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Abstract—In decentralized systems, nodes often need to co-
ordinate to access shared resources in a fair manner. One
approach to perform such arbitration is to rely on auction
mechanisms. Although there is an extensive literature that studies
auctions, most of these works assume the existence of a central,
trusted auctioneer. Unfortunately, in fully decentralized systems,
where the nodes that need to cooperate operate under separate
spheres of control, such central trusted entity may not exist.
Notable examples of such decentralized systems include commu-
nity networks, clouds of clouds, cooperative nano data centers,
among others. In this paper, we make theoretical and practical
contributions to distribute the role of the auctioneer. From the
theoretical perspective, we propose a framework of distributed
simulations of the auctioneer that are Nash equilibria resilient
to coalitions and asynchrony. From the practical perspective,
our protocols leverage the distributed nature of the simulations
to parallelise the execution. We have implemented a prototype
that instantiates the framework for bandwidth allocation in
community networks, and evaluated it in a real distributed
setting.

Index Terms—distributed systems; resource allocation; auc-
tions; distributed auctioneer

I . I N T R O D U C T I O N

Most distributed systems have limited resources that need
to be shared by many nodes. For instance, in a network there
is limited bandwidth that needs to be allocated to multiple
nodes. In cloud applications, virtual machines (VMs) need to
be allocated to different cloud users. Resource allocation is,
therefore, a key problem in distributed systems.

Distributed resource allocation is particularly challenging
when nodes operate under different spheres of control and
may not be willing to cooperate. Namely, a resource allocation
strategy that assumes that all nodes execute a given algorithm
may break if nodes may extract benefits by deviating from
the expected behaviour. Many examples of this problem
can be found in the literature. The works of [1] and [2]
illustrate how a network user may attempt to monopolize
the bandwidth utilization if it has the opportunity. There is
evidence that programmers can instrument their code to get
an unfair advantage of several Unix schedulers [3]. In shared
infrastructures, like Grid systems, participating users try to
maximise their own usage to the detriment of the others [4].
Dynamic wireless spectrum allocation suffers from unfair
manipulation [5]. Social cloud computing [6], and cooperative
computing systems like BitTorrent [7] suffer when users act
selfishly in consuming resources.

An approach that has emerged as a viable alternative for the
problem above is to use economic models to address resource
allocation, in particular by resorting to auction systems [8]. As
a result, an extensive literature exists on the use of several
types of auctions to perform resource allocation in distributed
systems [4], [9], [10]. In particular, the advent of the cloud
computing model, where many clients may compete for the
resources managed by one or more providers, has spurred the
usage of different auction mechanisms in a variety of resource
allocation proposals for the cloud [11]–[17].

In these approaches, users are modelled as non-cooperative
rational players who are willing to pay for using resources
or get paid for providing those resources. Specifically, users
declare to an auctioneer the preference for different allocations
of resources, and the auctioneer executes some auction mech-
anism to derive an allocation between users and resources
that maximizes social welfare (preferences of users for the
allocation), and the payments to be performed or received
by each user. The aim is to obtain an allocation with a
social welfare as close as possible to the optimal while
ensuring truthfulness from the users, such that they do not have
incentives to lie about their bids. In addition to maximal social
welfare and truthfulness, other guarantees may be provided,
including computational efficiency and budget balance (the
payments made by the users outweigh the payments received).

These works assume that the auctioneer is trusted. Unfortu-
nately, this is an unreasonable assumption in many of today’s
fully decentralized systems, where all nodes are either resource
consumers, resource providers, or both. In this case, there is
no natural candidate that can be trusted by all other nodes to
run the auction algorithm faithfully, given that any node may
extract some benefit by perturbing the auction result. In some
sense, all current distributed systems that rely on auctions to
perform resource allocation are not fully decentralized, because
they depend on a unique central point of control, which is the
trusted node that runs the auction algorithm. This leads to the
observation that there is still a substantial gap that needs to be
bridged to apply these results in fully decentralized settings.

This paper bridges this gap by proposing a framework of
distributed protocols that allows multiple resource providers
in a decentralized distributed system to simulate the role of
the auctioneer. Such simulation raises significant challenges
both from the theoretical and practical points of view. From
the theoretical perspective, although there is a vast literature of
distributed fault-tolerant algorithms, with very few exceptions
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(for instance, [18]), these works do not consider rational
behaviour. From the practical perspective, the distribution of
the auctioneer may incur in additional overhead. Our paper
addresses both concerns. First, we prove that our distributed
simulations are sound from a game theoretical perspective.
Specifically, we show that the simulations are k-resilient (ex
post) equilibria [18], i.e., Nash equilibria resilient to asynchrony
and coalitions of providers of size at most k. Second, our
protocols leverage the distributed nature of the resulting virtual
trusted entity to parallelise the resource provisioning algorithm,
compensating for the additional costs imposed by coordination.

We have implemented a prototype of our protocols and
evaluated the resulting system in a real instance of a fully
decentralized network, namely an experimental testbed for com-
munity networks [19]. Different from the traditional business-
focused model applied by telecommunication operators, each
user in a community network is an owner of a portion of the
total infrastructure, which builds the mesh network. Community
networks are an interesting application scenario for our results
because they lack a central point of control and make extensive
use of resource sharing. In particular, we consider the concrete
problem of bandwidth reservation on the gateways that connect
the community network to the Internet.

Even though in our example we only focus on bandwidth
reservation, the fundamental problems at hand are general
and emerge every time shared resources need to be allocated
to users in a set of providers, such as for allocation of
processing and memory resources as virtual machines in public
clouds [17], assignment of frequencies in secondary wireless
spectrum markets [5], and resource scheduling in grid and
cloud infrastructures [4].

In summary, the main contributions of this paper are the
following:

- We propose a framework for devising distributed protocols
executed among a decentralized set of service providers that
correctly simulate the auctioneer in a family of resource
allocation auctions.

- We show that every implementation of the framework is a
k-resilient (ex post) equilibrium. These implementations also
tolerate users that send invalid bids.

- We show that it is possible to leverage the distributed nature
of our framework to parallelise implementations, mitigating
scalability issues of purely centralised solutions.

- We implemented instances of the framework and reported
the results from its deployment on the actual Guifi nodes.

The rest of the paper is organised as follows. In Section II
we present related work. Section III provides the system model.
In Section IV, we present the framework for simulating the
auctioneer and in Section V we illustrate its applicability to the
execution of two different auction mechanisms, with different
computational properties, in the context of community net-
works. In Section VI we discuss results from the experiments.
Section VII concludes the paper.

I I . R E L AT E D W O R K

A vast literature has addressed the problem of allocating
resources between providers and users following an auction ap-
proach [11], [12], [14]–[17], [20]. For instance, in [17], [21], the
authors propose VCG mechanisms in auctions where only the
users submit bids to the auctioneer, achieving truthfulness and
a tradeoff between maximal social welfare and computational
efficiency; Zheng et al. [14] propose a variant of the McAfee
mechanism to tackle a similar problem in a double auction
(providers also submit bids), where they achieve truthfulness
and budget balance. To the best of our knowledge, none of these
works addressed these problems in the absence of a trusted
auctioneer.

The problem of simulating the behaviour of a trusted entity in
an environment with only rational players has been approached
in the literature of distributed systems [18], [22]–[24]. In [22],
[23], the authors addressed the particular problems of secret
sharing and multiparty computation assuming the existence of
a trusted mediator, and then studied conditions under which it is
possible to simulate the mediator through a distributed protocol.
Abraham et. al [18] devised k-resilient equilibria solutions for
the problem of leader election. Afek et al. [24] proposed a
building blocks approach for devising distributed k-resilient
implementations, and used this approach in combination with
ideas from [18] to address the problems of consensus and
renaming. None of these works devised distributed protocols
for simulating the role of an auctioneer in an auction.

I I I . S Y S T E M M O D E L

We define the family of resource allocation auctions, the
requirements of a distributed simulation of the auctioneer, and
the Game Theoretical model used to analyse simulations.

A. Resource Allocation Auctions

Consider a family of auctions with m providers, n users, and
an auctioneer. Providers sell multiple resources with a limited
capacity, in exchange for payments in some currency. Users are
willing to pay to the providers in exchange for the allocation
of a minimum amount of each resource in the provider. The
auctioneer defines an allocation between users and providers
that is feasible (i.e., that does not exceed the capacity of
each resource in any provider) and defines the payments to
be made/received by the users/providers, respectively. Both
users and providers attribute a utility to each allocation, which
is a function of the value given to the allocation and the
payments made/received. More precisely, each user i has a
valuation vi specifying how much i is willing to pay for the
allocation of a unit of each resource in each provider; i’s utility
is the difference between the total value attributed by i to the
allocation and the payments made by i. On the other hand, the
valuation vj of a provider j specifies how much j wants to
be paid for allocating a unit of each resource; j’s utility is the
difference between the payments received by j and the total
value attributed by j to the allocation.

We will analyse two types of auctions: standard and double
that differ only on who are the bidders (entities that submit
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bids). In a standard auction, only the users are bidders. Each
user i submits a bid bi to the auctioneer declaring vi. Then,
the auctioneer executes an algorithm A that returns a feasible
allocation and the respective payments. The algorithm A must
satisfy three properties: (1) it must maximise in expectation
the social welfare, defined as the total value attributed by
users to the allocation, (2) it must achieve truthfulness in
expectation, i.e., no user may increase its expected utility by
lying in its bid; and (3) it must be computationally efficient.
In a double auction, the auctioneer collects bids from both
the users and the providers. The social welfare is now the
difference between the total value of the users and the total
value of the providers. In addition to the above three properties,
A should also satisfy budget balance, which is the property that
the total value paid by users covers the total payments made to
the providers. Unfortunately, it was shown that no algorithm
can simultaneously satisfy truthfulness in expectation, maximal
social welfare, and budget balance [25]. In practice, it is
common to aim at a combination between truthfulness in
expectation and either one of the other two properties.

B. Distributed Auctioneer Simulation

In our setting, no single entity can be trusted with the role
of the auctioneer, since every entity may increase its utility
by manipulating the execution of A. Specifically, a provider
may devise a sub-optimal schedule that provides him with
a higher payment; similarly, a bidder may manipulate the
execution of A to decrease his payment. We address this
problem by simulating the role of the auctioneer through a
distributed protocol. The idea is to replicate the execution of
A in multiple entities and use cross-validation of the results of
the redundant computations. Providers are especially suited for
this purpose, since they may be willing to offer their resources
for the execution ofA in exchange for payments. Therefore, we
focus on distributed protocols executed among sets of providers
that deviate from the protocol only if they gain by doing so.

Now, we specify requirements for a correct simulation of the
auctioneer. Normally, the auctioneer collects a vector ~b of bids
and executes A with input ~b. In a simulation, each provider j
must collect a vector ~bj of bids sent to j and use it as input of
a distributed protocol that simulates A. This requires bidders
to submit a bid to all providers. We consider that bidders may
adopt arbitrary behaviours such as submitting different bids to
different providers or not submitting a bid. Nevertheless, we
assume that every provider j eventually collects a vector ~bj to
be used as input in the simulation, containing a bid for every
bidder i, and if i is correct, then j receives the bid of i prior
to the simulation. In practice, bidders are expected to submit
their bids by some deadline; if a bidder fails to do so or sends
an invalid bid, then the provider may use the special value ⊥
instead. We want a simulation of the auctioneer to simulate A
on some input ~b that contains at least the bids sent by correct
bidders, regardless of the bids of remaining bidders.

More precisely, letA(x, ~p | ~b) be the probability of algorithm
A outputting an allocation x and vector of payments ~p, when
executed on input ~b by a trusted auctioneer. We denote by bji

be the bid submitted by bidder i to provider j in a simulation.
Let ~bj be the vector of all bids sent to j. If i does not submit
a valid bid to j, then we take bji to be a neutral bid (i.e.,
a bid that excludes i from the auction). In a simulation of
the auctioneer, each provider j inputs ~bj and outputs a pair
(x, ~p) composed by an allocation x and a vector of payments
~p, or outputs a special value ⊥ that signals the abortion of the
simulation. We say that the outcome is (x, ~p) if all providers
output this pair, otherwise, the outcome is ⊥. We assume that
an external mechanism guarantees that (1) when the outcome
is ⊥, the auction is aborted, and (2) when the outcome is
(x, ~p), the allocation x is enforced and all entities perform
or receive their respective payments. We can now provide a
precise definition of correct simulation.

Definition 1. A simulation is said to be correct if and only
if, for all vectors (~bj)j , the outcome is (x, ~p) with probability
A(x, ~p | ~b), where~b only contains valid bids and, for all bidders
i such that bji = b′i for every provider j, we have bi = b′i.

C. Game Theoretical Model

We consider the model of extensive form games played in
asynchronous systems proposed in [18]. There are m > 1
players corresponding to the providers of the resource alloca-
tion auction. Providers may form coalitions of size at most k.
We assume that each provider has a unique identifier, known
to every other provider. Time is divided into turns. In each
turn, some provider j is chosen to move: j first receives
messages previously sent to j, performs some computation, and
sends messages. A schedule specifies which provider moves
at each turn and which messages it receives. We assume that
communication channels are reliable, so every message sent
is eventually delivered. We focus on schedules that are fair in
the sense that every provider j is scheduled to move infinitely
often, such that, for all turns t, there exists a turn t′ > t when
j is scheduled to move. This is necessary to ensure progress.

Now, we want to define a notion of equilibrium for this
setting. For this, we need an exact definition of protocol and
utility. A protocol specifies, for each schedule, a probability
distribution over the computation performed by each provider j
and the messages sent at each turn where j moves, as a function
of the history of messages sent and received in previous turns.
In addition, since we analyse protocols as modules with input
and output values, the protocols also specify the values used
as input and output by each provider. The utility of providers
is a function of the outcome of the simulation: if the outcome
is ⊥, then the utility is 0, else the utility is the difference
between the payments received and the value of the allocation.
Given this, the utility of a user i is also 0 if the outcome is
⊥, or is the difference between the value of the allocation and
the payments made. The expected utility conditioned on the
schedule is computed according to the probability distribution
over outcomes induced by the protocol.

For the definition of equilibrium, we consider the notion of
k-resilient (ex post) equilibrium introduced in [18]. This notion
is a refinement of Nash equilibrium that incorporates collusion
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and asynchrony. Namely, collusion is modelled as sets K of
at most k providers that coordinate on any joint protocol; we
require that no provider in K can increase its expected utility
if providers in K deviate from the specified protocol, given
that other providers do not deviate. Asynchrony is modelled
in an ex post way by assuming that providers are informed
about the schedule when computing the expected utility. This
is the strongest requirement for this setting.

Definition 2. A protocol P is a k-resilient (ex post) equilibrium
if and only if for all fair schedules and coalitions K such that
|K| ≤ k, there is no provider in K that increases its expected
utility when providers in K follow a joint protocol P ′ 6= P ,
given that providers not in K follow P .

An important aspect of this definition is that a k-resilient
equilibrium protocol P satisfies the property that no provider
increases its expected utility by lying about its input, hence
P achieves truthfulness regarding the inputs of the providers
to a simulation. Specifically, at every invocation, we say that
provider j has input v if, by following P , j is expected to input
v, so truthfulness implies that j does not input v′ 6= v. By the
truthfulness of A, every bidder i maximises its expected utility
by sending bi = vi to all providers, regardless of other bids.
This implies that to fulfil our goals it suffices to devise protocols
that are k-resilient and correctly simulate the auctioneer.

I V. T H E D I S T R I B U T E D AU C T I O N E E R

We propose a framework for devising distributed proto-
cols executed by the providers that correctly simulate the
auctioneer. The framework is sufficiently general to simulate
different auctions. To illustrate its applicability, we provide
two implementations of the framework for standard and double
bandwidth allocation auctions, respectively. We describe the
framework in two steps. First, we provide a general definition
where we do not specify the details about how to implement
the simulation of the algorithm A. Then, we describe how to
simulate A by leveraging parallelism to speed up its execution.

A. General Framework

The input of the framework at each provider j is a vector
~bj of bids submitted to j and the output is either a pair (x, ~p)
containing an allocation x and a vector of payments ~p or the
special value ⊥. As illustrated in Figure 1, the framework
chains the execution of two building blocks: bid agreement
and allocator. Each provider j inputs ~bj to the bid agreement,
which outputs either a vector ~b or ⊥. In the former case, j
inputs ~b to the allocator. If all providers follow the protocol,
then the bid agreement ensures that they all output some vector
~b containing all valid bids, and the allocator ensures that they
all output a pair (x, ~p) with probability determined by A.

In the following paragraphs, we describe each block in more
detail by defining properties that must be satisfied by any
implementation of the block, and then show in the analysis
that every implementation of the framework is k-resilient and
correctly simulates the auctioneer based only on the properties
of the blocks. This makes the proof independent from the
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Figure 1. Framework: Bid Agreement (BA) and Allocator (A)

actual implementation. In all blocks, an implementation P must
satisfy the property of k-resiliency for solution preference, i.e.,
P must be a k-resilient equilibrium, under the assumption that
players have preference for a solution and number of agents
not in the same coalition is sufficiently high. Specifically, the
output of every block is either some valid value or ⊥. We
can split the set of outcomes of the block (combinations of
outputs) into the set A of solutions where all providers output
the same valid value and the set B of remaining outcomes. In a
correct execution, we want the outcome to lie in A. To ensure
this and that the protocol is a k-resilient equilibrium, we need
to assume that providers obtain a higher utility for outcomes
in A than for outcomes in B (preference for a solution), and
m > f(k) for some function f defined for every k > 0. The
assumption of preference for a solution of the framework is
equivalent to providers preferring to receive the payments.

Bid Agreement: The input at provider j is the vector ~bj of
bids sent to j. The output is a vector~b or the special value ⊥. In
addition to k-resiliency for solution preference, this block must
ensure two conditions when all providers follow the protocol:
(1) eventual agreement, defined as all providers eventually
outputting the same vector ~b, and (2) validity, defined as, for
every bidder i that submits the same bid b′i to all providers,
the output at every provider is bi = b′i.

Property 1. A protocol P implements bid agreement if and
only if it satisfies two conditions: (1) if all providers follow
P , then P satisfies eventual agreement and validity; and (2)
k-resiliency for solution preference.

If we can assume that the bids of malicious bidders are
obtained from a finite set of values and are equally likely,
then a suitable approach is to use the rational consensus
protocol proposed in [24], which has inputs {0, 1} and outputs
in {0, 1,⊥}, and satisfies the following two properties: (a) if
all providers follow the protocol, then all providers eventually
output the same bit, which is input by some provider; and
(b) k-resiliency for solution preference, assuming m > 2k
and that the input of every provider not in the same coalition
is either the same value or is 0 or 1 with equal probability.
This protocol can be used to implement the bid agreement as
follows. For each bidder i, provider j generates a stream of bits
uniquely determined from bji and inputs each bit to a rational
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consensus instance; if some instance outputs ⊥, then j outputs
⊥, otherwise, j converts the stream to a bid bi and outputs a bid
b∗i , where b∗i = bi if bi is valid, or b∗i is some pre-determined
valid bid otherwise. To distinguish between different instances
of rational consensus, providers may append to the messages of
each instance the identifier of each bidder and the position of
each bit. Clearly, providers only output valid bids or the value
⊥. By (a), if all providers follow the protocol, then eventual
agreement and validity hold, showing (1). Condition (2) follows
directly from (b) and m > 2k if the input of every provider
satisfies the assumptions of (b). To see why these assumptions
are true, notice that, for each bidder i, if i is not malicious, the
input of all providers not in the same coalition is i’s true bid,
and if i is malicious, then the bid bji sent by i to j is uniformly
distributed. If the set of possible bids is the set of all integers,
then the stream of bits obtained from bji is also random. These
are reasonable assumptions, since we expect the behavior of
malicious bidders to be arbitrary.

Allocator: The input at every provider is a vector ~b of
bids, and the output is either a pair (x, ~p) or ⊥. We want
the allocator to satisfy four conditions. First, we want the
allocator to correctly simulate A, i.e., given that all providers
input the same vector ~b and follow the protocol, every provider
must eventually output pair (x, ~p) with probability A(x, ~p | ~b).
Second, we want resilience to collusive influences, defined as,
for all coalitions K of at most k elements, if all providers not in
K input~b and follow the protocol, then no j /∈ K outputs a pair
(x, ~p) with probability higher than A(x, ~p | ~b), regardless of the
protocol followed by providers in K. Intuitively, no coalition
K can influence the output of providers not in K, except that
they may output ⊥ with higher probability. Third, we want
input validation to ensure that providers have preference for
solutions at the bid agreement. More precisely, if two providers
input different vectors and follow the protocol, then they both
output⊥, regardless of the protocol followed by other providers.
Finally, we want k-resilience for solution preference given that
all providers have the same input.

Property 2. A protocol P implements the allocator if and only
if it satisfies four conditions: (1) correct simulation of A; (2)
resilience to collusive influence; (3) input validation; and (4)
k-resiliency for solution preference if all providers have the
same input.

We discuss implementations of the allocator in Section IV-B.
Analysis: We show in Theorem 1 that a protocol that

implements our framework correctly simulates the auctioneer
and is k-resilient. The proof is in Appendix VII-A.

Theorem 1. For every protocol P that implements the frame-
work, P correctly simulates the auctioneer, and there exists
a function f such that, if m > f(k), then P is a k-resilient
equilibrium.

B. Parallel Allocator Framework

We describe a framework for implementations of the al-
locator that satisfy Property 2. We explore the possibility of
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Figure 2. Decomposition of the Allocator into Tasks
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parallelising the execution ofA in multiple providers. Although
this approach introduces the overhead of communication be-
tween providers, since A is often computationally intensive,
its parallelisation compensates for this overhead.

The framework consists in an initial invocation of a building
block for input validation followed by the simulation of A,
which invokes two additional building blocks: data transfer
and common coin. The input is a vector of bids and the output
is either ⊥ or a pair (x, ~p). At the invocation of each block,
providers either output a valid value or ⊥; in the latter case,
they output ⊥ at the allocator. To describe the simulation of
A, it is useful to characterise the execution of A in terms
of a graph of tasks, where nodes correspond to tasks to be
executed in sequence and edges represent data dependencies.
This graph establishes a partial order of tasks; every two tasks
that are not ordered can be executed in parallel by different
providers. Figure 2 gives an example of a graph of 4 tasks,
where tasks T2.1 and T2.2 can be executed in parallel. To
cope with collusion, each task T is assigned to a set S of at
least k + 1 providers. If a task T ′ is to be executed by a set
O 6= S of providers and T ′ depends on the result of T , then
the providers of S transfer data to the providers of O using the
data transfer building block. In a correct simulation of A, there
must be one final task that depends on all other tasks, where
all providers gather all the required data to produce the final
output. Whenever providers need a random number distributed
according to a probability distribution Π, they invoke the
common coin with input Π. Figure 3 illustrates the framework
for the task decomposition of Figure 2.

As in the previous section, we describe properties that must
be satisfied by the implementations of each block and then
show that every implementation of this framework satisfies
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Property 2.
Input Validation: The input is a vector ~b and the output is

either⊥ or~b. We want an implementation to satisfy k-resiliency
for solution preference and that all providers eventually output
~b given that they all input ~b, and we need to satisfy (3) from
Property 2.

Property 3. An implementation P of the input validation must
satisfy three conditions: (1) if two providers follow P and
have different inputs, then they eventually output ⊥; (2) if all
providers follow P with the same input ~b, then they eventually
output ~b; and (3) k-resiliency for solution preference if all
providers have the same input.

A simple implementation is to have providers broadcasting
their vectors of bids and outputting ⊥ when two different
vectors are detected. This clearly satisfies (1) and (2), whereas
(3) is immediately true if providers have preference for a
solution and m > k.

Common Coin: The input is a probability distribution Π
and the output is either ⊥ or a number distributed according
to Π. Given that all providers have the same input, we want
the common coin to satisfy k-resilience for solution preference
and to output the same random number.

Property 4. Given that all providers have input Π, an imple-
mentation P of the common coin must satisfy two conditions:
(1) if all providers follow P , then they eventually output the
same value distributed according to Π; and (2) k-resiliency
for solution preference.

A possible implementation of the shared coin is the protocol
from [18]. The idea is that every provider j commits to
a random number rj ∈ [0, 1], before learning the random
numbers of every other provider not in its coalition. Then,
providers reveal all random numbers and compute the output
by summing all numbers modulo 1. If some provider j sees
a number not in [0, 1] or some provider does not send a
random value compatible with its commitment, then it outputs
⊥. Otherwise, j applies a transformation on the computed
value, which is uniformly distributed in [0, 1], to produce an
output that is distributed according to Π.

It is clear that all providers output the same random number
distributed according to the common input Π if they follow the
protocol. Assuming that m > k, no provider j can manipulate
the probability distribution of the output by not committing
to rj selected at random without some provider outputting ⊥,
even if j is in a coalition of at most k providers. Therefore,
the protocol satisfies k-resiliency for solution preference.

Data Transfer: A set S of providers inputs a value from a
domain D. Providers from a set O either output a value from
D or ⊥. When all providers in S have the same input, we
want them to output the same value in D when they follow the
protocol. We only require an implementation to be k-resilient if
|S|, |O| > k, since otherwise coalitions can always manipulate
the output of this block.

Property 5. Given that |S|, |O| > k and all providers have
the same input v, an implementation P of the data transfer
must satisfy two conditions: (1) if all providers follow P , then
they eventually output v; and (2) k-resiliency for solution
preference.

We propose a simple k-resilient implementation of this block,
where providers in S broadcast their input to all providers in O.
In the end, if some provider j ∈ O detects two different values,
then j outputs ⊥. Given that all providers have input v and that
|S|, |O| > k, they eventually output v, and no coalition K of
up to k providers can cause all providers to output v′ /∈ {v,⊥}.
By solution preference, no provider in K gains if someone lies
about the input v or omits a message.

Analysis: Theorem 2 shows that every implementation of
the above framework satisfies the four conditions of Property 2.
The proof is in Appendix VII-B.

Theorem 2. Every protocol P that implements the parallel
allocator satisfies Property 2.

V. C A S E S T U D Y

In this paper, we use community networks as a concrete
example of one of the many application areas for the distributed
simulation of a trusted auctioneer.

A. Community Networks

Community networks are a bottom-up social initiative that
provide Internet and networking services using off-the-shelf
network hardware and the open, unlicensed wireless spectrum,
with optical fibre in some cases, based on self-servicing and
self-management by the users [26]. Many of such initiatives
have proven quite successful, and include AWMN in Greece,
FunkFeuer in Austria, Freifunk in Germany, Ninux in Italy,
and Guifi.net which is one of the largest community networks
in the wold and connects more than 28,000 locations.

Community networks are based on the principle of recip-
rocal sharing and most of their users are moved by altruistic
principles. However, as any other human organisation, these
networks are not immune to overuse, free-riding, or under-
provisioning, specially in scenarios where users may have
motivations to compete for scarce resources. In this paper,
we consider the concrete problem of bandwidth reservation
on the gateways that connect the community network to the
Internet. In particular, we consider that, as in most community
networks, the subset of users that offer gateway services to the
Internet is smaller than the complete set of users. Users that
are not gateways may be interested in reserving bandwidth in
these gateways for Internet access. If the available bandwidth
at each gateway is not enough to satisfy the demand, one needs
to implement some arbitration mechanism that optimally and
fairly allocate resources, and at the same time maximises the
resource utilisation and the provider’s revenue.

In the context of our model (§ III), providers are the owners
of the gateways, and have direct access to the Internet, while
bidders have no direct access to the Internet and rely on these
gateways. The role of auctioneer can be taken by one of
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the providers, or a chosen third party, or in the case of our
proposed distributed auctioneer, simulated by some providers in
a distributed fashion. We consider resource to be the bandwidth
external to the network available at the gateways. Note that
we are not considering the bandwidth on the links internal
to the community network, because network is operated in a
shared manner, and this bandwidth is collectively owned by
the community.

B. Auctions For Bandwidth Allocation

We now show how our framework can be applied to two
different bandwidth allocation problems in the context of
community networks. For that purpose, we resort to two
different algorithms that have been proposed in the literature
to solve bandwidth allocation of bidders in providers. These
algorithms rely on standard and double auctions respectively,
and have different computational properties: the double auction
algorithm provides an example of a graph with only one task
that is not computationally intensive, such that decomposing
its execution into parallel tasks does not provide a performance
gain; the standard auction algorithm provides a graph with mul-
tiple computationally intensive tasks that can be parallelised.
Later in the paper, we will use these examples to evaluate the
performance of implementations of the framework. We use the
double auctions example to measure a worst-case overhead of
executing all building blocks of the framework compared to
an execution with a centralised trusted auctioneer, and we use
the standard auctions example to show that the improvements
of parallelisation can outweigh the added overhead when the
execution time is dominated by computation.

1) Double Auction: Consider an auction where each
provider has a limited bandwidth to be allocated to multiple
users, and each user has a demand of bandwidth that may
be satisfied by multiple providers. Both the users and the
providers declare in their bids the value given to a unit
of allocated bandwidth. An allocation gives the amount of
bandwidth of each user allocated in each provider. We want to
ensure truthfulness in expectation and budget balance. For this
purpose, we use the algorithm A of [14], which provides the
above properties at the expense of social welfare. The idea is to
order the providers by increasing value and to order the users by
decreasing value. Then, users are allocated by their order to the
providers using the water-filling method: the maximum amount
of bandwidth of each user is allocated to the first available
provider without exceeding its capacity, and any unsatisfied
demand of that user is allocated to the following providers using
the same method. Since the most computationally intensive task
of this algorithm is sorting, in most practical settings there is no
performance gain in parallelising the execution of A. Instead,
every provider executes A locally and outputs the result. Hence,
we never need to invoke the data transfer building block.

2) Standard Auction: Consider a variation of the double
auction where providers do not send bids and each bidder
can only have its bandwidth demand allocated in a single
provider. Here, we aim for truthfulness in expectation, maximal
social welfare, and computational efficiency. It is well known

Algorithm 1 Standard auction allocator
1: Task 1: Calculate the allocation solution x
2: for Each subset S of bidders in parallel do
3: Task 2.S: calculate payment pj of every j ∈ S
4: end for
5: Task 3: Collect the outputs of each task with the data transfer

and output (x, ~p)

that a VCG mechanism can be used to provide the first two
guarantees. The difficulty is that determining the maximal
social welfare is in general an NP Hard problem, which
conflicts with the goal of computational efficiency. To address
this issue, we use the algorithm of [17] which adapts the VCG
mechanism to achieve a tradeoff between the two conflicting
requirements. Specifically, [17] offers a (1− ε) approximation
of maximal social welfare for an arbitrarily small ε, while
terminating in polynomial time according to smoothed analysis.

Interestingly, the randomised algorithm proposed in [17]
has the potential for parallelisation. In a course manner,
the algorithm can be divided into three steps, depicted in
Algorithm 1. The first step derives an approximately optimal
allocation of users to providers. This step is hard to parallelise
effectively in a distributed system, so we run it in a single
sequential task. The second step calculates the payments for
each user based on the result of the first step. This step
is computationally intensive and the payments for each user
can be computed independently and, therefore, can be easily
parallelised. The final step gathers all intermediate results to
produce the output. In our implementation, the first and third
steps are executed by all providers. In the second step, we
group the providers into c groups, each containing at least
k + 1 providers. Each group is assigned the computation of
the payments of a subset of n/c users. Then, all providers of a
group execute the data transfer block to transfer the resulting
payments to all providers.

V I . P E R F O R M A N C E E VA L U AT I O N

We have evaluated the implementations of the allocator for
double and standard auctions proposed in Section V. The
implementations of all the remaining blocks are as suggested
in Section IV-B: we use the rational consensus algorithm
proposed in [24] in the implementation of the bid agreement,
the input validation and data transfer blocks are implemented
as simple broadcasts, and the common coin is implemented
using the scheme from [18]. For these implementations to be
k-resilient equilibria, we need m > 2k. This is a requirement
of the rational consensus algorithm.

Our goal is to assess the overhead of the distributed protocol,
when compared to a purely centralised solution, in the case
the allocation algorithm is not parallelisable, and to assess the
potential benefits from parallelisation when computationally
expensive allocation algorithms are used. For that purpose, we
measure performance gains for different levels p of parallelism,
where p = bm/(k+1)c is the maximum level of parallelism for
each possible k and p = 1 represents the sequential execution
by a trusted auctioneer. We consider a fixed number of m = 8
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providers in the auctions, but we vary the number of providers
that execute each protocol.

A. Hardware/Software Setup

In order to obtain a meaningful evaluation of our approach,
we have resorted to a prototype implementation on realistic
hardware and software environment and deployed it in an
experimental testbed for community networks, namely on nodes
of the Guifi.net [27]. We were given access to 4 different
nodes of the experimental testbed, 2 machines in Barcelona
(UPC Campus), and one machine each in Barcelona (Hangar)
and in Taradell, Spain. When doing tests executed by more
than 4 providers we have instantiated multiple VMs in each
nodes, ensuring that each VM is allocated a different CPU. The
machines are Intel Core i7-3770 3.40GHz CPU with 16 GB
RAM and 1 TB hard disk, running Proxmox virtualisation
engine. Our experiment runs in OpenVZ containers with
Debian 7 x86 1 CPU, 2 GB RAM, 10 GB storage. We have
implemented the framework in Python, using PyPy for speed
reasons, and used ØMQ [28] as the messaging library for the
communication.

We have set up a single node that acts as a client, and
generates input for all the n users. This client node sends the
requests to the m providers, and receives the results back from
all of them. The values for running time presented in the plots
capture the time from when the inputs are generated at this
client node, till the time it receives the results from all the
experiment instances. We run the experiments for 50 rounds,
and plot the average values in the graphs.

B. Double Auction Deployment

We have used an experimental set up similar to [14], with
some slight modifications suitable to our use case. In both the
experiments, the double and standard auction, the bids by the
users are uniformly distributed in the range [0.75, 1.25], and the
requested bandwidth resource is uniformly distributed in the
range (0, 1]. We vary the capacity of the providers depending
upon the overall bandwidth required, and scale it using a
random factor in [0.5, 1.5] so as to consider both the cases
where providers lack the capacity to satisfy all the requests,
and where the providers have excess capacity. The providers
have a unit cost of bandwidth uniformly distributed in the range
(0, 1].

Figure 4 shows the running time for the double auction
algorithm (§ V-B1) as a function of the number of users, for up
to 1000 users. This algorithm has little computational overhead.
It is not easily parallelisable but, as it can be observed from the
figure, this is irrelevant as the distributed version is dominated
by the communication time. Also, the communication overhead
increases as the number of users increases, since more data
has to be exchanged between the providers. The figure shows
the values obtained for the centralised approach and for the
distributed implementation using different values of k and
corresponding minimum required number of providers out of
a total of 8 involved in the execution, namely, 3 providers
when k = 1, 5 when k = 2, and 8 when k = 3. Even
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Figure 4. Running time for double auction

when 8 providers and 1000 users are used, the distributed
implementation finishes in around 3 seconds which is perfectly
acceptable because normally these auctions need to run with
reasonable intervals between them.

C. Standard Auction Deployment

We fix the number of providers to m = 8 and vary the
maximum degree of parallelisation by taking p to be 1, 2, and
4, corresponding to a centralised execution, k = 3, and k = 1,
respectively. Figure 5 shows the running time for the standard
auction (§ V-B2) as a function of the number of users, for up to
125 users. The capacity of the providers is based on the overall
bandwidth required at that provider in the bids submitted by
the users, and scaled down using a random factor in [0, 0.25],
so roughly no more than a quarter of the users win the bids.
For higher values of n, the algorithm [17] can take in the order
of hours to complete, which is expected as its computational
complexity is ≈ O(mn9( 1

ε )2) for n users and m providers,
though it provides better guarantees for social welfare than
other alternatives.

Figure 5 shows that the running time in general grows
quickly as n increases, and there is sharp rise in the running
time for values of n close to 100. This is because the running
time of the algorithm [17] is a function of the feasible allocation
space (which can grow exponentially in the worst case) of the
resource allocation problem. Therefore, the communication and
coordination overhead is not significant when compared to the
running time of the allocation algorithm. On the contrary, the
overheads involved in distributing the inputs and aggregating
the results from the providers are easily offset by the gains
due to parallelisation in this case. In Figure 5, we can observe
significant performance gains in the distributed case, for p = 2
and p = 4 (i.e., for k = 3 and k = 1 respectively). For
instance, when 8 providers are available and k = 1 the
distributed implementation takes around 100s while the serial
implementation takes around 400s. This indicates that our
approach allows for scaling the allocation algorithm, given that
when the network grows more providers also become available.
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V I I . C O N C L U S I O N A N D F U T U R E W O R K

Resource allocation is a fundamental problem in networked
systems and the design of auction mechanisms that can provide
properties such as truthfulness, budget balance, and maximal
social welfare have been extensively studied in the literature.
These works assume a centralised trusted auctioneer that can
faithfully execute the allocation algorithm. Unfortunately, many
networked systems of today, such as “clouds of clouds”, edge
clouds, and community networks, among others, lack a central
trusted point of control. In this paper we have addressed the
theoretical and practical challenges that need to be overcome
to bridge this gap. More precisely, we have proposed a novel
distributed framework for devising Nash equilibria distributed
simulations of the auctioneer that are resilient to asynchrony
and coalitions. Furthermore, our framework allows for the paral-
lelisation of the allocation algorithm, leveraging the distributed
nature of the simulation, which is of paramount practical
importance given that, in many allocation algorithms, achieving
maximal social welfare is computationally intensive. We have
devised implementations of the framework in a realistic testbed
of one of the largest community networks deployed today, and
have gathered experimental evidence that the overhead of the
emulation is not significant even in the cases the allocation
algorithm cannot be parallelised, and brings substantial gains
in the case parallelisation is possible. This shows that our
approach can be used as a building block to implement resource
allocation in decentralised networks.
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A P P E N D I X

A. Proof of Theorem 1

Proof. First, we show that P correctly simulates the auctioneer.
Every provider j inputs ~bj to the bid agreement. By (1) of
Property 1, regardless of the inputs, all providers output the
same vector ~b that satisfies validity. By (1) of Property 2,
the outcome of the simulation is pair (x, ~p) with probability
A(x, ~p | ~b). This concludes the first step of the proof.

Now, we show that P is a k-resilient equilibrium for m >
f(k) for some f . Fix a coalition K. We take f to be larger for

http://wiki.clommunity-project.eu/testbed:start
http://wiki.clommunity-project.eu/testbed:start
http://zeromq.org/community
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all k than the minimum value of m required by Properties 1
and 2. These properties imply that, if providers have preference
for a solution at the bid agreement, then the implementations of
bid agreement is k-resilient, so providers in K prefer to follow
P for bid agreement. Since this guarantees that all providers
have the same input at the allocator, the implementation of the
allocator is also k-resilient, implying that P is k-resilient.

Now, we show that solution preference holds for both blocks.
Recall that the outcome is not ⊥ only if providers not in K
output the same pair, and, if the outcome is ⊥, then the utility
is 0. Hence, providers in K prefer (obtain an expected utility
at least as high) that providers not in K output the same pair
(x, ~p); in this case, they clearly prefer to output (x, ~p) as well,
thus they have preference for a solution at the allocator. Now,
consider the bid agreement. The utility of an outcome of this
block is the expected utility given that providers not in K
follow P and providers in K follow an arbitrary protocol.
Clearly, providers in K prefer that no provider in K outputs
⊥. By (3) of Property 2, providers in K prefer that all providers
not in K output the same vector. By (2) of Property 2, providers
in K cannot increase the probability of any outcome of the
framework other than ⊥ by deviating, thus, they cannot increase
their expected utility by outputting a vector ~b′ 6= ~b at the bid
agreement. This shows that providers have preference for a
solution at the bid agreement, concluding the proof.

B. Proof of Theorem 2

Proof. We show that P ensures (1) correct simulation of A;
(2) resilience to collusive influence; (3) input validation; and
(4) k-resiliency for solution preference if all providers have the
same input. First, we show (1). Suppose that all providers input
the same vector ~b and follow P . We show that every provider
outputs the same pair (x, ~p) with probability A(x, ~p | ~b). We
show using induction that, if the decomposition of A into tasks
is done correctly and we fix all random numbers, then at every
task T every provider j that executes T has the same output that
he would have if j executed A locally with the same random
numbers. This is true for the first task by (2) of Property 3.
In the inductive step, the input at each task depends only on
the output of a set of tasks. For each of those tasks T , by
the induction hypothesis, a set S of at least k + 1 providers
compute the same result and input it to the data transfer; by (1)
of Property 5, all providers that execute T receive that value
and perform the same computation as they would if they were
executing A. This implies that all providers output the same
pair at the end. By (1) of Property 4, at every invocation of
the common coin, all providers input the same distribution Π
and output the same random number distributed according to
Π, where Π is specified by A. This proves (1).

Now, we show (2). Fix a coalition K and suppose that all
providers not in K follow P with input ~b and providers in K
follow an arbitrary P ′ 6= P . The only way that providers in
K could cause providers not in K to return pair (x, ~p) with
probability higher than A(x, ~p | ~b) is if the result of some task
used in the input of another task or as the final output is not
distributed as specified by A and ~b. Since each task is executed

by more than k providers, using an identical reasoning to the
proof of (1), we can show using induction that providers in K
cannot manipulate the probability distribution over the results
of each task, except only by increasing the probability of some
provider not in K outputting ⊥. Here, we use the fact that, by
(3) of Property 3 and (2) of Properties 4, 5, providers in K
cannot manipulate the probability distribution over outputs of
the building blocks in a way that increases the expected utility
of some provider in K. This proves (2).

Condition (3) follows by (2) of Property 3. To show (4),
we first need to prove that providers have preference for a
solution at all invocations of building blocks, assuming that
they have preference for a solution of the allocator. Fix a
coalition K. It is clear that providers in K prefer that providers
not in K do not output ⊥ at all invocations. Now, we use
backwards induction to show that they prefer that providers
not in K never return different values. In the last invocation,
this is clearly true by preference for a solution of the allocator.
Continuing backwards, if two providers not in K output
different values at the same invocation of some block, then
either they output different pairs at the end or input different
values at the following invocation of the data transfer, which by
the hypothesis is never preferable to outputting the same value
at the considered invocation. By the proof of (2), providers in
K cannot manipulate the final outcome by not outputting the
same values at all invocations, so they also prefer to output the
same values as providers not in K, showing solution preference
at all invocations. This also shows that providers prefer to have
the same input at all invocations. Thus, given that all providers
have the same input, no provider in K can increase its expected
utility if some provider j ∈ K does not compute each task
correctly. By (3) of Property 3 and (2) of Properties 4 and 5,
P is a k-resilient equilibrium.
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