
Abstract—this contribution identifies an often ignored source 
of uncertainty in the accuracy of the Adaptive Cross 
Approximation (ACA) algorithm. 

Index Terms—ACA, Fast methods, MoM, Integral Equations.

I. INTRODUCTION

HE Adaptive Cross Approximation (ACA) [1] is an 
algorithm that computes a low rank approximation to 

matrices or matrix sub-blocks. Due to its efficiency and its 
black-box nature (no prior knowledge of the matrix content or 
origin is necessary), it is gaining ground as a tool in 
accelerated electromagnetic simulations. As with all 
approximations, the ACA introduces an error that can only be 
known up to an order of magnitude, to be chosen by the user. 
With the growing popularity of the ACA, so grows the 
importance of assessing the reliability of the algorithm under 
all circumstances. 

In this contribution, we intend to draw attention to one 
aspect of the ACA algorithm that introduces a variation in the 
actual error around the user-chosen error threshold of about 
one order of magnitude. This variation is triggered by an 
initial choice inside the algorithm which is not left to the user 
but instead hard-wired in the algorithm formulation. There is 
presently no known recipe for optimizing this choice and as 
we shall argue it is probably not possible to find one. This 
means that the ACA algorithm is, to some extent, a 
randomized algorithm, with a probability distribution for the 
true residual error. 

The reason that these observations have not been made 
before, even though the ACA algorithm has been receiving 
ample attention for some time now, is twofold: Firstly, since 
the initial setting is hard-wired, the user will always obtain 
identical results on identical problems and the algorithm will 
seem perfectly deterministic to her. Secondly, the ACA is 
typically used to compress off-diagonal blocks of a larger 
linear system. How exactly the relative error in the blocks 
propagates into the solution of the linear system cannot be 
known but it will often be considerably smaller, as the matrix 
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is often dominated by the non-approximated on-diagonal 
blocks. So it is unlikely, though not impossible, that an error 
that is one order of magnitude larger than the user intended, 
will result in an error of the same magnitude in the final 
solution.
Remains to be mentioned that the possible unreliability of the 
estimated error in the ACA algorithm has been noted before, 
although without linking it to the initial choice and 
consequently without addressing its statistical nature, notably 
in [2] and [3].   

II. NUMERICAL EXAMPLE

As an illustration, the ACA algorithm is invoked to compress 
the mutual interaction matrix of the two square PEC plates 
shown in Fig. 1, in the EFIE formulation and using RWG 
basis functions. The plates are discretized into 1160 basis 
functions each, and the working frequency is such that the 
plate edges span two wave lengths.  

Fig. 1. Two square plates in the x-z plane discretized into 1160 RWG basis 
functions each.

Fig. 2 shows the evolution of the estimated and the true 
relative error as a function of the ACA iterations, for a 
particular random choice of the initial column. Note the steep 
peak at step 41 which might lead to a highly premature 
declaration of convergence.
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Fig. 2. Example of convergence of ACA relative error for the interaction 
between the two square plates in Fig. 1.

Fig. 3 shows the distribution of the true relative error after 
convergence of the ACA algorithm with a threshold of 10-4,
when all 1160 possible random choices of the initial column 
are tried. Note the variation in the true error of more than one 
order of magnitude.

Fig. 3. Distribution of the true relative error after convergence of the ACA 
algorithm for all 1160 choices of the initial column.

Fig. 4 shows the distribution of the number of iterations 
corresponding to the 1160 initial choices. Again, the variation 
is very high.

Fig. 4. Distribution of the number of iterations for convergence of the ACA 
algorithm for all 1160 choices of the initial column.

III. CONCLUSION

The aim of this contribution was to draw attention to the often 
overlooked statistical uncertainty in the ACA algorithm. 
Presently no consistent solution to this problem has been 
found. Some observations that may lead the way to such a 
solution in the future will be presented in the oral presentation 
at the conference.

REFERENCES

[1] M. Bebendorf, “Approximation of boundary element matrices,” 
Numerische Matematik, Vol. 86, No. 4, pp. 565-589, 2000.

[2] J. Laviada, R. Mittra, M. R. Pino, and F. Las-Heras, “On the 
convergence of the ACA,” Microwave Opt. Technol. Lett, vol. 51, no. 
10, pp. 2458–2460, Oct. 2009.

[3] A. Heldring, E. Ubeda and J.M. Rius, ‘On the Convergence of the ACA 
algorithm for Radiation and Scattering Problems, ’ IEEE Trans.  Ant. 
and Prop, Vol. 62, No. 7, July 2014

0 10 20 30 40 50 60 70 80
-6

-5

-4

-3

-2

-1

0
Convergence of ACA

ACA iteration number

lo
g1

0(
re

le
rr)

True Relative Error
Estimated Error

-5 -4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6 -3.4 -3.2 -3
0

20

40

60

80

100

120
ACA True Error, 10-4 convergence, all initial columns

log10(relerr)

oc
cu

re
nc

e 
co

un
t

40 42 44 46 48 50 52 54 56 58 60
0

50

100

150

200

250
Nr. of ACA iterations, 10-4 convergence, all initial columns

iterations

oc
cu

re
nc

e 
co

un
t

XI IBERIAN MEETING ON COMPUTATIONAL ELECTROMAGNETICS 
Las Caldas (Asturias, Spain), Nov 8th-11th, 2016 75


