s o
s 7 E
5 =
% o
2 =
g £
< -35
s
-4 0.0 o o1 03 055 o3 s "o 005 01 015 02 025 03 035
' ! O<hsw11[rad] ’ ’ 0=s7/11 [rad]
Figure 44: Surface plot, view 3
22y
iy
MR
AT

ET

(7]

EIB

C. Parameters from Fourier series

Aitor Ramirez Goémez

85

C.2 Fourier approximations

Angle Value [rad]

Fourier Model when o= n/11; SERVO (ID:13)

Fourier Model when o= n/11; SERVO (ID:15)
T T T T

Angle Value [rad]

0<c<2rlrad]

Fourier Model when o. = n/11; SERVO (ID:17)

Angle Value [rad]

45

Figure 45: Representation of the fitted curve at A=7%

Angle Value [rad]

Angle Value [rad]

Angle Value [rad]

Fourier Model when o = /11; SERVO (ID:14)

3 4
0<o<2rrad)

Fourier Model when o. = n/11; SERVO (ID:16)

2 3 4 5 6 7
0<o<2n[rad]

Fourier Model when o. = n/11; SERVO (ID:18)

0<o<2n[rad]

11

Vi v
“a_.,.,_a"

ETSEIB

86

Inert

ial

Stabilization System

C. Parameters from Fourier series

Fourier Model when a = n/22; SERVO (ID:13)

Fourier Model when o = w/22; SERVO (ID:14))

n n n n n

3 4
0=0=2n[rad]

Fourier Model when a = n/22; SERVO (ID:16)

0s<0=2rfrad]

Fourier Model when o = 7/22; SERVO (ID:18)

0=<o0=2n[rad]

1.
25 1 s
g 1 R
s ry
2 2
& -35 4 2
-4 1 -0.5
4. L = " L =
2 4 6 7 0
0<0=2n[rad]
Fourier Model when o = x/22; SERVO (ID:15) 5
2.4 1 1
T 3 1 g os
g E|
© S
2 >
o o
£ -39 1 2 0
<
4 q -0.5
,4 " " L L 1 L
2 3 4 6 7 1
0s0s=2n[rad]
Fourier Model when a = 2/22; SERVO (ID:17)
- T T T T ; 15 .
-2.§ 1 1
g 4 1 Eos
E E
S s
o
2 34 1 % 0
< <
-4 ~ -0
45 . L L L 4 .
0 2 3 4 6 7 0 1
0=<0=2n[rad]
. . . 7
Figure 46: Representation of the fitted curve at A=
=Dy
VA N
Y, s vV
N, >
A

ETSEIB

C. Parameters from Fourier series Aitor Ramirez Gémez 87

Figure 47:

Fourier Model when « = 0; SERVO (ID:13) Fourier Model when « = 0; SERVO (ID:14)
- T T T T 15 T T T T T
2§ 1 e 1
g B g osf B
s s
> >
° 2
> o
£ 35 1 < of 1
-4 B -0.5 B
" L L L L L _ L s L L L L
i 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0s0s2n[rad] 0s0=2rfrad]
Fourier Model when a = 0; SERVO (ID:15) Fourier Model when «. = 0; SERVO (ID:16)
- T T T T T 15 T T T T T
-2 1 1 4
T 1 g o5 g
E E
S [
> >
g 2
£ -33 4 2 9 4
<
4 1 -0.5 1
_ag L L L L L _1 L L L L L L
2 g , 3 5 6 7 0 1 2 3 4 5 6 7
<0 =2x [rad] 0sos2nfrad]
Fourier Model when o = 0; SERVO (ID:17)) Fourier Model when « = 0; SERVO (ID:18)
15 T T T T T
- T T T T
-2.9 4 1 d
= T
g 3 J g 05 J
B 2
S s
© 2
35 | 2 0 1
< <
4 1 -0.5 4
-4 : - y : - o 1 2 3 4 5 s 7
0 2 3 4 5 6 7 0<o=2nfrad]
0<o=<2r[rad]

Representation of the fitted curve at A=0

vy
Yo
ETSEIB

Inertial
88 Stabilization System

C. Parameters from Fourier series

C.3 Fourier parameters

ID:13
S BTTTTTTTTTTHALPHA = PI/11%%HeHTeTeHhTeTeHeeTeH%sS
>> f = fit(sigma',S0L1(:,50), 'fourier2')
f =
General model Fourier2:
fix) = a@ + alxcos(x*w) + blxsin(x*w) +
a2*cos (2%x*w) + b2¥sin(2%x*w)

Coefficients (with 95% confidence bounds):
ad = -2.185 (-7.52, 3.131)

al = -0.6818 (-4.781, 3.418)
bl = -2.082 (-9.903, 5.739)
a2 = -1.543 (-2.745, -0.3407)
b2 = 1.308 (-2.506, 5.122)
w = 0.3596 (0.2061, ©.513)

>> plot(f,sigma,SO0L1(:,50))

FHEHETHETHETHCHHALPHA = PI/22%%HHHeTeheTehetsh®es
>> f = fit(sigma',S0L1(:,50), 'fourier2')
f =

General model Fourier2:

f(x) = a@ + alxcos(x#w) + blsxsin(xxw) +

a2%cos (2%x*w) + b2xsin(2%x*w)
Coefficients (with 95% confidence bounds):

ad = -3.204 (-3.206, -3.202)

al = -0.4283 (-0.4304, -0.4262)

bl = -0.06436 (-0.07049, -0.05823)
a2 = -0.009128 (-0.01069, -0.007562)
b2 = 0.001765 (0.0007271, 0.002803)
W = 0.9854 (@0.981, 0.9897)

FHBEETHTETTHHECHALPHA = DTt Theethheetshhetee™st

f =
General model Fourier2:
fix) = a@ + alxcos(x¥w) + blxsin(x*w) +
a2*cos (2%x*w) + b2¥sin(2%x*w)
Coefficients (with 95% confidence bounds):
abd = -3.185 (-3.185, -3.185)
al = -2.196e-14 (-1.906e-12, 1.862e-12)
bl = -2.892e-14 (-1.595e-12, 1.537e-12)
a2 = -2.86e-15 (-1.256e-13, 1.19%e-13)
b2 = 9.58e-15 (-6.777e-13, 6.96%9e-13)
w = 9.25 (-4.001, 4.501)
&0
Y
ETSEIB

C. Parameters from Fourier series Aitor Ramirez Gémez 89
ID: 14
ST BT TTHTHEHALPHA=P I/ 1 18656666 HTe %%
f =
General model Fourier2:
f(x) = a@ + alxcos(xxw) + bl¥sin(x*w) +
a2#cos (2xxxw) + b2¥sin(2%x*w)
Coefficients (with 95% confidence bounds):
ad = -0.9467 (-6.272, 4.379)
al = 1.175 (-4.042, 6.391)
bl = 1.849 (-5.154, 8.853)
a2 = 0.9861 (0.8502, 1.122)
b2 = -1.766 (-5.579, 2.048)
W = 9.3596 (0.2061, ©.513)
ST BT T EHEHALPHA=P I / 2 2556565656666 6666 % %%
f =
General model Fourier2:
f(x) = a@ + alxcos(xxw) + bl¥sin(x*w) +
a2%cos (2%x*w) + b2xsin(2%x*w)
Coefficients (with 95% confidence bounds):
ad = 9.0621 (0.06011, 0.06409)
al = 0.4206 (0.4197, 0.4215)
bl = -0.1035 (-0.1091, -0.0978)
a2 = 9.009297 (0.007849, 0.01075)
b2 = 6.462e-05 (-0.000836, 0.0009653)
W = 9.9854 (0.981, 0.9897)
ST BT HTHTHTHALPHA=P I / B%%%6%%6% 6B %%k
f =
General model Fourier2:
f(x) = a@ + alxcos(xxw) + bl¥sin(x*w) +
a2%cos (2%x*w) + b2xsin(2%x*w)
Coefficients (with 95% confidence bounds):
ad = 0.04348 (0.04348, 0.04348)
al = -6.22e-17 (-1.372e-16, 1.27%e-17)
bl = 7.044e-18 (-2.752e-16, 2.893e-16)
a2 = 2.118e-17 (-4.368e-17, 8.603e-17)
b2 = -1.93%e-18 (-2.13%e-16, 2.101le-16)
W = 1 (-0.4818, 2.482)
g = \|
Yoy
Wt
ETSEIB

Inertial
90 Stabilization System C. Parameters from Fourier series

ID: 15

BT EECCHIHALPHA=P I / 1 15656666 hhhh®®s
f =

General model Fourier2:

f(x) = a@ + alxcos(xxw) + blxsin(x*w) +
a2%cos (2%x*w) + b2¥sin(2%x*w)

Coefficients (with 95% confidence bounds):

al = -3.261 (-3.275, -3.248)

al = 0.2638 (0.2144, 0.3131)

bl = 0.929 (0.9025, 0.9554)

a2 = 0.06046 (0.04182, 0.07909)
b2 = -0.04586 (-0.07474, -0.01698)
W = 1.014 (0.9995, 1.028)

BT CHHECHHALPHA=P 1 / 2 2% %566 6H Wt eh®™%
f =

General model Fourier2:

fi(x) = a@ + alxcos(xxw) + blxsin(x*w) +
a2%cos (2%x*w) + b2¥sin(2#x*w)

Coefficients (with 95% confidence bounds):

ae = -3.198 (-3.199, -3.197)

al = 0.1344 (0.1313, 0.1374)

bl = 0.4085 (0.4068, 0.4103)

a2 = 0.007474 (0.006274, 0.008674)
b2 = -0.009917 (-0.0116, -0.008232)
W = 1.002 (1, 1.004)

FEEHHHHHHHTTTTHCALPHA=P I / D666ttt Tt bbbttt
f=

General model Fourier2:

f(x) = a@ + alxcos(x*w) + blxsin(x*w) +
a2%cos (2%x*w) + b2¥sin(2%x*w)

Coefficients (with 95% confidence bounds):

ab = -3.185 (-3.185, -3.185)

al = -5.463e-14 (-4.674e-12, 4.565e-12)
bl = -6.628e-14 (-3.682e-12, 3.549e-12)
a2 = -4.736e-15 (-4.111e-13, 4.016e-13)
b2 = 2.364e-14 (-1.6e-12, 1.647e-12)
W= 0.25 (-3.95, 4.45)

|’ \

&3

¢
&
-

¢

WA
A4

< «
- '«

ET

(7]

EIB

C. Parameters from Fourier series Aitor Ramirez Gémez 91
ID: 16
KBTI TTHTHTHTHALPHA = PI/11%%%H%H e %%%
>> f = fit(sigma',S0L4(:,50), 'fourier2')
f =
General model Fourier2:
f(x) = a@ + alscos(x#*w) + blssin(x*w) +
a2xcos(2%xkw) + b2¥sin(2%x*w)
Coefficients (with 95% confidence bounds):
ad = 9.1143 (0.09448, 0.134)
al = -0.6335 (-0.6961, -0.5709)
bl = -0.7205 (-0.7795, -0.6616)
a2 = -0.02923 (-0.85756, -0.0008925)
b2 = 9.08123 (0.04993, ©.1125)
W = 9.9993 (0.9765, 1.022)
BT TTTEHTEHTEHUALPHA = PI/22%%%%%%%6 b eTs%%%%
>> f = fit(sigma',S0L4(:,50), " 'fourier2')
f =
General model Fourier2:
f(x) = a@ + alxcos(xxw) + blssin(x*w) +
a2xcos (2%x*w) + b2xsin(2%x*w)
Coefficients (with 95% confidence bounds):
ad = 9.05554 (0.05437, 0.05671)
al = -0.2847 (-0.2881, -0.2813)
bl = -0.3218 (-0.325, -0.3186)
a2 = -0.005704 (-0.007132, -0.004275)
b2 = 9.01219 (0.01043, 0.01396)
w = 9.9993 (0.9965, 1.002)
BB BTTUTTETTTTUCALPHA = D% HTeHubbehTbebHubeTHuTeeH®S
f =
General model Fourier2:
f(x) = al@ + alxcos(x*w) + bl¥sin(x*w) +
a2xcos(2%x*kw) + b2%sin(2%x*w)
Coefficients (with 95% confidence bounds):
af = 0.04348 (0.04348, 0.04348)
al = -1.078e-17 (-1.037e-15, 1.015e-15)
bl = 1.058e-16 (-3.534e-15, 3.745e-15)
a2 = 5.649e-17 (-1.188e-15, 1.301le-15)
b2 = 2.303e-18 (-1.154e-15, 1.158e-15)
W = 8.5 (-2.757, 3.757)
| N\
Yoy
Yo
ETSEIB

92

Inertial
Stabilization System

C. Parameters from Fourier series

I

&3

2
8
A

<
-

ET

ID: 17

BEEEFFFFFFFFFHHHALPHA = PI/11%HHHHHHhhhhhhhhhs

>

f

> f

= fit(sigma',SOL5(:

,50), 'fourier2')

General model Fourier2:
f(x) = a® + alxcos(x*w) + blssin(x*w) +
a2*cos(2kx*w) + b2xsin(2xxkw)

Coefficients (with

ad = -3.256
al = 0.6301
bl = -0.7235
a2 = 0.02998
b2 = 0.08096
w = 0.9993

95% confidence bounds):
(-3.276, -3.236)
(0.5831, 0.6771)
(-0.7626, -0.6843)
(0.01143, 0.04852)
(0.05584, 0.1061)

(0.9765, 1.022)

>> plot(f,sigma,SOL5(:,50))

FHEEHHTTEECHHHHHALPHA = PI/22%%%%%HHWHheeeTuhhs

>> f = fit(sigma',S0L5(:,50), " 'fourier2')

f

General model Fourier2:
f(x) = a® + alxcos(x¥w) + bliksin(x*w) +
a2*cos(2%x*w) + b2ksin(2%x*w)

Coefficients (with

ad = -3.197
al = 0.2832
bl = -0.3231
a2 = 0.005816
b2 = 0.01214
w = 0.9993

95% confidence bounds):
(-3.198, -3.196)
(0.2805, 0.2859)
(-0.3254, -0.3208)
(0.004563, 0.007069)
(9.091051, 0.01377)

(0.9965, 1.002)

FEETFFFFFFFFFFFHALPHA = DFHHHH I hhehtete®%

(7]

\

Teel

EIB

General model Fourier2:
f(x) = a® + alxcos(x*w) + blssin(x*w) +
a2#*cos(2kxxw) + b2¥sin(2%x*w)

Coefficients (with

ad = -3.185
al = -6.342e-14
bl = -7.31le-14
a2 = -3.954e-15
b2 = 2.747e-14
w = 0.25

95% confidence bounds):
(-3.185, -3.185)
(-3.863e-12, 3.736e-12)
(-2.947e-12, 2.801le-12)
(-3.882e-13, 3.803e-13)
(-1.284e-12, 1.339%e-12)

(-2.721, 3.221)

C. Parameters from Fourier series Aitor Ramirez Gémez

93

ID: 18
FHHHHTEETTFHHHHCALPHA = PI/11%%HHTTTTTBhlleteescs
>> f = fit(sigma',S0L6(:,50), " 'fourier2')
f =
General model Fourier2:

f(x) = a@ + alxcos(x*w) + blxsin(x*w) +
a2xcos(2kxxw) + b2ksin(2kxHw)

Coefficients (with

95% confidence bounds):

ad = 0.1196 (0.106, 0.1333)

al = -0.3433 (-0.3846, -0.3021)
bl = 0.9026 (0.8826, 0.9226)

a2 = -0.05162 (-0.0694, -0.03384)
b2 = -0.85562 (-0.07734, -0.03389)
w = 1.014 (0.9995, 1.028)

>> plot(f,sigma,SOL6(:,50))

FHETBBETHTCTHHEHALPHA = PI/22%%HHThTeTHh%eeTsh%%s
>> f = fit(sigma',SOL6(:,50), 'fourier2')
f =

General model Fourier2:

f(x) = a@ + alxcos(x#w) + blksin(xxw) +

a2#cos(2#x*w) + b2¥sin(2¥x#w)
Coefficients (with 95% confidence bounds):

ad = 0.05605 (0.05517, ©.05693)

al = -0.1398 (-0.1425, -0.1371)

bl = 0.4067 (0.4054, 0.408)

a2 = -0.007208 (-0.008371, -0.006046)
b2 = -0.01011 (-0.01166, -0.008559)
w = 1.002 (1, 1.004)

FHEHHBEEHTECCHHHALPHA = DBttt HehteeTehte®™c

General model Fourier2:
f(x) = a@ + alxcos(x*w) + bl*sin(x*w) +
a2%cos(2%x*w) + b2%sin(2x%x*w)

Coefficients (with

95% confidence bounds):

ab = 0.04348 (0.04348, 0.04348)

al = -2.238e-17 (-1.027e-16, 5.794e-17)
bl = 5.408e-17 (-1.715e-17, 1.253e-16)
a2 = 3.909e-17 (-6.261e-17, 1.408e-16)
b2 = 4.876e-17 (-4.268e-17, 1.402e-16)
w = 10 (9.746, 10.25)

rd

-
-

WASY

ET

R
&3)

¢
G&
H

N

el

EIB

94

Inertial
Stabilization System

C. Parameters from Fourier series

s

&3

¢
&
-

<
-

ALY

ET

(7]

\

et

e

EIB

D. Arduino Code Aitor Ramirez Gémez 95

APPENDIX D

ARDUINO CODE

' N

&3

¢
&
-

NAIY
&

-« '«

e

E

-
(/2]

EIB

Inertial
96 Stabilization System D. Arduino Code

#include <SPI.h>

f# IiCdev and MPUGBZ8 must be installed as Llibraries, or else the .cpp/.h files
f# for both classes must be in the include path of your project
#include "IZ2Cdev.h"

Siwinclude "MPUGBZB.1h" // not necessary if using MotionApps include file
#include "MPUABSE_GAxis _MotionAppsZ2@_prueba.h”

f# Arduino Wire library is required if IZ2Cdev I2CDEV_ARDUINO_WIRE implementation
f# 1s used in I2Cdev.h
#if TZCDEV_IMPLEMEWTATIOW == IZCDEV_ARDUINO_WIRE
#include "Wire.h"
wendif

MPUGESE mpu;

st e ereresbEEE s R EEEEEE SR EEEEEEEEEEEEEEEE RS EEEEEEE R EREEEEEEEREEEEEEEEEEEE
Sfwwgs Preprocessor options #esssssssssRgbgiririsisisisisisisisisigieigiigng
P T A

IRL LR EE RS PR EEEE e R R e PP PR e PR R e PR EEEE PR RS PR EE PR R R
Jlumnn MPUGBSE mamami i in it o i 0 (0 00 40 000 00 00 000 040 000 A0 A0 000 A0 A A0 00 A0 AT T T A i
SRR R R R R R RE R R BB R R RE SRR R R
#define QUTPUT_READABLE YAWPITCHROLL // waw/pitch/roll angles (in degrees)

#define INTERRUPT_FIN 2 S/ use pin 2 on Arduino Uno & most boards

JSiume MPU control/status vars #osssprpssssrsgadsssrsnnisispsrrirasarprnnisagn

bool dmpReady = false; // set true if DMP init was successful

uint8_t mpulntStatus; S/ holds actual interrupt status byte from MPU

uint&_t devStatus; Sf return status after each device operation (@ = success, !@ = error)
uintlé_t packetsize, // expected DMP packet size (default is 42 bytes)

uintlé_t fifolount; J/ count of all bytes currently in FIFO

uinté_t fifoBuffer[64]; // FIF0 storage buffer

FSruwi MPU motion wars ot i o i i i o i i i i i o e i e i

Quaternionl g; FE[we ¥, v, 2] guaternion container
VectorFloat gravity; SO, v, 2] gravity wvector

float ypr[3]; Sf [yaw, pitch, roll] container and gravity wvector
double rp[2]; Sf [roll, pitech, yaw] container and gravity wvector

double lastrp[2]={8.8}:
double yaw,pitch,roll;

bR EEE R R EEREEEEEEEE R EEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEE
Flenma Kinematic Vars and Constants 0T T 0T T T T T T T T T e
bR e R E R EEEEEEEEEE SR EE

double servo[6];

double servoInstruction[&];
double servoAux[&6];

int flag;

const double LON=8.85536;
const double LZ=8.1723;
const double RADI=8.9899;
const double L1=8.475;
const double LEG=1.68;
const double BRAC=8.3;
const double H=1.64;

const double R=8.2;

rA \

&g

¢
&
-

et

< «
- '«

&<
]

ET

(7]

EIB

D. Arduino Code Aitor Ramirez Gémez 97

b EbErE e EEEEEEEE R P EEEEEEEEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEE R

Jfunni

Dynamixel AX-12ZA 0 T T T R R

A T A 0 T T T AT T 0 T A T e i

Jfunin

Control table (AX-12A) wsrersrsrsrsnsnbnirbrbnbnbnnenengrensrsrsreny

47 EEPROM AREA == - o oo m oo s oo oo oo e oo

wdefine MX_MODEL_NUMBER_L B
wdefine MX_MODEL_NUMBER_H 1
vdefine MX_VERSION_OF _FIRMWARE z
wdefine MX_ID 3
wdefine MX_BAUD_RATE 4
wdefine MX_RETURMN_DELAY_TIME 5
#define MX_CW_ANGLE_LIMIT_L &
wdefine MX_CW_ANGLE_LIMIT_H 7
wdefine MX_CCW_ANGLE_LIMIT_L B
#define MX_CCW_ANGLE_LIMIT_H g
wdefine MX_HIGHEST_LIMIT_TEMPERATURE 11
wdefine MX_LOWEST_LIMIT_VOLTAGE 12
wdefine MX_HIGHEST_LIMIT_ VOLTAGE 132
#define MX_MAX_TORQUE_L 14
wdefine MX_MAX_TORQUE_H 15
wdefine MX_STATUS_RETURM_LEVEL 16
#define MX_ALARM_LED 17
wdefine MX_ALARM_SHUTDOWN 18
SF RAM AREA = - m o oo o o
#define MX_TORQUE_EMAELE 24
wdefine MX_LED 25
wdefine MX_D_GAIN 26
wdefine MX_I_GAIN 27
#define MX_P_GAIN 28
wdefine MX_GOAL_POSITION_L p1:]
wdefine MX_GOAL_POSITION_H 31
#define MX_MOVING_SPEED_L 12
wdefine MX_MOVING_SPEED_H 13
wdefine MX_TORQUE_LIMIT L 34
wdefine MX_TORQUE_LIMIT_H i35
#define MX_PRESENT_POSITION_L 15
wdefine MX_PRESENT_POSITION_H 37
wdefine MX_PRESENT_SPEED_L I8
#define MX_PRESENT_SPEED_H 29
wdefine MX_PRESENT_LOAD_L 48
wdefine MX_PRESENT_LOAD_H 41
wdefine MX_PRESENT_VOLTAGE 42
wdefine MX_PRESENT_TEMPERATURE 43
wdefine MX_REGISTERED 44
wdefine MX_MOVING 46
#define MX_LOCK 47
wdefine MX_PUNCH_L 48
wdefine MX_PUNCH_H 49
ff#ﬁ#ﬁ Instruction Set J AT T AT T T T AT AT T R T AT R AT R R R AT R AT R AT AT AT R
ndefine MX_PING 1
ndefine MX_READ_DATA i
ndefine MX_WRITE_DATA 3
#define MX_REG_WRITE 4
ndefine MX_ACTION 5
wdefine MX_RESET &
rdefine MX_SYNC_WRITE 131
S luaan Others FRppkpEREREEERRRRRRERFEFEERERRRRREEEREEERERREREEEE R REERE
rdefine BROADCAST_ID 254

' N

Se
)

=
1)

- «
-« '«

JAS
e

ET

(72]

EIB

Inertial
98 Stabilization System D. Arduino Code

b EbEE e e EEEEEEEE SR EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEE R
Jregar Arduino S E I R R
R

fiwegr Dynamixel bus communication modes by driver 74F244 seoswssssssssses

#define TX_MODE 1
#define RX_MODE 2
#define HIGH_IMPEDANCE_MODE 3

Jiumag Fin assignments L F e e e b e

const byte R¥X_PIN_EMABLE = 7;
const byte T¥_PIN_EMABLE = 4;

#define LED 13

rEate e eresbEEEEEEEEEE R R EEEEEEEEEEEEEEEEEEEEEEEEE R EREEEEEEEREEEEEEEEEEEE R
Jiumee 65 Robot #edsssspssisfsfppspsrifsprppnisiprrpnisisnnirsrprRRRsaEEE
P A

Sfwwpr Data arrays #assssERsERsRRERERERERERERERERERERERERERERERERRERERERER

byte InstructionPacket[24]; // Array containing the Instruction Packet frame
byte StatusPacket[Z4]; // Array containing the Status Packet frame
J/int SetPoints[7]; /f Bet points of a sample

Srewiae Variables atioatms i i i s i g i i i e

unsigned int lengthTable;

byte state = 8;
unsigned Long timeCounterMicros,;
unsigned long timeCount;

#define STATUS_PACKET_TIMEOUT 1a ff Time out to receive the Status Packet (in
milliseconds)

R AR AT 0 A0 T 0 A0 A AT 0 A A0 T AT e
Sliewme Control driver FTAFZdd ammamir it o i i o i i o i i i e i e i e e i i
ppL e PR PP PR PR EE PR PR PP PR PP PR PR PR PP PR PR R EEEEE R R PR R PR PR

vold communication_mode{unsigned char comm_mode)({

switch (comm_mode){

case 1: ff case transmission mode
digitalWrite(RX_PIN_ENABLE, HIGH};
digitalWrite(TX_PIN_ENABLE, LOW};
break;

case 2: S/ case reception mode
digitalWrite(TX_PIN_ENABLE, HIGH};
digitalWrite(RX_PIN_ENABLE, LOW};
break;

case 3: /7 case high impedance mode
digitalWrite{RX_PIN_ENABLE, HIGH};
digitalWrite(TX_PIN_ENABLE, HIGH};
break;

rA \

&3

¢
&
-

et

< «
- '«

NASY
e

ET

(7]

EIB

D. Arduino Code Aitor Ramirez Gémez 99

A i
Jrfewer Servomotor Dynamixel AX-1ZA functions #WFErsrsersrrberssrsrgrsriisrieny
AT A T T A A T T A T T T i

byte mxPing(byte id}{
return instructionStatus{id, 2, MX_PING);

byte instructionStatus{byte id, byte length, byte instruction){
J*¥ Transmit a Instruction Packet frame and receive the corresponding Status Packet frame from
the servo.

Return : 8 > The transmission-reception was ok.
1 > Communication error between Arduino-Servo.
*f
byte answer = 128; S/ Initialized as 128 because it's not a possible answer of the

statusPacket function
byte counter = @;

dao{
instructionPacket({id, length, instruction}; f/ Transmit the Instruction Packet frame
answer = statusPacket(); f/ Receiwve the Status Packet frame
COUNTEer++,

Jwhile (answer |= 8 && counter <= 2}; f# Makes three attempts before considering a

communication error
if (counter == 3){ return 1, } //Third attempt: COMMUWICATION ERROR

return 8;

' N

r
)

[
1)

- «
-« '«

NAIY
e

ET

(72]

EIB

100

Stabilization System

Inertial
D. Arduino Code

void instructionPacket{byte id, byte length, byte instruction){
Transmit a Instruction Packet frame from the InstructionPacket array to the specified

i*
SEIVO.

The structure of the InstructionPacket array is:

InstructionPacket[] = {8BxFF, 8xFF,
checksum}
BxFF, 8xFF : Header (defined in the setup function}.

parameters

id :
length
instruction : 1
2
3
4
5
6
131

(http://support.robotis. comfen/product /dynamixel fcommunication/dxl_packet.htm)
. parameters needed for each instruction.

PING
READ_DATA

: WRITE_DATA

REG WRITE

: ACTION

RESET
SYNC WRITE

id, length, instruction, parameter 1, ..., parameter N,

Identification number of the servo. [8..253]. Broadcasting ID: 254.
Humber of parameters + 2.

checkium : byte to check the consistency of the sent data.

NOTE: The parameters must be written in the InstructionPacket array before calling this
function.
InstructionPacket[53] must hold the first parameter.

*f

byte numParameters =

length - 2;
byte LlengthPacket = length + 4;

// Length = number of parameters(bytes) + 2
// Bytes of the Instruction Packet

unsigned int sumParameters = @, // Sum of the parameters, needed to compute the checkSum
byte

communication_mode{T¥_MODE);

for(byte i=8;

3

i<numParameters; i++3}{

S/ Sum of parameters to compute the checksum byte.

sumParameters += InstructionPacket[5+1i]; // InstructionPacket[5] contains the first
parameter.

InstructionPacket[2]
InstructionPacket[3]
InstructionPacket[4]
InstructionPacket[lengthPacket-1] = (~{id + length + instruction + sumParameters) & B@xFF);
CheckSum

id;
length;
instruction;

while (Serial.available() > 8)}{
Serial.read();

3

nolnterrupts();
Serial.write{InstructionPacket, lengthPacket); f/ Transmit the Instruction Packet
Serial.flush(};
interrupts();

f# Empty the reception register

ff Wait for the transmission finish

communication_mode{HIGH_IMPEDANCE_MODEY;

’

Ep

¢
&
-

-«
P

&<

ET

(7]

\

et

EIB

e

i

D. Arduino Code Aitor Ramirez Gémez 101

byte statusPacket{wvoid){
/* Receive the 5tatus Packet frame from the servo, and save it in the StatusPacket array with
the structure:
StatusPacket[] = {headl, head?, id, length, error, parameter 1, ..., parameter N,

checkiumReceived}

id : Identification number of the servo which transfers the status packet.

Length : Number of parameters + 2.

error : error status occurred during the servo operation.

B : No error.

bit @ = 1 Input wvoltage out of range.

bit 1 = 1 Goal position out of range.

bit 2 = 1 Internal temperature out of range.

bit 3 = 1 Command out of the range.

bit 4 = 1 Incorrect Checksum in the transmitted Instruction Packet frame.
bit 5 1 Current Load carmmot be controlled by the set Torque.

bit &6 = 1 Undefined instruction or action command without reg_write command.

{http: ffsuppnrt robotis.com/en/product/dynamixel/communication/dxl_packet.htm)
parameters : Returned parameters. First parameter at StatusPacket[5].
checkSum : Byte to check the consistency of the received data.

The function return:

Correct reception of the Status Packet

Error byte activated

Time out when waiting for the first five bytes of the Status Packet

Time out when waiting for the parameters or checkium of the S5tatus Packet
CheckSum error in 5tatus Packet received

Header mot found in Status Packet received

[R S]

®/

byte headl, headZ, id, length, error, checkSumReceived;
byte checksum, numParameters;

unsigned int sumParameters = @;

unsigned long timeCounter;

communication_mode(RX_MODE};

for{byte i=8; 1 < sizeof(StatusPacket); i++){ f/ Erase the StatusPacket array
StatusPacket[i]
}
[\
STy
iﬁi }gb
>

ET

(72]

EIB

Inertial

102 Stabilization System D. Arduino Code
for{byte i=8; i < sizeof(StatusPacket); i++){ f# Erase the StatusPacket array
GtatusPacket[i] = @;
}
timeCounter = millis()} + STATUS_PACKET_TIMEOUT; Simillis(} - time since the program
started

f#{Give to the counter 18ms max for the
communication

// Wait for the first 5 bytes of the 5tatus Packet {headl, headZ, id, length, error}
while{Serial.available(} < 53){
1f {millis(} »>= timeCounter){ f#1Ef the time exceeds the 1Bms given to
read the 5 firsts bytes
communication_mode{HIGH_IMPEDANCE_MODEY;
for{byte i=0; i<Serial.availablefy; i++3{
StatusPacket[i] = Serial.read();

}
return 2;
}

}
headl = Serial.read(}; J/ Head 1
head? = Serial.read(}; // Head 2
id = Serial.read(); ff Id
length = Serial.read(); // Length
error = Serial.read(}; ff Error
GtatusPacket[@] = headl;
StatusPacket[1] = headZ;
StatusPacket[2] = id:
StatusPacket[3] = length;
StatusPacket[4] = error;

if(¢headl != 8xFF) || (head? = 8xFF)){
communication_mode{HIGH_IMPEDANCE_MODEY;

return 5;

}

r \

&g

¢
&
-

et

< «
- '«

&<
]

(7]

ETSEIB

D. Arduino Code Aitor Ramirez Gémez 103

numParameters = length - 2;

f/ Wait for the reception of the S5tatus Packet parameters and checkSum
while({Serial.available() < (numParameters+133{
if (millis({)} >= timeCounter}{ f/1f the time exceeds the 18ms given
to complete the communication
communication_mode{HIGH_IMPEDANCE_MODE}Y;
for{byte i=5; i<({5+Serial.available(}y; i++3{
StatusPacketr[i] = Serial.read();
3

return 3;

K
K

f/ Read parameters and sum it to compute the checkium byte
for(byte i=5; i<{numParameters+53}; i++)}{

StatusPacket[i] = Serial.read(}:

sumParameters += StatusPacket[i];

}

checkiumReceived = Serial.read(}.; S/ CheckSum received
checkium = (~({id + Length + error + sumParameters) & B@xFF); // Check3um computed

StatusPacket[5+numParameters] = checkSumReceived;

if (checkium != check3umReceived}{
communication_mode{HIGH_IMPEDANCE_MODEY;

return #4;

}
communication_mode{HIGH_IMPEDANCE_MODE};

if (error != 8) { return 1; }

return 4;

L rtEEEEsEEEEE s EE e e E PR e PR R EEEEEEEEEEEEEEEEEEEEEEE P e R
Jiemer 65 Robot functions #eernrprprrrrerrrererernErsrrrErErriRrErREREERRERE
IRl e R EEEE PR EEEEEEE PR e E PP R R PR R e PR EEEE PR EEEE R EE PR e R
byte initialize&S({void){

int led_counter = 8;

for(byte i=13; i<=18; i++3{
if (mxPing{i)} == @3}{
J/INITIALIZE CONTROL TABLE? EEE TR
led_counter=led_counter+1;

3

}
if (led_counter > 6){ digitalwWrite{LED, HIGH)}: 3}
return 1;

byte stabilize({void){

InstructionPacket[5] = @xlE;
InstructionPacket[6] = 8x88;
InstructionPacket[7] = 8w82Z;

for (byte id=13;id<19;id++){
instructionStatus({id, 5, MX_WRITE_DATAY,
}

return 8;

'l N

Sx
)

=
1)

- «
-« '«

JAS
e

ET

(72]

EIB

Inertial
104 Stabilization System D. Arduino Code

vold try_movement{double anglel, double angleZ, double angleZ, double angle4, double angles,
double angle&){

int a,b,c,d,e,f;

a=int{anglel};

b=int{angle};

c=int{angle3};

d=int{angled};

e=int{anglel};

f=int{angle&};

InstructionPacket[53] = 8x1E;
InstructionPacket[6] = a%256h;
InstructionPacket[7] = a/256;

instructionStatus{13, 5, MX_WRITE_DATA);

InstructionPacket[5] = 8x1E;
InstructionPacket[6] = b%256;
InstructionPacket[7] = b/256;

instructionstatus{1l4, 5, MX_WRITE_DATA);

InstructionPacket[5] = 8x1E;
InstructionPacket[6] = c%256;
InstructionPacket[7] = c/256;
instructionStatus{1ls, 5, MX_WRITE_DATA},;
InstructionPacket[5] = 8x1E;
InstructionPacket[6] = d%Z256;
InstructionPacket[7] = d/256;

instructionStatus{16, 5, MX_WRITE_DATAY;

InstructionPacket[5] = @x1E;
InstructionPacket[6] = e%256;
InstructionPacket[7] = e/256h;

instructionStatus{17?, 5, MX_WRITE_DATA};

InstructionPacket[5] = 8x1lE;
InstructionPacket[6] = £%2564;
InstructionPacket[7] = £/256;

instructionStatus{18, 5, MX_WRITE_DATA};

vold stopServo{double *servo,double *servolAux){

servo[@] = servoAux[@];
servo[l] = servoAux[1];
servo[2] = servoAux[2];
servo[3] = servoAux[3];
servo[4] = servoAux[4];
servo[5] = servoAux[5];
}
S

int mapping{double ¥servoInstruction,double *serwo}{
servoInstruction[@]=servo[B]+M_PI;
servoInstruction[2]=servo[2]+M_PI;
servolnstruction[4]=servo[4]+M_PI;

servoInstruction[@]
servoInstruction[1]
servoInstruction[2]
servolnstruction[3]
servolnstruction[4]
servoInstruction[3]

(1824*(servolnstruction[@]+M_PI}}/(2*M_PI};
(1824%(serva[1]+M_PI}}/(2*H_PI};
(1824*({servoInstruction[2]+M_PI})}/(2*M_PI);
(1B24*(serva[3]+M_PL}}/(2*M_PI};
{(1824*(servolnstruction[4]+M_PI}}/(2*M_PIL};
(1824*(serva[5]+M_PL}}/(2*¥M_PI};

’ \

&g

¢
&
-

et

< «
- '«

&<
]

ETSEIB

(7]

D. Arduino Code

Aitor Ramirez Gémez

105

int domainServo(double *servoInstruction,double *servo,double *servohux){

for (int i=8; i<6; i4+3{

if (servoInstruction[i]>788 or servoInstruction[i]<l@8){

return 1;
}

1
servoAux[@] = servo[8];
servoAux[1] = servo[1];
servoAux[2] = servo[2]:
servoAux[3] = servo[3]:
servoAux[4] = servo[4];
servoAux[3] = servo[35];
return @;

}

I

vold kinematic{double *rp,double ¥lastrp,double *servo){
//Jacobian matrix close to the (@,8,8) position

double 28[6][2]={{-2.88187,-8.580807},{2.88187,-8.580815},{8.93771,2.78395},{-1.94247,-2

{1.94247 -2, 28555} ,{-8.93771,2.78578}};

double J1[6][2]={{-4.3843,-8.8652},{4.

£1.9582,-2.2126},{-8.8435,2.5851}};

double J2[6][2]={{-2.8998,-8.5839},{2.

{2.2888,-2.5896},{-1.8397,3.8898});

double J3[6][2]={{-2.9963,-8.5555},{2.

{2.3795,-2.8753},{-1.5652,3.9856}};

double J4[6][2]={{-2.8884,-8.5877},{2.

{2.8156,-2.0622},{-0.8173,2.8635}};

double J53[&6][Z2]={{-5.3259,-1.8838},{3.

{2.8159,-2.3275},{-1.3220,2.8881});

double J&[6][2]={{-2.8118,-8.51763},{3.

{5.8896,-6.50833},{-2.1452,6.21808})};

double 27[6][2]={{-3.8678,-8.6458},{2.

{1.9871,-1.9368},{-8.90846,2.8165})};

double J8[6][2]={{-3.74063,-8.7742},{5.

{2.5192,-2.7845},{-0.7320,2.94783}};
double incservo[6]={8},

double P = @.88 SF gemmen

double D = @.888801;
double sumaux;

if (rp[@]<=0.15% and rp[@]>»=-8.15 and rp[l]<=0.

for (inmt i=8;i<6;i++){
sumaux=9;
for (int j=8;j<2;j++){

Ig43, -8

8998, -a.

8884, -8

9963, -8

F463,-Q.
A67TE, -@.

8118 ,-9.

3259,-1

L8047}, {8

38433, {1

5BTTYL 0.

.3557%,{1.

LB821%,{1.

77383},{8.
64533, {8.

5179},{2.

L8435, 2.5858%,{-1.

L8397 3.
8173, 2.
5652,3.
73282,
9846, 2.
1452, 6.

3228,2.

a839}),{-2Z.
8666}, {-2.
8921%,{-Z.
9539}, {-2.
8174% ., {-1.
1555} ,{-5.

BB37).{-2.

9582,-2.2138%,
2@88,-2.5847%,
A156,-2.8625%,
3795,-2.8692},
5192,-2.7189},
FETL,-1.9344%,
A896,-56.4822%,

a159,-2.3268%,

a 8.85% (rno hay tanta oscilacion}

15 and rp[l]==-8.15){

sumaux = sumaux + P*I@[10[J]1*¥rp[]] + D*(JQ[1i7[j]1*(rp[J]-lastrp[i]))/0.81;

incservo[i] = sumaux;

J/1if close to rp = [8,8]
f/fuses this Jacobian

1
if (rp[@]>8.15 and rp[l1]<=0.15 and rp[l]>=-8.15){

for (int i=9;i<6;i++){
sumaux==9;
for (int j=@;j<2;j++3){

sumaux = sumaux + P*¥IL[i7[J]1*¥rp[]] + D*(I1[1i7[j]1*(rp[J]-lastrp[]i]))/0.081;

incservo[i] = sumaux;

f/if close to rp = [B.2,8]
ffuses this Jacobian

rd

-
-

JAS

ET

Se
)

¢
cn}$F£€}

N

et

e

EIB

.283867,

Inertial
106 Stabilization System D. Arduino Code

if (rp[@]<-8.15 and rp[1]<=8.13 and rp[l]>=-8.15}{
for (int i=8;i<6;i++){
sumaux==4;
for (int j=8;J<2;j++){
sumaux = sumaux + P*IZ[17[3]*rp[d] + D*(J2[11[J]1*(rp[i]-lastrp[i])l/0.81;

incservo[i] = sumaux;

Jf1f close to rp = [-8.2,8]
ffuses this Jacobian

b
if (rp[1]>8.15 and rp[@]<=8.13 and rp[@]>=-8.15){
for (int i=8;1i<6;i++){
sumaux=8;
for (int J=@;j<Z;j++){
sumaux = sumaux + P*IZ[1][J]*rp[]] + D*(I3[1i][J]*(rp[j]-Llastrp[j]))/a.81;

incservo[i] = sumaux;

J/fif close to rp = [8,8.2]
ffuses this Jacobian

b
if (rp[1]<-8.15 and rp[@8]<=8.153 and rp[@]>=-8.15)}{
for (int i=@;1i<6;i++){
sumaux==9;
for {int j=@;j<2;j++3{
sumaux = sumaux + P*¥J4[1][I]1*rp[i] + D*(J4[1i][j]*(rp[J]-lastrp[j]l)}/@.81;

incservo[i] = sumaux:

f/1if close to rp = [B,-8.2]
ffuses this Jacobian

b
if (rp[@]=8.15 and rp[1]>8.15){
for (int i=98;1i<6;i++){
sumaux==9;
for (int j=8;j<2;j++){
sumaux = sumaux + P*¥IZ[17[I7*rp[i] + D*(IE[1i][j]*(rp[Jj]-lastrp[j]l))/@.81;

incservo[i] = sumaux;

J/F1if close to rp = [8.2,8.2]
ffuses this Jacobian

r \

&g

¢
&
-

et

< «
- '«

&<
]

ET

(7]

EIB

D. Arduino Code Aitor Ramirez Gémez

107

if (rp[@]<-8.15 and rp[1]>8.15){
for (int i=8;i<6;i++){
sumaux=a;
for (int J=8;7<Z;j++){
sumaux = sumaux + P*I&[17[3]*rp[d] + D*(J6[i][i]*(rp[i]-lastrp[i])2/0.81;

incservo[i] = sumaux;

f/Lif close to rp = [-8.2,8.2]
f/uses this Jacobian

b
if (rp[@]<-8.15 and rp[1]<-8.15)}{
for (int i=8;i<6;i++){
sumaux=a;
for (int J=8;7<Z;j++){
sumaux = sumaux + P*IT[i[3]*rp[d] + D*CIF[L][30*(rp[i]-lastrp[i])2/0.81;

incservo[i] = sumaux;

f/LiL close to rp = [-8.2,-8.2]
f/uses this Jacobian

b
if (rp[@]>8.15 and rp[1]<-8.15){
for (int i=8;i<6;i++){
sumaux=a;
for (int J=8;7<Z;j++){
sumaux = sumaux + P*IE[i][J]*rp[i] + D*(IB[Li][i]*(rp[i]-lastrp[i])3/0.81;

incservo[i] = sumaux;

f/Lif close to rp = [8.2,-8.2]
f/uses this Jacobian

f/ADD THE IMCREMENT TO THE SERVOS ANGLES
for (int le=8;k<;lot+) {
servo[k] = servo[k] - incservol[k]:

e£§

ET

S

rd

-
-

)

w)\;‘q:%

N

et

e

EIB

Inertial

108 Stabilization System D. Arduino Code

/[s=ss

’ INTERRUPT DETECTION ROUTINE

Jf/ mmmsssssssssssssssssssssssssssssssssEsEssEEEsEEEsEEEEEEEEESESESES

volatile bool mpulnterrupt = false; S/ indicates whether MPU interrupt pin has gone high

vold dmpDataReady() {
mpulnterrupt = true;
L

Jinnnganngg SETUP gREpRERERERERRERERRpRpRERERERRERER R RS RS R

vold setup() {

WL EEEE PR R EEEE SRR EEEEEE E PR PR e P EEEEEEEE RS PR EEE R R R e R e
Srwwwr Arduino Setup FUmcTLor o i i i i i i i i i g e s
L EEEErEEEEE PR EEE e E R R P E et R R EEEE R PEEEEEEEEEEEEEEEEEEEEE R R PR R e

pinMode(RX_PIN_EMAELE, OUTPUT};
pinMode(TX_PIM_EMAELE, OUTPUT};

pinMode(LED, OUTPUTY;
digitalWrite(LED,LOW);

communication_mode{HIGH_IMPEDANCE_MQODEY;

ff Serial pins 1({Tx), 8(Rx) to communicate with the servos
Serial.begin(10208887%;

Jf Initialize the SPI bus

SPI.setClockDivider(SPI_CLOCK_DIVZ}; S/ Set up the 5PI speed

SPI.setBit0Order(MSBFIRST); S/ Bets the order of the bits into the SPI bus, most-
significant bit first

SPI.setDataMode(l]}; S/ Set up the data mode. CPOL = @&, CPHA = 8 => SPI
mode 1

SPI.beging); S/4 Inmnitialize the SPI bus.

InstructionPacket[8] = 8xFF; // Header 1

InstructionPacket[1] = @xFF; // Header 2

servo[8] = -M_PI;

servo[l] = 8;

servo[2] = -M_PI;

servo[3] = 8;

servo[4] = -M_PI;

servo[3] = 8;

r \

&g

¢
&
-

et

< «
- '«

&<
]

ET

(7]

EIB

D. Arduino Code Aitor Ramirez Gémez 109

J) === I2C MPUGBSA SETUP

44 join I2C bus (I2Cdev Llibrary doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == IZCDEV_ARDUINO_WIRE
Wire.begin(};
Wire.setClock{4@@808Y); // 488kHz IZC clock. Comment this line if having compilation
difficulties
#elif IZCDEV_IMPLEMEWTATION == IZCDEV_BUILTIN_FASTWIRE
Fastwire: :setup(488, true);
#wendif

J/ initialize dewvice
mpu.initialize();
pinMode(INTERRUPT _PIN, INPUT};

/4 Lload and configure the DMP
devitatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity
mpu.setXGyrolffsec{18);

mpu.setYGyroQffset(7);

mpu.setZGyrolffset{39);

mpu.setZhccel0ffset(2529); // 1688 factory default for my test chip

S/ make sure it worked (returns 8 if so)
if {devStatus == 8) {
f/ turn on the DMP, now that it's ready
mpu.setDMPEnabled{true’;

S/ enable Arduino interrupt detection
attachInterrupt{digitalPinToInterrupt{INTERRUPT_PIN)}, dmpDataReady, RISING);
mpulIntStatus = mpu.getIntStatus();

/7 set our DMP Ready flag so the main loop{) function knows it's okay to use it
dmpReady = true;

/7 get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIF0PacketSize();

pEtir e EEEE R EEREEEEEEEEE
Srewew Arduino Loop Function #esbssssgspsbsrssgpspsbigrisprpsigrsiseggsgysmsey
S A A

void Loop() {
if (state == 8){
Fiinitializeds();
stabilize();
delay({Zaaal,;
state = 18;

}

if (state == 18){
if {!dwmpReady) return;

' N

Se
)

[
1)

- «
-« '«

JAS
e

ET

(72]

EIB

Inertial
110 Stabilization System D. Arduino Code

Lt e e b b E b e b e R EEEEEE e R e EEEE R EEEEEE R EEREEEEEEEREEEEEEEEEEEEEEEEEEEEEE R

S/ wait for MPU interrupt or extra packet(s) available
while (!mpulnterrupt && fifoCount < packetSize) {

kinematic{rp,lastrp,servo);
//SAVE THE ACTUAL ERROR FOR THE DERIVATIVE CONWTROL
lastrp[8] = rp[@];
lastrp[1l] = rpl[l]:
mapping{servoInstruction,servo);
flag = domainServo(servoInstruction,servo,servolux);
if (flag==1){
stopServofservo, servolux);
mapping{servoInstruction,servo);

try_movement(servoInstruction[@],servoInstruction[1],servolnstruction[2],servoInstruction[3],ser
voInstruction[4],servoInstruction[5]);

}

R T A T A T A0 T A A A A

S/ reset interrupt flag and get INT_STATUS byte
mpulnterrupt = false;
mpulntStatus = mpu.getIntdtatus();

/¢ get current FIFO count
fifoCount = mpu.getFIF0Count();

f/ check for overflow (this should never happen unless our code is too inefficient)
if {(mpulntStatus & 8x18) || fifolount == 182473 {

S/ reset so we can continue cleanly

mpu.resetFIFOC),

Si/Serial.println{F{"FIF0 overflow!"}};

f/ otherwise, check for DMP data ready interrupt ({(this should happen frequently)
} else if (mpulntitatus & @x82) {

/¢ wait for correct available data length, should be a VERY short wait

while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(};

J/ read a packet from FIFOD
mpu.getFIFOBytes{fifoBuffer, packetsize};

f# track FIFO count here in case there is » 1 packet available
S/ (this Lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;

#ifdef OUTPUT_READABLE_YAWPITCHROLL
ff display Euler angles in degrees
mpu.dmpGetQuaternion{&q, fifoBuffer);
mpu.dmpGecGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll{ypr, &q, &gravity);

rp[@]=ypr[2];
rp[1]=ypr[1];
ffrpy[2]=-ypr[@];

#endif
}

r \

&g

¢
&
-

et

< «
- '«

&<
]

ET

(7]

EIB

E. Computing files Aitor Ramirez Gémez 111

APPENDIX E

COMPUTING FILES

' N

&3

¢
&
-

NAIY
et

-« '«

e

E

-
(/2]

EIB

112

Inertial
Stabilization System

E. Computing files

E.1 Main execution file

%function Stabilize(rpy)
clear all;
close all;

rpy=[-8.2, 8.2, 8.2];
proportional = 1.2;

1 = JEBola([@ @ 8]);
IKEBola(rpy, 1, -1);

11 =pinv(JEBola(rpy));
angmotor = IKEBola(rpy, -1,

x(1)=rpy(1);
y(1)=rpy(2);
z(1)=rpy(3);

samples = 38;
for i=l:samples

-1)

incmotor = proportional*]*rpy”;

angmotor = angmotor - incmotor’;

incrpy = I1*incmotor;
rpy = rpy - incrpy’;

x(1+1)=rpy(1);
y(i+1)=rpy(2);
z(i+1)=rpy(3);

I1 =pinv(JEBola(rpy));

IKEBola(rpy, 1, -1);
end

plot(x,'r")
hold on
plot(y,'b")
plot(z,'g")
hold off

’ \

&3

¢
&
-

et

< «
< '«

WASY
e

ET

(7]

EIB

E. Computing files Aitor Ramirez Gémez

113

E.2 Jacobian file

function 1 = JEBola(rpy)

epsilon = @.281;

MotAng = IKEBola(rpy, -1, -1);

#%% derivadas respecto a roll

MotAngroll = IKEBola(rpy + [epsilon 8 @], -1, -1);
Drpyl = (MotAngroll-MotAng)/epsilon;

¥%% derivadas respecto a pitch

MotAngpitch = IKEBola(rpy + [® epsilon 6], -1, -1);
Drpy2 = (MotAngpitch-MotAng)/epsilon;

%%% derivadas respecto a yaw

MotAngyaw = IKEBola(rpy + [@ @ epsilon], -1, -1);
Drpy3 = (MotAngyaw-MotAng)/epsilon;

1 = [Drpyl; Drpy2; Drpy3]";

end

rd

-
-

k§<€
1&3

ET

r
)
et

(72]

N

e

EIB

114

Inertial
Stabilization System

E. Computing files

E.3 Inverse kinematics file

function Sol = IKEbola(rpy, flagl, flag2)

% DEFINICION DE CONSTANTES

LONG = @.8556;

L2 = 8.1723;

RADI = ©.9899,

L1 = 8.4758;

LEG = 1.68;

BRAC = ©.30;

H =1.6; % Radio de la pelota
R =08.2;

% CALCULO DE LA POSE DE LA PLATAFORMA
TR = transl(8,0,H)*trotx(rpy(1))*troty(rpy(2))*trotz(rpy(3));

% SISTEMAS DE REFRENMCIA ASOCIADOS A LOS EXTREMOS DE LAS PATAS EN

% LA PLATAFORMA MOVIL

TP(:,:,1)
TP(:,:,2)
TP(:,
TP(:,:,4)
TP(:,

TP(:,:,6)

% SISTEMAS DE REFRENCIA ASOCIADOS A LOS EXTREMOS DE LAS PATAS EN

% LA BASE

TB(:,:,1)
TB(:,:,2)
TB(:,:,3)
TB(:,:,4)
TB(:,:,5)
TB(:,:,6)

TR*trans1(L2, -LONG, 8);

= TR*transl(-L2, -LONG, @);
= TR*trotz(-2#*pi/3)*transl(L2, -LONG, @8);

= TR*trotz(-2%pi/3)*transl(-L2, -LONG, @);
= TR*trotz(-4*pi/3)*transl(L2, -LONG, 8);
= TR*trotz(-4*pi/3)*transl(-L2, -LONG, 8);

FI1A

= transl{L1, -RADI, @)*trotz(-2%pi/3);

= transl{-L1, -RADI, B8)*trotz(2%pi/3);

= trotz(-2*pi/3)*transl(L1l, -RADI, B)*trotz(-2*pi/3);
= trotz(-2*pi/3)*transl(-L1, -RADI, @)*trotz(2*pi/3);
= trotz(-4*pi/3)*transl(L1l, -RADI, @)*trotz(-2%pi/3);
= trotz(-4*pi/3)*transl(-L1, -RADI, @)*trotz(2*pi/3);

% Coordenades del centro de las articulaciones en la plataforma movil en el
% sistema de referencia de la articulacion de la base.

for i=1:6

Centers(:,i) = inv{TB(:,:,i))*TP(:,:,i)*[8; B; 8; 1];

end

% Calculo de las soluciones de la cinemdtica inversa

for i=1:6

[phil, phi2] = Solvefngles(Centers({l,i), Centers(3,i),...
BRAC, sgrt(LEG*2 - Centers(2,i)"2));

if mod(i,2)
Sol(i) = -phil;

else

Sol(i) = -phi2;

end
end

B

’ N\

&

(%
i

< '«

WASY
e

ET

(7]

EIB

E. Computing files Aitor Ramirez Gémez 115

% DIBUJO DE LA PLATAFORMA

if flagl==1
figure(l);
trplot(eye(3), 'arrow’, 'length’, 8.5, ‘color’, 'k');
hold on;
axis([-1.5 1.5 -1.5 1.5 -8.5 2.5]);

for i=1:6
if flag2==1
trplot(TP(:,:,i), 'arrow’, 'length’,

8.5, 'color’, 'r', ‘frame', numZstr(i));
trplot(TB(:,:,i), 'arrow’, 'length", 8.5, 'color', 'b', 'frame', numZstr(i));
end
CentersP(:,i) = TP(:,:,1)*[@; 8; @; 1];

CentersB(:,i) = TB(:,:,1)*[@; @; @; 1];

end

fill3(CentersP(1,:),CentersP(2,:),CentersP(3,:), 'g’, "facealpha',.5);
fill3(CentersB(1,:),CentersB(2,:),CentersB(3,:), 'r’, "facealpha',.5);

if flag2==1
samples=38;
for j=1:6
for i = @:1:samples;
MAT(i+1,:) = TB(:,:,j)*troty(2*pi*i/samples)*transl1(BRAC,8,8)*[0; ©8; 6; 1];
end
plot3(MAT(:,1),MAT(:,2),MAT(:,3), k", "Linelidth’,1);
end
end

for i=1:6
PointArm(:,1i) = TB(:,:,i)*troty(Sol(i))*transl(BRAC,0,8)*[8; 8; @; 1];
plot3([CentersB(1,i), PointArm(1,i)],
[CentersB(2,i), PointArm(2,i)],
[CentersB(3,1), PointArm(3,1)], 'color' , 'k", "LineWidth", 2);
plot3({[CentersP(1,1), PointArm{1,i)],
[CentersP(2,1), PointArm(2,1)],
[CentersP(3,1), PointArm(3,1)], 'color' , 'k, "LineWidth®, 2);
end

trplot(TR);
hold off;
end
end

g = \|
Yoy
YA

ET

(72]

EIB

Inertial
116 Stabilization System

E. Computing files

E.4 Solve angles file

function [phil, phi2] = Solvelngles{cx,cy,rl,r2)
ZUNTITLED® Summary of this function goes here
% Detailed explanation goes here

alpha = atan2(cy, cx);

gamma = acos((rl"2 + cx™2 + cy™2 - r2°2)/(2*r1*sgrt(cx"2+cy*2)));
phil = alpha + gamma;

phi2 = alpha - gamma;

end

B

r \

<

[
1)

WASY

< «
- '«

e

ET

(7]

EIB

	Introduction
	Motivation
	Goal
	Scope and Assumptions
	The Gough-Stewart parallel robot
	The singularities
	The Dynamixel™ rotary actuators
	The MPU-6050™ drift

	State-of-the-art
	Thesis structure

	Tools
	Block diagram
	The hardware
	The IMU sensor: MPU-6050™
	The computer board: Arduino® UNO
	The rotary actuators: Dynamixel™ AX-12+/AX-12A

	The software
	Arduino® IDE
	Matlab® and Robotics Toolbox
	Dev-C++ IDE

	The wiring of the elements

	Communication protocols
	Communication IMU - Electronic board
	Inter-Integrated Circuit (I2C)
	Matlab® simulation

	Communication Electronic board - Rotary actuators
	Instruction Packets
	Status Packets
	The half-duplex asynchronous serial communication interface

	Execution and control
	The robot
	Definition, advantages and structure

	Kinematics of the parallel robot
	Inverse kinematics solution
	Problems writing Arduino® code
	Alternative 1: The Fourier method
	Alternative 2: The Jacobian method
	Matlab® simulation of the final solution

	The control
	Strategies of execution
	Architecture of the closed-loop
	Controller

	Results
	Environmental impact
	Conclusions
	Contributions
	Possible enhancements and future work

	Budget
	Images and tables' sources
	Parameters from Fourier series
	Surface plots
	Fourier approximations
	Fourier parameters

	Arduino Code
	Computing files
	Main execution file
	Jacobian file
	Inverse kinematics file
	Solve angles file

