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Abstract—We propose a novel stochastic radio resource alloca-
tion strategy for the uplink that achieves long-term fairness in
terms of similar bitrates considering backhaul and air-interface
capacity limitations. We focus on a single cell scenario based
on WCDMA technology. We propose to use a maximin criteria
to introduce fairness among the different users’ throughputs.
An stochastic approximation is implemented to obtain an online
algorithm where the Lagrange multipliers are estimated at each
scheduling period. Our results show that the proposed scheme
achieves higher fairness among the users and, in some cases, a
higher sum-rate compared with the well-known proportional fair
scheduler.

I. INTRODUCTION

We consider in this paper an uplink (UL) radio resource
allocation strategy for a system with limited backhaul capacity.
Although backhaul availability has been taken for granted
in conventional systems, backhaul is, in general, a limited
resource. This is the case, for instance, in rural deployments,
and in particular of the deployment planned in the European
project TUCAN3G (http://www.ict-tucan3g.eu). This project
aims to provide mobile telephony and data services in isolated
rural areas of developing countries (in particular, in rural remote
locations in Perú). This is achieved with an access network
of 3G femtocells empowered by solar panels of limited size
and connected to the core network through a limited capacity
WiFi-LD backhaul. Such limited WiFi-LD connections already
exist and are used basically to provide remote health services.
The final social objective of the project is to contribute to the
economical development of such areas through the provision of
communication services to the general users in addition to the
current limited health services.

The backhaul capacity limitation can be introduced in the
resource allocation problem by imposing a maximum instanta-
neous aggregate traffic rate constraint [1], [2], [3]. However, in
real deployments, the backhaul capacity can only be measured
in average terms. In addition, it is not clear whether limiting the
instantaneous sum-rate at the air interface for each scheduling
period will hamper the performance of the system in terms
of the achievable long-term rates. If the radio channel is time
variant, it seems less limiting to use high data rates in the
access network whenever the channel conditions allow (even
using greater instantaneous values than the average constraint

The research leading to these results has received funding from the European
Commission in the framework of the FP7 Network of Excellence in Wireless
COMmunications NEWCOM# (Grant agreement no. 318306) and the project
TUCAN3G (Grant agreement no. ICT-2011-601102), from the Spanish Ministry
of Economy and Competitiveness (Ministerio de Economı́a y Competitividad)
through the project TEC2011-29006-C03-02 (GRE3N-LINK-MAC), project
TEC2013-41315-R (DISNET), and FPI grant BES-2012-052850, and from the
Catalan Government (AGAUR) through the grant 2014 SGR 60.

imposed by the backhaul) provided that the average backhaul
rate constraint is met when averaging the traffic served in
several scheduling periods. Note that the backhaul constraint
in terms of average traffic is suitable if we assume that queues
are implemented between the access network and the backhaul.

In this paper we propose a long term fairness scheduler that
considers a long-term backhaul constraint. When there is no
reason for treating flexible service rate users differently, the
maximin criterion is a meaningful scheduling approach [4]. This
approach maximizes, at each scheduling period, the minimum
of the throughputs of the users. Essentially our goal is to provide
a balanced long-term rate to a set of users. In addition, the
scheduler will take advantage in an opportunistic way of the
instantaneous good wireless channel conditions. The authors of
this paper have a journal article considering a similar resource
allocation strategy but for the downlink setup [5]. Although
we resort to stochastic optimization tools as we did in [5] the
problem now is different as in the UL we need to deal with
individual constraints per user (for power and also for codes
assigned) instead of a global constraint for the BS. Additionally,
in [5] the BS is powered with solar panels, which is not the
case here.

The rest of this paper is organized as follows. In Section II
we present the system model. Section III presents the overall
problem formulation for the resource allocation strategy. Sec-
tion IV presents some numerical results and, finally, conclusions
are drawn in Section V.

II. SYSTEM MODEL

Let us consider an UL system composed of a single BS
providing service to several users. The system is based on
WCDMA technology and two different types of users coexist:
voice users and data users. Let us denote the set of voice and
data users by KV and KD, respectively. We assume that voice
users request a fixed service rate whereas data users request a
flexible service rate.

Users in WCDMA are multiplexed using spreading codes [6].
Let us assume that the network operator has already reserved
a set of codes for the voice users and the remaining codes
are to be allocated among the data users. Thus, the amount of
available codes in each set is known and fixed at the BS. We
also consider that there is a maximum backhaul rate constraint
for the uplink connections in terms of the average throughput.

Let us collect all the channel gains, hk that includes the
antenna gains, the path loss, and the fading, in h = {hk, ∀k ∈
KV ∪ KD}. Generally, the wireless channels depend on the
specific scheduling period, h(t), as they vary over time but
for simplicity in the notation, we will just refer to them as h
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rk(h) ≤ nk(h)
W

MD
log2

1 +
MDpk(h)hk

nk

(∑
`∈KD p`(h)h` − pk(h)hk

nk(h) +
∑
m∈KV p̌m(h) + σ2

)
 , (2)

throughout the paper. Let p̌j(h) and pk(h) be the instantaneous
powers corresponding to the transmission toward the j-th and
k-th voice and data user, respectively and nk(h) be the number
of codes assigned to the k-th data user.

The set of voice users request a fixed data rate and we
assume that just one WCDMA code is assigned to them. This
is translated into a minimum signal to interference and noise
ratio (SINR) requirement, Γk, at the output of the de-spreader
at the BS as follows:

MV p̌k(h)hk∑
`∈KD p`(h)h` +

∑
m∈KV
m6=k

p̌m(h) + σ2
≥ Γk, ∀k ∈KV , (1)

where MV is the spreading factor for voice codes and σ2 is
the noise power. It is important to emphasize that the target
SINR has to be achieved with equality (any other solution that
fulfills the SNR constraint with strict inequality implies a power
spending higher than necessary and, consequently, higher levels
of interference). Note also that the orthogonality factor among
codes usually considered in the DL of a WCDMA system [6]
does not appear in the previous expression since in UL we
assume that users are not synchronized in time.

On the other hand, the set of data users request a flexible
service rate. The instantaneous throughput in the wireless access
channel achieved during one particular scheduling period by the
k-th user, rk(h), is upper bounded by the maximum achievable
rate that the access network is able to provide, which is given
in (2), where MD is the spreading factor for data codes and
W is the chip rate. Throughout the paper will approximate the
denominator of (2) by∑

`∈KD

p`(h)h` −
pk(h)hk
nk(h)

+
∑
m∈KV

p̌m(h) + σ2 ≈∑
`∈KD

p`(h)h` +
∑
m∈KV

p̌m(h) + σ2, (3)

which is a reasonable assumption if the number of users is
relatively high, and, in any case, when using the approximation,
the obtained rate corresponds to a lower bound of the achievable
rate.

The number of data codes assigned to data users has to fulfill
the following condition:

nk(h) ≤ N (k)
max, ∀k ∈ KD. (4)

Notice that each user has an independent constraint in terms
of maximum number of data codes to be used denoted by
Nmax

(k). This is so, as each user is allocated a different
scrambling code. By following the approximation in (3), the
right-hand side in (2) is an increasing function of nk(h). This
implies that, it is optimum to use all data codes available for
all data users:

n?k(h) = N (k)
max, ∀k ∈ KD. (5)

Given the previous result, only the powers and the data rates
for the voice and data users remains to be allocated.

III. PROBLEM FORMULATION AND RESOLUTION

Let us introduce the following set of definitions: r ,
{rk(h), ∀k ∈ KD}, p̌ , {p̌k(h), ∀k ∈ KV }, and p ,
{pk(h), ∀k ∈ KD}. We formulate an optimization problem
for the resource allocation strategy with backhaul constraints
to be executed at the beginning of each particular scheduling
period, which involves finding the optimum resource allocation
variables, r, p̌, and p that maximize the minimum of the
expected throughputs:

maximize
r, p̌, p

min
k∈KD

Eh[rk(h)] (6)

subject to C1 : Eh[rk(h)] ≤ RBH − ŘBH(|KV |)
ξ|KD|

, ∀k ∈ KD

C2 : pk(h) ≤ P (k)
T , ∀k ∈ KV ∪ KD

C3 : rk(h) ≥ 0, pk(h) ≥ 0, ∀k ∈ KV
C4 : p̌j(h) ≥ 0, ∀j ∈ KV
C5 : (1)

C6 : (2),

where ξ, (ξ > 1), is an overhead considered for the data
transmissions to be sent through the backhaul, ŘBH(|KV |) is
the backhaul capacity used by the voice users1, being |KV | the
number of voice users, RBH is the overall backhaul capacity, Γ

is the target SINR for the voice users, and P (k)
T is the maximum

radiated power for the uplink connections.
It is important to realize that problem (6) may not be feasible

due to constraint C5 as it may happen that there could not
be enough power to satisfy all the target SINR constraints si-
multaneously. Constraint C1 states that the average throughput
that a user is experiencing in the access network should not
exceed the maximum backhaul rate assigned to such user (every
user has been already assigned a portion of the backhaul, as
commented before). If we would like to optimize the amount of
backhaul assigned to each particular user, constraint C1 could
be rewritten as

∑
k∈KD Eh[rk(h)] ≤ RBH−ŘBH(|KV |)

ξ . In any
case, notice that the instantaneous rates allocated to one user in
the access network can be higher in some scheduling periods
than the maximum backhaul per-user rate

(
RBH−ŘBH(|KV |)

ξ|KD|

)
thanks to the fact that queues are considered at the output of
the access network, i.e., the queues are considered before the
traffic is injected into the backhaul. The average rate constraint
C1 assures that the queues will be stable.

It is easy to realize that the problem is separable into voice
and data users without loss of optimality as voice users do not
affect the objective function and each user has its own power
budget constraint. For this reason, we start by analyzing the
voice users.

1The capacity required for a set of voice calls to be sent through the backhaul
generally depends on the current number of voice users being served. In real
deployments, voice users can be jointly encoded and, thus, the overall overhead
for voice users may be reduced as the number of voice users increases. Anyway,
in the problem formulation and the for the sake of generality, we just use the
notation ŘBH(|KV |).



3

A. Resource Allocation for the Voice Users

Let us consider that all voice users request the same bit rate,
i.e., they request the same SINR constraint, Γk = Γ, ∀k ∈ KV .
Let us define the following variable that takes into account the
noise in addition to the received power corresponding to the
data connections:

σ2
int =

∑
`∈KD

p`(h)h` + σ2. (7)

According to this, the set of equations presented in (1) can be
written in matrix form as follows (each row corresponds to each
of the voice users that are assumed to be numbered with the
following order: k = 1, 2, ..., |KV |):

MV −Γ −Γ . . . −Γ
−Γ MV −Γ . . . −Γ

...
...

...
. . .

...
−Γ −Γ −Γ . . . MV

×


p̌1(h)h1

p̌2(h)h2

...
p̌|KV |(h)h|KV |

 = σ2
intΓ


1
1
...
1


Notice that all the previous equations are completely symmet-

ric with respect to users. This implies that the power allocated
to each user is inversely proportional to the user channels, i.e.,
the powers received at the BS from all voice users must be
equal:

p̌k(h) =
α

hk
, ∀k ∈ KV , (8)

where
α =

σ2
intΓ

MV − Γ(|KV | − 1)
. (9)

In the UL scenario, the transmit power constraints are indi-
vidual, i.e., on a per-user basis. That means that if p̌k(h) =
α
hk

> P
(k)
T , then the SINR constraints cannot be fulfilled and

some users should be dropped off from the system. Notice that
if we want to assure that all voice users achieve its minimum
SINR, we have to impose a constraint on the interference that
the data users generate to the voice users as follows:

α=
σ2
intΓ

MV − Γ(|KV | − 1)
(10)

=

(∑
`∈KD

p`(h)h` + σ2

)
Γ

MV − Γ(|KV | − 1)
(11)

≤ min
k∈KV

P
(k)
T hk, (12)

or equivalently∑
`∈KD

p`(h)h` ≤
(

min
k∈KV

P
(k)
T hk

)
MV − Γ(|KV | − 1)

Γ
− σ2.

(13)
Note that (13) is a constraint on the maximum power radiated
by all data users simultaneously, i.e., sum-power constraint. As
a result, (13) must be added in the resource allocation for data
users if we want to assure that all voice users receive the service
they demand.

B. Resource Allocation for the Data Users

Now, we can proceed to obtain the optimum power allocation
for the data users. Before presenting the optimization problem,
let us formulate the achievable rate in terms of the previous

found results. The new expression is shown in (15) (in the next
page), where cV is defined as

cV = 1 +
Γ|KV |

MV − Γ(|KV | − 1)
. (16)

Given the previous definitions, we can formulate the resource
allocation strategy for the data users for the UL connections as

maximize
r, p, s

U(s) (17)

subject to C1 : s ≤ Eh[rk(h)], ∀k ∈ KD

C2 : Eh[rk(h)] ≤ RBH − ŘBH(|KV |)
ξ|KD|

, ∀k ∈ KD

C3 :
∑
`∈KD

p`(h)h` ≤
(

min
k∈KV

P
(k)
T hk

)
|KV |
cV − 1

− σ2

C4 : pk ≤ P (k)
T , ∀k ∈ KD

C5 : (15),

where we have introduced a general differentiable monotoni-
cally increasing cost function U(·) (e.g., the logarithm) in order
to smooth convergence issues when the objective is linear in
the optimization variable (see [7]). Note that the introduction
of such function does not modify the optimal value of the
optimization variables (i.e., the solution is the same).

Notice also that the previous optimization problem is time-
coupled and it requires the future channel realizations due to the
expectation operator appearing in C1 and C2. In order to deal
with such difficult problem involving expectations, we propose
to use a stochastic approximation that has been proposed in the
literature [7], [8]. In this approach, the constraints involving
expectations are dualized, and their Lagrange multipliers are
estimated stochastically at each period.

Let us start by dualizing constraint C1. Let λ , {λk, ∀k ∈
KD} be the vector of Lagrange multipliers associated to C1.
The partial Lagrangian is given by LC1(s,λ) = −U(s) +∑
k∈KD λk (s− Eh[rk(h)]). In order to find the optimum s we

have to perform the following minimization:

minimize
0≤s≤RBH−ŘBH (|KV |)

ξ|KD|

LC1(s,λ). (18)

Notice that we have introduced an additional constraint over
s. As it is clear from the formulation, this constraint does not
affect the optimum solution, but it will help in the numerical
search of the optimum value of the new slack variable s. Given
that, setting the gradient to zero, ∇sLC1(s,λ) = 0 and solving
yields:

s?(λ) =

(
(U̇)−1

( ∑
k∈KD

λk

))RBH−ŘBH (|KV |)
ξ|KD|

0

, (19)

where U̇(·) is the derivative of U(·) and (U̇)−1(·) is the
inverse function of U̇(·). Once we know the optimum s?, the
problem (17) is updated as follows (where we have skipped
in the objective function the term that does not depend on the
optimization variables remaining in the optimization problem):

maximize
r, p, n

∑
k∈KD

λkEh[rk(h)] (20)

subject to C2, . . . , C5 of problem (17).
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rk(h)≤ N
(k)
maxW

MD
log2

1 +
MDpk(h)hk

N
(k)
max

(∑
`∈KD p`(h)h` − pk(h)hk

nk(h) +
σ2
intΓ|KV |

MV −Γ(|KV |−1) + σ2
)
 (14)

=
N

(k)
maxW

MD
log2

(
1 +

MDpk(h)hk

N
(k)
maxcV

(∑
`∈KD p`(h)h` + σ2

)) (15)

Now, we proceed to dualize constraint C2. Let µ ,
{µk, ∀k ∈ KD} be the vector of Lagrange multipliers asso-
ciated to C2. The partial Lagrangian is

LC2 (rk(h);λ,µ) =

−
∑
k∈KD

λkEh[rk(h)]

+
∑
k∈KD

µk

(
Eh[rk(h)]− RBH − ŘBH(|KV |)

ξ|KD|

)
(21)

=−Eh

[ ∑
k∈KD

(λk − µk)rk(h)

]

−
∑
k∈KD

µk

(
RBH − ŘBH(|KV |)

ξ|KD|

)
. (22)

For given Lagrange multipliers λ and µ, the optimization
problem (20) is equivalently reformulated as (where we have
skipped again in the objective function the term that does
not depend on the optimization variables remaining in the
optimization problem):

maximize
r, p, n

∑
k∈KD

(λk − µk)rk(h) (23)

subject to C3, . . . , C5 of problem (17).

Notice that the expectations are no longer present in the
formulation because the remaining constraints C3 − C5 are
applied to instantaneous resource allocation variables (without
expectations) and also because the maximization of the ex-
pected value of the objective function with respect to r and
p in the current scheduling period, in this case, leads to the
maximization of the term within the expectation. The problem
now resides in the computation of the optimum Lagrange multi-
pliers which requires knowing the statistics of rk(h). If we solve
the dual problem of (23), i.e., supλ�0,µ�0 inf L(r, p; λ,µ),
where � means element-wise inequality and L(r, p; λ,µ) is
the Lagrangian, then the optimum multipliers could be found
using a gradient approach as shown in (24) and (25). Note
that, it is not possible to compute the value of the Lagrange
multipliers in real time, and then solve (23), as they depend
on the statistics of rk(h) that is a function not known a priori
(it is the solution of the optimization problem itself). Thus,
we propose to follow a stochastic approximation [8] - [7]
and eliminate such uncertainty constraint by estimating the
multipliers stochastically at each scheduling period (with a
noisy instantaneous unbiased estimate of the gradient) as shown
in (26) and (27) (note that this philosophy is similar to the
instantaneous estimation of the gradient in the LMS algorithm
[9]).

The advantages of the stochastic techniques are threefold:
i) the computational complexity of the stochastic technique is

significantly lower than that of their off-line counterparts; ii)
stochastic approaches can deal with non-stationarity environ-
ments; iii) the distribution of the involved random variables h
is not required.

It is importante to note that problem (23) is not convex due
to the interference term in the rate expression. Given that, let us
present the methodology employed to find the optimum power
allocation. Firstly, the following constraint can be added without
loss of optimality:∑

`∈KD

p`(h)h` ≤
∑
`∈KD

P
(`)
T h`. (28)

With this, we guarantee that either constraint C3 of problem
(23) or (28) will be active at the optimum. Secondly, we
introduce the following slack variable q that is defined as

q =
∑
`∈KD

p`(h)h`. (29)

Having introduced the previous constraint and variable, we may
write problem (23) as follows:

maximize
p, q

∑
k∈KD

(λk(t)− µk(t))rk(h) (30)

subject to C3, . . . , C5 of problem (17).

C6 : q ≤
∑
`∈KD

P
(`)
T h`, ∀k ∈ KD,

C7 : q =
∑
`∈KD

p`(h)h`.

The previous optimization problem (30) is concave with respect
to the set of powers {pk(h)} for a fixed value of q. This
means that we can always find efficiently the optimum value of
{pk(h)} for a certain value of q [10]. Unfortunately, problem
(30) is not jointly concave in {pk(h)} and q, so there is not an
efficient method to obtain both {p?k(h)} and q? simultaneously.
For this reason, we propose a suboptimum approach to solve
problem (30) where we perform the optimization in two stages:
we first fix q and obtain {p?k(h; q)}, then we change the value
of q within its range and solve the problem again. The final
solution is the one that provides larger sum-rate for all selected
values of q. The intuition behind the algorithm is simple. It is
based on a exhaustive search approach for the value of q where
the range of q has been quantized into small steps so as to
provide an algorithm with finite iterations. So, if we want N
iterations and the range of q is q ∈ [0, Qmax], then the step size
is ∆ = Qmax/N . The smaller the value of ∆, the better the
precision. If fact, if N −→∞ =⇒ ∆ −→ 0, then the proposed
algorithm provides the optimum solution of problem (30). Let
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λ
(q+1)
k =

(
λ

(q)
k + ε

(
s?(λ(q))− Eh

[
r?k

(
h;λ(q),µ(q)

)]))∞
0
, ∀k ∈ KD, (24)

µ
(q+1)
k =

(
µ

(q)
k + ε

(
Eh

[
r?k

(
h;λ(q),µ(q)

)]
− RBH − ŘBH(|KV |)

ξ|KD|

))∞
0

, ∀k ∈ KD, (25)

λk(t+ 1) = (λk(t) + ε (s?(λ(t))− r?k(h;λ(t),µ(t))))
∞
0 , ∀k ∈ KD, (26)

µk(t+ 1) =

(
µk(t) + ε

(
r?k(h;λ(t),µ(t))− RBH − ŘBH(|KV |)

ξ|KD|

))∞
0

, ∀k ∈ KD. (27)

us define the range of the variable q as

Qmax = min

{(
min
k∈KV

P
(k)
T hk

)
|KV |
cV − 1

− σ2,
∑
`∈KD

P
(`)
T h`

}
.

(31)
The algorithm to solve (30) is presented Algorithm 1.

Algorithm 1 Algorithm for Solving Resource Allocation Prob-
lem (30)

1: set number of iterations N
2: define vector q̌ = [q̌1, . . . , q̌N ] with 0 ≤ q̌i ≤ Qmax

3: compute vector u = [u?(q̌1), . . . , u?(q̌N )] where each
component is the solution of the optimization problem (30)

4: select q̌? = arg maxq̌i u
?(q̌i)

5: select the powers as the value of
{

0 ≤ pk(h) ≤ P (k)
T

}
,

∀k ∈ KD that achieve u?(q̌?)

C. Overall Resource Allocation Algorithm for the Uplink
In this subsection, we just present the overall algorithm to

solve the resource allocation for the voice and data users based
on the approaches presented in previous sections. The stochastic
updates are also presented. The algorithm is summarized in
Algorithm 2.

IV. NUMERICAL EVALUATION

In this section we evaluate the performance of the proposed
strategy. The scenario is composed of 1 BS, and 3 voice users
and 6 data users. The number of available codes Nmax = 13.
All the users are mobile with a speed of 3 m/s. The instanta-
neous channel gain, hk, incorporates antenna gains, Rayleigh
fading with unitary power, and a real path loss of a town in Perú
known as San Juan (see details in [11]). The code gain of data
codes MD = 16 and the minimum SINR normalized with code
gain for voice users is, Γ

MV
= −13.7 dB which corresponds to

a rate of 12.2 Kbps. The noise power is σ2 = −102 dBm. The
scheduling period for the data users and voice users are 2 ms
and 20 ms, respectively. The utility function is U(·) = log(·).
The amount of backhaul capacity required by the 3 voice
users is ŘBH(|KV |) = 90 Kbps. The overhead for the data
transmissions is ξ = 1.2. The step size for the update of
the stochastic multipliers is ε = 10−3. For a more detailed
description of the simulation parameters see [11].

For comparison purposes, we also show the resource alloca-
tion of the proportional fair (PF) strategy [8] with an instanta-
neous per-user backhaul constraint, rk(h) ≤ RBH−ŘBH(|KV |)

ξ|KD| ,

Algorithm 2 Algorithm for Solving the Resource Allocation

Strategy for the UL Connections

1: define R̃BH , RBH−ŘBH(|KV |)
ξ|KD|

2: initialize λk(t) ≥ 0, µk(t) ≥ 0, ∀k ∈ KD
3: set n?k(h) = N

(k)
max, ∀k ∈ KD

4: Data users
5: compute r?k(h;λ(t),µ(t)) with p?k(h) and n?k(h)

from (30) using Algorithm 1

6: update (dualized) primal variable:

7: s?(λ(t)) =
(

(U̇)−1
(∑

k∈KD λk(t)
))R̃BH

0
8: update stochastic dual variables:

9: λk(t+1) = (λ(t) + ε (s?(λ(t))− r?k(h;λ(t),µ(t))))
∞
0

10: µk(t+1) =
(
µ(t) + ε

(
r?k(h;λ(t),µ(t))− R̃BH

))∞
0

11: Voice users
12: compute σ2

int =
∑
`∈KD p

?
` (h)h` + σ2

13: compute p̌?k(h) =
σ2
intΓ

hk(MV −Γ(|KV |−1)) , ∀k ∈ KV
14: t←− t+ 1 and go to 4

and an instantaneous sum constraint,
∑
k∈KD rk(h) ≤

RBH−ŘBH(|KV |)
ξ . The effective length of the exponential win-

dow in the PF has been set to Tc = 500 [8].
Fig. 1 and Fig. 2 show the time evolution of the estimation

of the expected rates of the proposed stochastic scheduler and
the PF scheduler (computed as r̂k(t) = 1

t

∑t
τ=1 rk(τ)). We

also plot s?(λ(t)) and the per-data user backhaul rate. The
backhaul capacity considered in Fig. 1 is 6 Mbps and in Fig.
2 is 2 Mbps. Each line of the same color represents a different
user. Initially, we assume that the queues at the output of the
access network are sufficiently full so that all the bits demanded
by the users are served. This makes the initial average rates
violate the backhaul capacity constraint for a short period of
time (see the initial transient in the figure). This is due to
the stochastic approximation of the multipliers but when the
average rates converge, they fulfill all the constraints of the
original problem. As we can also see from Fig. 1, the limitation
of the rates comes from the limited resources available at the
access network (power and codes) as the backhaul capacity is
not reached. It should be also emphasized that, the proposed
stochastic approach provides a solution that introduces more
fairness when compared to the PF approach as the average rates
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Fig. 1. Average bit rates per data user served in the air interface by different
schedulers for a total backhaul capacity of 6 Mbps.
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Fig. 2. Average bit rates per data user served in the air interface by different
schedulers for a total backhaul capacity of 2 Mbps.

for the different users are quite similar. Considering now Fig.
2, the limitations comes from backhaul as the expected rates in
the air interface converge to the maximum per-user backhaul
capacity.

Fig. 3 shows the total rate demanded by data users as a
function of the backhaul capacity. Note than, the stochastic
approach performs slightly worse than the two PF schedulers
when the system is limited by the access network and not by the
backhaul network but works better than the PF with individual
constraint for some backhaul capacities. However, the stochastic
scheduler offers a greater fairness in terms of similar bitrates,
so the rate for the worst case user is better for the stochastic
scheduler than for the other approaches, as shown in Fig. 4.

V. CONCLUSIONS

In this paper, we have proposed a resource allocation strategy
for the UL based on the maximization of the minimum average
data rates. By the use of stochastic optimization tools, we
are able to consider a backhaul capacity constraint in terms
of the average data rate, and allow the access network to
offer higher rates by taking advantage of good instantaneous
wireless channel conditions. Simulations results showed that the
proposed approach achieves more fairness in terms of similar
rates among the users when compared to the traditional PF
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Fig. 3. Sum-rate served in the air interface for data users versus the total
backhaul capacity.

0 1 2 3 4 5 6 7

x 10
6

0

2

4

6

8

10
x 10

5

Backhaul capacity RBH [bit/s]

b
it
/s

 

 

Min. expected rate - stochastic
Min. expected rate - PF sum const.
Min. expected rate - PF ind. const.
Backhaul capacity per user

Fig. 4. Rate served in the air interface for the worst case data user versus the
total backhaul capacity.

strategy and, for some backhaul capacities, the sum-rate is
higher when compared to that obtained with the PF scheduler.
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