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dimensions, notable predictive instability and anti-persistence of DSL for European
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the CI and the mean absolute deviation, MAD, and the optimum autoregressive order,
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MF-DFA algorithm and the appropriate references (see also lines 162-165). The
structure of Section 3.2 (Singularity spectrum) has not been changed, as many
definitions of parameters and concepts used after are summarised in this Section.
Additionally, in agreement with Reviewer 2, a detailed discussion about the range of
qth-order has been added to this Section.

b)Effectively, the interpolation method has been the “inverse distance”. We think that in
our case the main problem of obtaining accurate plots of the spatial distribution of
fractal parameters is the limited rain gauge density in some areas, as mentioned now
in page 5 (lines 118-124).

c)In Section 5, lines 575-580, several alternatives to the AR(p) process are cited as
possible improvements on DSL prediction for very long DSL. Certainly, an
ARIMA(p,d,q) modelling and others methods based on the Poisson distribution and
Monte Carlo algorithms would improve the mentioned very long DSL prediction, but we
think they are beyond the scope of the present paper. It is also worth of mention that
the relatively simple AR(p) process has led to good results when predicting monthly
Western Mediterranean Oscillation index, as the authors of this manuscript have found
(manuscript nowadays submitted to the International Journal of Climatology). With
respect to these questions, we have to mention that in line 224-225 a mistake
concerning the definition of AR(p) has been amended. AR(p) has to be properly
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similarity index, Lij, which is defined and quantified by the new Equation 9.
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Abstract 20 

Dry spell lengths, DSL, defined as the number of consecutive days with daily rain amounts 21 

below a given threshold, may provide relevant information about drought regimes. Taking 22 

advantage of a daily pluviometric database covering a great extension of Europe, a detailed 23 

analysis of the multifractality of the dry spell regimes is achieved. At the same time, an 24 

autoregressive process is applied with the aim of predicting DSL. A set of parameters, 25 

namely Hurst exponent, H, estimated from multifractal spectrum, )(f , critical Hölder 26 

exponent, 0 , for which )(f  reaches its maximum value, spectral width, W, and spectral 27 

asymmetry, B, permits a first clustering of European rain gauges in terms of the complexity 28 

of their DSL series. This set of parameters also allows distinguishing between time series 29 

describing fine- or smooth-structure of the DSL regime by using the Complexity Index, CI. 30 

Results of previous monofractal analyses also permits establishing comparisons between 31 

smooth-structures, relatively low correlation dimensions, notable predictive instability and 32 

anti-persistence of DSL for European areas, sometimes submitted to long droughts. 33 

Relationships are also found between the CI and the mean absolute deviation, MAD, and the 34 

optimum autoregressive order, OAO, of an ARIMA(p,d,0) autoregressive process applied to 35 

the DSL series. The detailed analysis of the discrepancies between empiric and predicted DSL 36 

underlines the uncertainty over predictability of long DSL, particularly for the Mediterranean 37 

region.  38 

 39 

Keywords: DSL series, drought regime, multifractal detrended fluctuation analysis, Hölder 40 

and Hurst exponents, ARIMA process, European pluviometric network.  41 

 42 

 43 

44 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 3 

1. Introduction   45 

Dry spell lengths, DSL, defined as the number of consecutive days with daily rain amounts 46 

lowering a certain threshold, represent a valuable magnitude to analyse several aspects of 47 

drought episodes. Besides studies based on “the standardised precipitation index”, SPI 48 

(McKee et al, 1993, 1995; Hayes et al., 1999; Lana et al, 2001), or “dry days since last rainy 49 

day”, DDSLR (Aviad et al. 2009; Reiser and Kutiel 2010; Lana et al., 2012), DSL have also been 50 

used along last years to characterise several patterns of the drought regime in Europe 51 

(Brunetti et al., 2002; Anagnostopoulou et al., 2003; Kostopoulou and Jones, 2005; Schmidli 52 

and Frei, 2005; Cindrić et al., 2010; Carvalho et al., 2013). The analysis of DSL series would 53 

permit to improve the knowledge about physical mechanisms and time trends governing 54 

drought regimes, particularly concerning southern Europe, as severe drought episodes 55 

frequently occur in the Mediterranean region (Lana et al., 2006, 2008b; Livada and 56 

Assimakopoulos, 2007; Diodato and Bellocchi, 2008; Nastos and Zerefos, 2009; García-Ruiz 57 

et al., 2011; Heinrich and Gobiet, 2011; Zolina et al., 2013). Specifically, the statistical 58 

distribution of DSL in Europe, with special emphasis on expected DSL for several return 59 

periods, and the assignment of statistical parent distributions to spatial clusters of rain 60 

gauges have been recently analysed (Serra et al, 2013, 2014). European partial duration 61 

series of DSL have also been recently studied (Serra et al., 2015).  62 

A different approach may be the application of fractal theory. First, the rescaled range 63 

analysis (Turcotte, 1997) leads to obtain the Hurst exponent, which permits characterising 64 

the persistence, anti-persistence or randomness of DSL. Second, the self-affine character of 65 

DSL (Hausdorff exponent) and the possibility of modelling DSL series by fractional Gaussian 66 

noise series can be tested (Mandelbrot and Wallis, 1969; Malamud and Turcotte, 1999). And 67 

third, in agreement with the reconstruction theorem (Diks, 1999), it is possible to quantify 68 

several aspects of the physical mechanism governing DSL, like the complexity and chaotic 69 

behaviour (correlation and strange attractor dimensions), loss of memory (Kolmogorov 70 

entropy) and predictive instability (Lyapunov exponents and Kaplan-Yorke dimension). A 71 

complete analysis of the complexity and predictive instability of European DSL series, based 72 

on the rescaled range analysis and the reconstruction theorem, can be found in Lana et al. 73 

(2010). 74 

 75 

The multifractal analysis of the DSL series (Kantelhardt et al., 2002) is now proposed through 76 

four parameters: the Hurst exponent, H, estimated from the multifractal spectral curve, 77 
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)(f , the range, W, of the Hölder exponent,  , the asymmetry, B, of )(f , and the critical 78 

Hölder exponent, 0 , for which the maximum of )(f  is reached. These parameters permit 79 

to characterise the complexity of every DSL series by using the Complexity Index, CI. After 80 

applying the Principal Component Analysis (Jolliffe, 1986; Preisendorfer, 1988) and clustering 81 

algorithms (Kalkstein et al., 1987; Davis and Kalkstein, 1990), DSL series may be spatially 82 

grouped in terms of their degrees of complexity, taking as variables for the classification 83 

those four multifractal parameters. In this way, regions with simple (smooth-structure) or 84 

complex (fine-structure) drought predictability can be distinguished.  85 

 86 

The description and quantification of the predictability of DSL are complemented by the 87 

ARIMA(p,d,0) autoregressive process (Box and Jenkins, 1976), previously applied in 88 

Climatology, for instance, to the North Atlantic Oscillation, NAO, series (Stephenson et al., 89 

2000; Mills, 2004). The mean absolute deviation, MAD, permits to quantify the goodness of 90 

fit between empiric DSL and those generated by the ARIMA(p,d,0) process, while the 91 

optimum autoregressive order, OAO, points out the order with minimum MAD. Additionally, 92 

valuable information can be obtained by analysing the discrepancies (residuals) between 93 

empiric and predicted DSL for every analysed rain gauge. 94 

  95 

The main objectives of this paper are, first of all, to extend the multifractal analysis of DSL 96 

series to Europe. Specifically, areas of simple or complex predictability are well bounded and 97 

comparisons are made with previous results derived from the application of the 98 

reconstruction theorem and the rescaled range analysis (Lana et al., 2010). And second, to 99 

establish relationships between CI derived from multifractal theory and MAD and OAO 100 

values based on ARIMA(p,d,0) autoregressive algorithms, and to highlight advantages and 101 

shortcomings of predictability based on this autoregressive process.    102 

The contents of the paper are organised as follows. The database is introduced in Section 2; 103 

the methodology to obtain the multifractal spectrum, the Complexity Index, CI, the spatial 104 

distribution of clusters and a description of the ARIMA(p,d,0) process are detailed in Section 105 

3; results concerning multifractal spectrum parameters, complexity measures, clustering and 106 

autoregressive predictions are developed in Section 4. Finally, Conclusions are summarised 107 

in Section 5. 108 

109 
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2. Database  110 

Daily precipitation data for the years 1951-2000 have been compiled from 267 rain gauges in 111 

Europe and neighbouring countries. Most of these series (236) come from the European 112 

Climate Assessment and Dataset (ECA&D), http://eca.knmi.nl/. All these series are public 113 

and non-blended and their quality has been analysed by ECA&D (Klein Tank et al., 2002; 114 

Wijngaard et al. 2003; Klok and Klein Tank, 2009). The rest of series come from the Agencia 115 

Estatal de Meteorología (Spanish Ministry of Environment) and standard homogeneity and 116 

quality controls have been previously applied (Lana et al., 2008a).  117 

Figure 1a depicts the spatial distribution of the available stations. Dense rain gauge coverage 118 

is observed in Western Europe, except for Italy, Great Britain and the north of the 119 

Scandinavian Peninsula, where it is not so dense. Results for Turkey and Israel are also 120 

included in the maps, but they only provide a broad approach for these regions. 121 

Interpolation of scarce spatial data could generate computational artefacts leading to some 122 

unrealistic spatial patterns, even taking into account additional data as height above sea 123 

level or orographic effects. All rain gauges have a minimum continuous recording period of 124 

40 years, and the series are complete (50 years) for 102 out of 267 stations. Figure 1b shows, 125 

year by year, the number of stations with complete recordings. Most of data series are 126 

continuous for the period 1955-1990, the number of available records diminishing at the 127 

beginning (1951-1955), and especially at the end (1990-2000) of the recording period. If a 128 

DSL is likely to be incomplete due to lack of record continuity, it is rejected. This does not 129 

constitute a relevant shortcoming on account of the large enough statistical population of 130 

DSL.  131 

Thresholds commonly used to define a DSL are 0.1, 1.0, 5.0 and 10.0 mm/day (Kutiel and 132 

Maheras, 1992; Martín Vide and Gómez, 1999; Anagnostopoulou et al. 2003; Serra et al. 133 

2006, 2013, 2014; Lana et al 2008b; Cindrić et al., 2010). The current study is constrained to 134 

the threshold of 0.1 mm/day (the assumed resolution of pluviometers), with daily excess 135 

(shortage) defining a wet (dry) day, thus being obtained a long enough data basis. As a global 136 

description of the 267 DSL series, their numbers of dry spells, NDSL, range from 1061 up to 137 

3203, with an average of 2621 and a standard deviation of 477. The histogram of NDSL (Figure 138 

1c) clearly depicts a skewed distribution toward high NDSL. Two examples of DSL series from 139 

northern and southern Europe are shown in Figure 1d. As expected, the southern Europe 140 

example is characterised by a relatively low NDSL and a non negligible number of long DSLs. 141 
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The opposite example could be that corresponding to higher latitudes, with larger NDSL and 142 

shorter DSLs. 143 

The relevance of the DSL concept and its relationship with droughts is manifested, for 144 

example, by searching for the longest DSL, Lmax, obtained for every rain gauge along the 145 

recording period. In agreement with Serra et al. (2014), values of Lmax exceeding three 146 

months are detected in the southern Mediterranean coast, for latitudes south of 40oN. The 147 

high spatial gradient of Lmax obtained in the Mediterranean region contrasts with the 148 

notable homogeneity and low Lmax values at northern latitudes. 149 

150 
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3. Methodology   151 

3.1 Multifractality.  152 

Multifractals are complex self-similar objects that consist on differently weighted fractals 153 

with different non-integer dimensions. Thus, the fundamental characteristic of 154 

multifractality is that scaling properties may vary in different regions of the system (Dutta, 155 

2010; Ghosh et al., 2012). If scaling properties are kept, whatever the region, the signal is 156 

known as monofractal. The multifractal detrended fluctuation analysis (MF-DFA) has been 157 

introduced as a reliable characterization of multifractal non-stationary and stationary time 158 

series (Kantelhardt et al., 2002). It is based on the identification of the scaling of the qth-159 

order moments depending on the signal length. The MF-DFA surpasses in quality and 160 

simplicity to previous algorithms such as the multifractal box counting (MF-BOX) (Feder, 161 

1988) or the wavelet transform modulus maxima (WTMM) (Muzy et al., 1994) algorithms. A 162 

detailed description of the steps leading to the right application of the MF-DFA algorithm 163 

and the concepts of qth-order fluctuation function, )(sFq , also named standard partition 164 

function, can be found in Burgueño et al. (2013). 165 

A variety of continuous multifractal time signals have been analyzed by the MF-DFA, 166 

including climatological series as hourly or daily wind speeds (Kavasseri and Nagarajan, 2005; 167 

Feng et al, 2009), daily temperatures (Lin and Fu, 2008; Yuan et al., 2013; Burgueño et al., 168 

2013) and global monthly temperature anomalies (Mali, 2014), as well as not so typical 169 

magnitudes as lightning initiation process (Gou et al., 2010).  170 

3.2 The singularity spectrum 171 

According to Kantelhardt et al. (2002), the qth-order fluctuation function, )(sFq , follows a 172 

power law with exponent h(q), which is known as the  generalized Hurst exponent. The 173 

singularity spectrum, )(f , can be related to h(q) via a Legendre transform: 174 

 
dq

)q(hd
q)q(h     

Legendre
    1)q(h·q)(f             (1)  175 

where   is the singularity strength or Hölder exponent, while )(f  denotes the dimension 176 

of the subset of the series. The multifractal scaling exponent is 177 

1)q(qh)q(                 (2) 178 

  being expressed as  179 
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dq

)q(d
                              (3) 180 

The characteristics of the singularity spectrum )(f  provide a new way of comparing signals, 181 

because it describes the dimensions of subsets of the series characterized by the same 182 

singularity strength . Designing 0  as the singularity strength with maximum spectrum, a 183 

small value of 0  means that the underlying process loses fine-structure, that is, it becomes 184 

more regular in appearance; conversely, a large value of 0  ensures more complexity. In 185 

this sense, the Hurst exponent depicts a linear relationship with 0 , as proved by the 186 

results. The shape of )(f  may be fitted to a quadratic function around the position 0 ,  187 

 CBAf  )()()( 0

2

0               (4) 188 

where C is an additive constant equal to 1. Coefficient B indicates the asymmetry of the 189 

spectrum, being zero for a symmetric spectrum. A right-skewed spectrum,  B > 0, indicates 190 

relatively strongly weighted high fractal exponents (with “fine-structure"), while left-skewed 191 

shapes,  B < 0, point to lower ones (more regular or smooth-structure). Spectral width, W, is 192 

defined as 193 

 12W                                 (5)   194 

with 0)()( 21   ff , being 2  larger than 1 , and the wider the spectral content, the 195 

stronger is the multifractality. In other words, the wider the range of possible fractal 196 

exponents, the “richer" is the process in structure. A signal with a high value of 0 , a wide 197 

range W of fractal exponents, and a right-skewed shape, B > 0, is more “complex" than one 198 

with the opposite characteristics (Shimizu et al., 2002). For monofractal series, the width of 199 

the spectrum would be zero and h(q) would be independent of q. Hence, from Equation (1), 200 

there will be a unique value for both   and )(f ,   being the Hurst exponent, H, and 201 

)(f being equal to 1. 202 

With respect to the appropriate range of the qth-order, two questions have to be considered. 203 

First, an accurate revision of the goodness of fit of the qth-order fluctuation functions, )(sFq , 204 

to a power law is recommended. And second, a relevant property of the Legendre transform 205 

has to be considered. From a pure analytical point of view, the theoretical maximum ( 2 ) 206 

and minimum ( 1 ) Hölder exponents for which the multifractal spectrum is zero correspond 207 
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to q   and q   respectively. In consequence, the expected range of the qth-orders 208 

should be   , . Computational instabilities for very high (positive and negative) qth-209 

orders may lead to departures from a power law for the qth-order fluctuation function. 210 

Additionally, Burgueño et al. (2013) detected significant departures from the expected 211 

quadratic function (Equation 4) modeling the multifractal spectrum when high qth-orders 212 

were applied. Considerations made by Ivanov et al. (2001), who assume that the appropriate 213 

range of qth-orders depend on the series length, would be in agreement with the detection 214 

of qth-orders for which the mentioned power law is not well accomplished. Then, the 215 

verification of spectral contents satisfying Equation 4 is suggested as an additional test to 216 

decide the optimum qth-order range. 217 

3.3 Autoregressive process 218 

The autoregressive integrated moving average ARIMA(p,d,0) model (Box and Jenkins, 1976) 219 

assumes that  220 

)N...,,2pi(a)ki(x)1i(x)i(x i

d
p

1k
k

d  


        (6a) 221 

Where  x  is a set of N empirical data, x  is the set of first differences  )()1()( ixixix  , 222 

with  dd )ki(x)1ki(x)ki(x  ,  
p1

,,,,    are the parameters of the 223 

autoregressive process,  a  is a noise series and d  is a real number. Alternatively, the 224 

ARIMA(p,d,0), with d  = 1.0, can be written as 225 

 226 

N...,,1pi,a)ki(x)i(x i

p

1k
k  



                       (6b) 227 

where time series  x  are directly used instead of first differences. With the aim of avoiding 228 

singularities in the linear system of equations used to estimate  p ,,,, 1 , parameter   229 

is implicitly included in parameter 1 . The corresponding Equation (6b) is usually designed as 230 

autoregression, AR(p). The resulting system of linear equations, disregarding the stochastic 231 

component  a , can be represented in terms of matrix formulation by  232 

WAZ                  (7a) 233 

with Z the  )(,),2(),1( nxpxpx   vector, n the number of empiric elements belonging to 234 

series  x , the (n-p-1, p+1) matrix A with elements multiplying parameters  
p1

,,,    and a 235 

p+1 dimension vector W containing the parameters to be solved from the linear system of 236 
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Equation (7a). The components of vector W can be estimated by multiplying Equation (7a) 237 

by the transposed A matrix, AT 238 

WAAZA TT                (7b) 239 

and remembering that the symmetric matrix ATA can be decomposed in two triangular 240 

matrices. Then, it is straightforward to obtain the values of parameters  p ,,, 1  taking 241 

advantage of the Crout’s algorithm (Press et al., 1992). 242 

 243 

A convincing solution of Equation (6b) demands some criterion to decide the optimum 244 

autoregression order, OAO. The decision can be taken by searching for the OAO leading to a 245 

minimum of a convenient goodness of fit index. The selected index is the mean absolute 246 

deviation, MAD (Stephenson et al., 2000), 247 











1

1

)()(
)1(

483.1
*

pN

k

kxkx
pN

MAD                   (8) 248 

being )(kx  empiric DSL and )(* kx  those predicted by parameters derived from the 249 

ARIMA(p,1,0) process. 250 

251 
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4. Results 252 

4.1 A representative example of multifractal spectrum 253 

As an example, DSL multifractal spectrum parameters for the Fabra Observatory (NE Iberian 254 

Peninsula) are shown in Figures 2a-2d. It should be noted that their general features are 255 

common to the rest of DSL series obtained from the European pluviometric network records. 256 

Nevertheless, it is important to take into account that the different parameter values for 257 

every DSL series characterize their specific complexity. Figure 2a depicts three selected qth-258 

order fluctuation functions in a log-log scale. In spite of fluctuations, their evolution with 259 

length s is well fitted by a power-law. Figure 2b describes the evolution of the generalized 260 

Hurst exponents, h(q), with q. Remembering that, for stationary series, h(q=2) is the Hurst 261 

exponent H, this DSL series is characterized by a strong randomness (H very close to 0.5).  As 262 

a general rule, also observed for daily extreme temperature series (Burgueño et al., 2013), a 263 

second order polynomial on q fits well h(q). The multiscaling fractal exponent, )(q , and 264 

Hölder exponent, (q), are shown in Figures 2c and 2d, being worth mentioning signs of 265 

linear behavior of   and the clear linear evolution of (q), with q within the 15 range. The 266 

corresponding multifractal spectrum, )(f , is shown in Figure 3. It should be underlined 267 

that the empiric normalized value of 1.0 is reached for 0  , but the fit of empirical )(f  268 

to a second order polynomial is not perfect. To summarize, DSL series corresponding to the 269 

Fabra Observatory are characterized by the following patterns: 270 

1) Strong randomness, with weak signs of persistence, as Hurst exponent exceeds 271 

slightly 0.5. 272 

2) A moderate Hölder exponent width, W, close to 0.38, with 36.01   and 273 

74.02  , thus suggesting a moderate multifractality in comparison with other DSL 274 

series.  275 

3) A centered multifractal spectrum around 55.00   and a notable asymmetry (right-276 

skewed shape) with B = +1.5. Both parameters indicate a better description of the 277 

“fine-structure” than the “smooth-structure” of the DSL series.          278 

4.2 Spatial distribution of multifractal parameters 279 

With the aim of obtaining a better picture of the multifractal variety of the different DSL 280 

series, Figure 4 shows the spatial distribution of the four parameters, H, 0 , W and B, 281 

describing multifractal spectra. Minimum 1  and maximum 2  Hölder exponents have not 282 

been considered as fundamental parameters, given that they could be substituted by the 283 
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critical Hölder exponent 0  and the spectral width W, as verified after through the Principal 284 

Component Analysis. 285 

 286 

Figures 4a and 4b show quite similar H and 0  patterns across Europe. It is worth 287 

mentioning some signs of a decreasing tendency from high to low latitudes. The strong 288 

negative gradient with latitude detected in Turkey (probably due to computational artifacts, 289 

attributable to low rain gauge density as mentioned before) and low values obtained in the 290 

SW of the Iberian Peninsula are indicative of a strong anti-persistence. Spatial patterns for 291 

the asymmetry shown in Figure 4c are difficult to interpret, as areas of “fine-structure” (B > 292 

0) and “smooth-structure” (B< 0) of the DSL regimes are not generally distributed according 293 

to latitudinal or longitudinal factors or vicinity to Atlantic or Mediterranean coasts. The 294 

spectral width, W (Figure 4d), varies within the (0.2, 0.6) interval for most of Europe. The 295 

behavior of the DSL would be qualified as close to monofractal only for a very small area of 296 

the Iberian Peninsula, with W lowering 0.2. In short, it is difficult to obtain simplified spatial 297 

patterns describing the degree of multifractality and “fine/smooth” structure of the DSL 298 

regime. Alternatively, a clustering process (Davies and Kalkstein, 1990) to group DSL series 299 

with similar patterns is applied in Section 4.3. 300 

Before the clustering process, some relationships between H, 0 , 1 , 2  and W can be 301 

analyzed. Figure 5a depicts a clear linear relationship between the Hurst exponent and the 302 

critical Hölder exponent, such a pattern also found for daily extreme temperature regimes 303 

(Burgueño et al., 2013), which are characterized by strong persistence. Consequently, it 304 

could be proposed that increasing Hurst exponents would reinforce the multifractal 305 

character of the climatic series analyzed. With respect to minimum and maximum Hölder 306 

exponents, whereas 2 tends to increase whit 0  (Figure 5b), 1 does not depict so clear 307 

evidences of a decreasing tendency. This fact would indicate that an increase of “fine-308 

structure” of the DSL series would be accompanied by an increase of W, being reinforced 309 

then the multifractal character and the complex structure of the series. This hypothesis 310 

would be confirmed by some signs of an increasing tendency of W with 0 . 311 

 312 

4.3 Principal Component Analysis 313 

Previous to the clustering process, a revision of ranges corresponding to the Hurst and 314 

critical Hölder exponents, H and 0 , spectral asymmetry, B, and spectral width, W, is done, 315 
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these parameters being obtained from the MF-DFA successful application to 258 out of 267 316 

DSL series. The nine rain gauges for which it has not been possible to obtain the multifractal 317 

spectrum are detailed in Figure 1a. Taking into account they are widespread throughout 318 

Europe, the different pluviometric regimes would not be the reason for a successful or 319 

unsuccessful quantification of multifractal parameters. Most of H and 0  values are within a 320 

relatively narrow interval from 0.4 to 0.6. Many of the asymmetries B are within the 1.5 321 

interval and a high number of multifractal spectra have a width W within the (0.25, 0.55) 322 

range. This distribution of the four multifractal parameters permits a better explanation and 323 

discussion of rain gauge spatial clusters obtained after the application of the Principal 324 

Component Analysis, PCA (Jolliffe, 1986; Preisendorfer, 1988), and the clustering process 325 

known as average linkage algorithm (Kalkstein et al., 1987; Davis and Kalkstein, 1990). Table 326 

1 summarizes the results of the PCA. After the application of the PCA algorithm to the 327 

covariance matrix of original data, the four original variables, H, 0 , B, W, are substituted 328 

for three principal components, PC1, PC2 and PC3, which explain 99.8% of data variance. A 329 

review of the factor loadings, FL, quantifying the relationship among original variables and 330 

PCs, clearly manifests that H and 0  are strongly correlated with PC1, W with PC2, and B 331 

with PC3. Consequently, the values of the four original variables are substituted for the 332 

factor score values, FSC, associated with the three chosen PCs.   333 

 334 

Figure 6 describes the spatial distribution of the three FSCs throughout Europe. Only FSC1, 335 

essentially representing H and 0 , shows a similar pattern to those of Figures 4a and 4b. 336 

Spatial distributions of FSC2 and FSC3 are much more spotted, in such a way that 337 

establishing any spatial patterns becomes difficult. Consequently, it is very likely that the 338 

clustering process will lead to define homogeneous groups of rain gauges without excessive 339 

spatial coherence. This clustering process is based, as mentioned before, on the average 340 

linkage algorithm and, more specifically, on the similarity index, ijL , concept. This index is 341 

defined as 342 

jiijij DL  
2                                                          (9) 343 

with ijD  the Euclidean distance between centroids of clusters i and j, and i  and j  the 344 

corresponding within-group variances. ijL  systematically increases whatever the merged 345 

pair (i, j) of clusters. Then, in each step of the AL process, only the merging of the pair of 346 
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clusters associated with the minimum increase of ijL  is considered. When an accepted 347 

merging of clusters is associated with a sharp increase on ijL , the previous cluster 348 

configuration is chosen as the optimum and the clustering process finishes.  349 

Figure 7 depicts the evolution of ijL  of the average linkage algorithm with the decreasing 350 

number of clusters. It should be remembered that every time the algorithm merges two 351 

clusters of very different characteristics, a step is clearly observed in the ijL  curve. Looking 352 

at Figure 7, two configurations of 9 or 14 clusters could be accepted. The configuration of 14 353 

clusters is finally chosen. The 9 clusters configuration is rejected by having a large cluster and 354 

a high number of very small, or even singular, clusters. Additionally, the configuration of 9 355 

clusters would neglect valuable spatial variety from the viewpoint of DSL multifractality.  356 

 357 

The spatial distribution of 14 clusters is shown in Figure 8. The number of rain gauges 358 

belonging to every cluster, their centroid coordinates (average and standard deviation of 359 

H, 0 , B and W) and range of every multifractal parameter are given in Table 2. Rain gauges 360 

belonging to clusters C1, C2, C3 and C7 are located at latitudes approximately north of 40oN. 361 

Clusters C4, C5 and C13 are mainly associated with areas of the Iberian Peninsula and the 362 

rest of clusters, all of them with a small number of elements, are spread throughout Europe, 363 

including Mediterranean countries. In agreement with the distribution of clusters, different 364 

European zones share more than one DSL regime. Then, to establish simple relationships 365 

between geographical factors (orography, latitudes, longitudes and vicinity to the Atlantic 366 

Ocean and the Mediterranean Sea, for instance) and DSL regimes becomes quite difficult. 367 

Nevertheless, in accordance with the well differentiated centroids summarized in Table 2, 368 

the classification of rain gauges within specific clusters becomes coherent.  369 

 370 

4.4 Complexity Index 371 

Another complementary point of view of the DSL regime in Europe consists in the 372 

application of the complexity index, CI (Burgueño et al., 2013), which is defined through the 373 

addition of the standardized 0  , z( 0 ), B, z(B), and W, z(W), parameters, in agreement with 374 

the concept of complexity developed by Shimizu et al. (2002) 375 

 )W(z)B(z)(zZ 0               (10) 376 

For a better interpretation of this addition, Z is also normalized, CI being defined as  377 
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                          (11) 378 

<Z> being equal to zero and S(Z) the standard deviation of Z. Definition given by Equation (11) 379 

permits a straightforward quantification in terms of “high complexity” (Z   0) and “low 380 

complexity”  (Z < 0). Table 3 summarizes the number of DSL series belonging to different Z 381 

intervals given in standard deviation units. It is outstanding the concentration of CI(Z) within 382 

the 1.0 interval (in standard deviation units), close to 70%, and the very low number of 383 

series with very smooth- (9 out of 258) and very fine-structure (2 out of 258). As a general 384 

feature, DSL series associated with fine-structure (Z  0) are slightly predominant (close to 385 

56%) in comparison with those related to smooth-structure (Z < 0), which represent close to 386 

44% of series. The spatial distribution of CI(Z) is depicted in Figure 9. Similarly to the spatial 387 

distribution of clusters, a clear spatial coherence is not found, being detected small areas 388 

sharing DSL series with smooth and fine-structures, especially in Central and Western 389 

Europe. Nevertheless, south-western Iberian Peninsula, southern Italy and the Adriatic coast 390 

are characterized by smooth-structure of the DSL regime. North-eastern regions of Europe 391 

have a predominant (almost unique) fine-structure of the DSL regime.  392 

4.5. Comparisons with monofractal results. 393 

Comparisons with monofractal results (Lana et al., 2010) are aimed to assess if Hurst 394 

exponents derived from rescaled range, R/S, analysis and from MF-DFA are coincident and, 395 

in addition, to establish some relationship between DSL series characterized by smooth/fine-396 

structure and monofractal properties derived from the reconstruction theorem, namely, 397 

correlation dimension, Kolmogorov entropy and Lyapunov exponents. 398 

 399 

Hurst exponent values obtained from the R/S analysis (within the 0.2−0.7 interval) are 400 

generally slightly shifted from those derived from the MF-DFA (within the 0.1−0.6 range). A 401 

good  number of Hurst exponents derived from R/S analysis are related to randomness with 402 

slight signs of persistence (H ≈ 0.6) of DSL series, whereas a significant number of Hurst 403 

exponents estimated by MF-DFA lying within the (0.4, 0.6) interval points also to 404 

predominant randomness, but with weak signs of both persistence or anti-persistence. Anti-405 

persistence is detected, both for R/S and MF-DFA, at south and south-western Iberian 406 

Peninsula and, additionally, at southern Italy and Sicily, in agreement with MF-DFA. The 407 

highest Hurst exponents are predominantly found at high latitudes (North-Eastern Europe), 408 

close to Atlantic Ocean and Baltic Sea. In short, the results concerning Hurst exponents 409 
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derived from R/S and MF-DFA, and its spatial distributions, could be assumed as roughly 410 

coincident. 411 

 412 

With respect to possible relationships among monofractal variables and fine/smooth-413 

structures defined by CI, the incidence of the Kolmogorov entropy should be discarded as 414 

their values are scattered throughout Europe without clear spatial patterns. Consequently, 415 

the loss of memory of the physical system should be a common feature, but not a 416 

discriminating factor to distinguish between smooth and fine-structures. On the contrary, 417 

spatial distributions of low values of the correlation dimension (giving an estimation of the 418 

minimum number of nonlinear equations required to describe the physical process) and high 419 

values of the Lyapunov exponents (quantifying the predictive instability of the physical 420 

system) could be associated with smooth-structures. From the point of view of CI, south and 421 

south-west of the Iberian Peninsula, south of Italy and Sicily are characterised by smooth-422 

structure. Almost the same areas are linked to the highest values of the first Lyapunov 423 

exponent, which strongly governs the predictive instability, and the lowest correlation 424 

dimensions. Consequently, it could be proposed the hypothesis that smooth-structures of 425 

the DSL regime would be described by a relatively simple system of nonlinear equations. 426 

Nevertheless, as a counterpart, the predictive instability would be notable.  Given that many 427 

areas for the rest of Europe share smooth- and fine-structures, the conjecture of a certain 428 

relationship between fine-structure and high correlation dimensions and low Lyapunov 429 

exponents is difficult to be ascertained.  430 

 431 

It is also worth of mention that, in Mediterranean countries, with quite usual drought 432 

episodes (some of them unusually long), smooth-structures are compatible with low 433 

correlation dimensions and high Lyapunov exponents, as well as with Hurst exponents 434 

indicating anti-persistent behaviours. 435 

 436 

4.6 Autoregression results 437 

Figure 10 illustrates the dependence of MAD and OAO on latitude. A roughly linear decrease 438 

of MAD, from 20 days up to approximately 4 days, with increasing latitudes ranging from 439 

30oN to 45oN, is clearly observed. For higher latitudes, this almost linear decreasing 440 

tendency is smoother, MAD reaching values close to 2 days for the highest latitudes. Even 441 

though OAO does not show a so clearly linear evolution, an increasing tendency is found up 442 

to latitudes close to 45oN. For higher latitudes, values of OAO remain within the 180-200 443 
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range, this last autoregressive order being the largest lag analyzed. These changes on 444 

tendencies close to 45oN were also detected by Serra et al. (2015), who analyzed, among 445 

other questions, the evolution with latitude of the L-moment coefficient of variation of the 446 

longest DSL. For a better understanding of OAO, It has to be underlined that for the same 447 

OAO, the required recording period depends on the DSL, especially when comparing dry and 448 

wet pluviometric regimes or very different latitudes. As an example, an OAO value equal to 449 

150 (150 consecutive dry spells) represents a wide range of recording periods for the 450 

different rain gauges of the European database. These periods vary from 10 months 451 

(Bjoernoeya, Norway, 74.59oN, 19.02oE) with a wet pluviometric regime and a short average 452 

DSL of 2.1 days, up to 5 years (Alicante, Spain, 38.01oN, 0.71oW) with a dry pluviometric 453 

regime and a longer average DSL of 12.5 days. 454 

 455 

With respect to the distribution of MAD and OAO values, it is worth mentioning that MAD 456 

values are mainly concentrated within the 2-5 days interval (197 out of 267 series), without 457 

signs of a Gaussian distribution, and most OAO values equal to or exceeding 175 (233 out of 458 

267 series). Figure 11 shows the histogram of the residuals of all DSL series, defined as the 459 

difference between empiric values and those reproduced with the OAO. These residuals are 460 

mainly concentrated within the (−4, 2) days range, representing close to 70% of DSL in 461 

Europe, and without signs of a Gaussian distribution.   462 

 463 

Figure 12 describes the spatial distribution of MAD and OAO for the 267 DSL series. Both 464 

parameters have been classified in five intervals corresponding to 0-20th, 20-40th, 40-60th, 465 

60-80th and 80-100th percentiles of their empirical cumulative distributions. The first class of 466 

MAD percentiles (0-20th) covers latitudes exceeding 50oN. Most of series with MAD 467 

belonging to the second interval are within the (45-55oN, 5-15oE) latitude and longitude 468 

ranges. The third interval mostly corresponds to a long fringe (45-60oN, 0-45oE) with a low 469 

rain gauge spatial density for longitudes exceeding 15oE. The fourth interval is 470 

predominantly associated with latitudes 40-60oN, whatever the longitude. Finally, the fifth 471 

interval is mainly linked to the Iberian Peninsula and some Mediterranean coastal rain 472 

gauges, with latitudes south of 45oN. The five classes of OAO percentiles are however, 473 

scattered throughout Europe, without any clear spatial pattern.   474 

 475 

Two examples of MAD values and DSL residuals for very different latitudes and pluviometric 476 

regimes are shown in Figure 13a (Varexjoe, Sweden) and Figure 13b (Zaragoza, Spain). 477 
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Whereas MAD is close to 3 days for Varexjoe, it attains 7 days for Zaragoza. Additionally, the 478 

standard deviations of the residuals are close to 3 and 7 days respectively. After a detailed 479 

review of DSL residuals, it is observed that the percentage of overestimated DSL (negative 480 

residuals) for both series is quite similar (close to 66%). Nevertheless, a notable difference 481 

appears when the most negative residuals are compared. Whereas the largest DSL 482 

overestimation is 5 days for Varexjoe, it is 12 days for Zaragoza. Another similar feature is 483 

observed when comparing positive residuals (underestimated DSL) exceeding one standard 484 

deviation. In both cases the percentage of underestimations is relatively small (12%). 485 

Nevertheless, notable differences are detected once again when comparing the maximum 486 

underestimation. Whereas it could be assumed as notably high (30 days) for Varexjoe, it 487 

should be considered absolutely inappropriate for Zaragoza (70 days).  488 

 489 

Table 4 summarizes the main features of the residuals for the 267 DSL series. It should be 490 

accepted that predicted DSL are not biased given that the average of the residuals is very 491 

close to zero, whatever the DSL series. Their standard deviation varies within a wide range 492 

from 1.7 to 29.5 days. The whole set of European DSL residuals would be then represented 493 

by a moderate average standard deviation of 4.6 days. In spite of this small length, at least 494 

one of the DSL series would be predicted by the AR(p) process without an excessive error, as 495 

manifested by the mentioned maximum standard deviation of 29.5 days. Skewness and 496 

kurtosis for every one of the 267 sets of residuals indicate that a Gaussian distribution 497 

should be discarded. These empirical skewness and kurtosis notably depart from values 498 

expected for a Gaussian distribution, which should be equal to 0.0 and 3.0 respectively.  499 

 500 

Percentages R(>2σ) of positive residuals (underestimated DSL) exceeding two standard 501 

deviations are not very relevant. Minimum and maximum percentages of 2.9% and 5.3% 502 

respectively, as well as an average of 4.7% for all DSL series, summarize the behavior of the 503 

largest positive residuals. An excessive overestimation of DSL is quantified by the percentage 504 

R(<−σ) of negative residuals lowering at least minus one standard deviation. The 505 

overestimation of DSL is not a relevant problem, given that for the whole database analyzed, 506 

only 4.6% of DSL have been overestimated and the maximum detected ratio for a single DSL 507 

series attains 8.3%.  508 

 509 

The hypothesis that the positive residuals (underestimated DSL) are higher than the negative 510 

residuals (overestimated DSL) is not only suggested by the results given in Table 4, but also 511 
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searching for the maximum positive residual for every one of the 267 DSL series. These 512 

extreme residuals range from 14.7 to 286.8 days. The first length could be considered high, 513 

but in some way acceptable. The second length is unacceptable. Conversely, minima of 514 

negative residuals of the 267 series range from −30.0 to −2.7 days.  515 

 516 

For a better comprehension of advantages and shortcomings of the AR(p) process applied to 517 

the DSL prediction, additional reasons for these large values of residuals have to be found, as 518 

well as for the high standard deviation detected for at least one series of residuals and to 519 

null ratios of residuals lowering −σ or within the range (σ, 2σ). Four DSL series with these 520 

characteristics are found. They come from pluviometric records in South-eastern 521 

Mediterranean, with longitudes within the (25.2oE − 35.5oE) range and low latitudes within a 522 

narrow fringe (31.8o – 35.3oN), where dryness is well-known. All of them have a very high 523 

maximum underestimation of real DSL (from −152.9 to −286.8 days) and maximum 524 

outstanding overestimation of real DSL (from 25.3 to 30.0 days), accompanied by high 525 

standard deviation of residuals, varying from 18.7 to 29.5 days. It is also worth mentioning 526 

that the percentage of overestimated DSL lowering the residual −σ is null for two series, and 527 

almost null for the other two.  528 

    529 

A possible relationship between CI and MAD is shown in Figures 14a.  Most of MAD values 530 

range from 2 to 5 days and are associated with CI within the (−2.0, +2.5) interval. Figure 14b 531 

shows signs of a possible relationship between CI and OAO too. Whereas for values of CI 532 

within the ±2.5 interval, a concentration of high values of OAO (exceeding 145) is observed, 533 

a positive trend in OAO values lowering 145 is detected for the (−4.0, +1.5) CI range. 534 

 535 
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 5. Discussion and conclusions  537 

The present MF-DFA widens the monofractal analysis of the European DSL regime (Lana et 538 

al., 2010). The degree of complexity of DSL series derived from daily pluviometric records 539 

has been quantified through multifractal parameters H, 0 , B and W, and their synthesis, the 540 

complexity index, CI. 541 

With respect to possible relationships between monofractal and multifractal parameters, it 542 

is worth mentioning that DSL regimes characterized by physical mechanisms with a low 543 

number of nonlinear equations (correlation dimension) and notable predictive instability 544 

(high positive Lyapunov exponents) are generally associated with CI negative values 545 

corresponding to smooth structures. On the contrary, fine structures (positive CI) are related 546 

to mechanisms requiring a high number of nonlinear equations. As a counterpart, the 547 

predictive instability would not be as high as for smooth structures. It is also worth 548 

mentioning that the loss of memory of the system (Kolmogorov entropy) is a common 549 

feature to all DSL regimes, without clear relationships with multifractal parameters. 550 

From the point of view of multifractal parameters across Europe, signs of a North-east to 551 

South-west decreasing trend is only observed for the Hurst exponent, H, and the critical 552 

Hölder exponent, 0 . For the other two multifractal parameters, spectral width, W, and 553 

spectral asymmetry, B, clear spatial patterns are not obtained. Neither the quantification of 554 

DSL complexity, in terms of CI, nor a clustering process, based on a previous PCA, have 555 

permitted a spatially coherent distribution of fine- and smooth-structures. This fact could be 556 

considered a shortcoming of the multifractal analysis. Alternatively, strong dependence of 557 

the DSL regime on topographic parameters (height above sea level and orographic slope for 558 

instance) and on other local and atmospheric dynamic variables (dominant wind direction, 559 

vicinity to orographic barriers such as the Alps and the Pyrenees and vicinity to Atlantic or 560 

Mediterranean seas) could be an explanation to this lack of coherent spatial clustering.  561 

 562 

With respect to the ARIMA process, several questions concerning the residuals of predicted 563 

DSL should be mentioned. First, they are not distributed according to a Gaussian model. 564 

Second, predicted DSL are not biased given that residual averages are for every one of the 565 

DSL series almost null. Third, whereas the overestimation of DSL is not a very relevant 566 

problem, their underestimation may become very important, especially for pluviometric 567 

series characterized by long DSL. Fourth, similar to spatial patterns of multifractal 568 

parameters, the spatial distribution of MAD is also complex and the OAO is not coherently 569 
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distributed. And fifth, all DSL residuals characterized by high standard deviations and very 570 

high underestimations belong to pluviometric records associated with very dry regimes at 571 

low latitudes in the Mediterranean area. In other words, DSL for dry regimes (usually low 572 

latitudes) are more difficult to be predicted than for wet regimes (generally high latitudes). 573 

In fact, DSL belonging to the aforementioned very dry regimes should be qualified as very 574 

hardly predictable in agreement with results obtained from the ARIMA process. An 575 

acceptable prediction for these very dry regimes might be achieved with the ARIMA(p,d,q) 576 

model, applied before for instance to monthly rainfall (Wang et al., 2014). Also, methods 577 

based on conditional Poisson distribution and Monte Carlo algorithms (Jung et al., 2006) 578 

might be considered. In short, the prediction of these extreme DSL would be beyond the 579 

main objectives of this paper. 580 

 581 

It is worth noticing the high OAO values for most of DSL series. These high values could be in 582 

agreement with the Kolmogorov entropy, which quantifies the loss of memory of the 583 

physical mechanisms along the time process. Prediction of DSL series affected by a high loss 584 

of memory would require then a notable number of previous steps (DSLs) to obtain 585 

acceptable predictions.  586 

   587 

Similarly to comparisons made between monofractality and multifractality, coincidences and 588 

disagreements between multifractal and ARIMA results are worthy to be mentioned. A clear 589 

relationship between CI and MAD has not been found. Nevertheless, low MAD, from 2 to 5 590 

days, are usually associated with fine and smooth structures with CI ranging from −2 to +2. 591 

The highest MAD are detected for CI within the range (−4, −3), corresponding to smooth 592 

structures from the multifractal point of view. With respect to a possible relationship 593 

between CI and OAO, a great number of DSL series are characterized by OAO exceeding 150 594 

and belonging to fine or smooth structures. A few cases of OAO lowering 150 with CI varying 595 

from −4 (very smooth structures) to +1 (moderate fine structures) are characterized by a 596 

clear linear increasing trend. 597 

   598 

Finally, latitudinal changes on MAD and OAO are outstanding, roughly at 45oN, thus 599 

reinforcing the hypothesis of a certain dependence on latitude. As mentioned in Section 4.6, 600 

a similar behavior has been observed in recent statistical analyses of long DSL. 601 

602 
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 603 

 EV(%) HFL  
0

FL  
WFL   BFL  

PC1 49.1 0.992 0.970 0.180 -0.084 

PC2 25.5 0.101 0.205 0.983 0.030 

PC3 25.2 -0.035 -0.112 0.032 0.996 

 604 

Table 1. Explained variance, EV, in percentage, of the original data for every one of the three 605 

first rotated Principal Components, PC. HFL , 
0

FL , WFL  and BFL  represent the rotated 606 

factor loadings for every PC. 607 

 608 

 609 

Cluster H  
H  HR   0  

0
  

0
R  W  

W  WR  B  
B  BR  

C1(53) 0.504 0.055 0.262 0.519 0.056 0.282 0.323 0.055 0.223 −1.038 0.602 2.594 

C2(47) 0.490 0.043 0.171 0.506 0.044 0.175 0.398 0.035 0.120   1.296   0.348 1.275 

C3(85) 0.495 0.053 0.229 0.528 0.053 0.275 0.432 0.046 0.200 −0.145 0.575 3.126 

C4(12) 0.326 0.054 0.163 0.346 0.053 0.160 0.445 0.025 0.097   1.068 0.287 0.915 

C5(08) 0.183 0.058   0.157 0.190 0.058 0.164 0.258 0.068 0.186   0.742 0.495 1.523 

C6(03) 0.125 ---- ---- 0.122 ---- ---- 0.157 ---- ---- −0.817 ---- ---- 

C7(25) 0.501 0.054 0.232 0.507 0.048 0.225 0.247 0.043 0.148   0.935 0.708 2.824 

C8(01) 0.541 ---- ---- 0.651 ---- ---- 0.618 ---- ---- −1.132 ---- ---- 

C9(01) 0.508 ---- ---- 0.407 ---- ---- 0.591 ---- ----   3.364 ---- ---- 

C10(01) 0.469 ---- ---- 0.612 ---- ---- 0.599 ---- ---- −2.901 ---- ---- 

C11(06) 0.334 0.014 0.039 0.365 0.019 0.055 0.402 0.060 0.170 −0.612 0.392 1.133 

C12(10) 0.474 0.044 0.123 0.492 0.045 0.131 0.533 0.034 0.126   1.034 0.248 0.709 

C13(05) 0.251 0.015 0.036 0.258 0.016 0.037 0.223 0.051 0.113   1.782 0.560 1.305 

C14(01) 0.177 ---- ---- 0.197 ---- ---- 0.367 ---- ---- −0.639 ---- ---- 

 610 

Table 2. Summary of average { H ,  0 , W , B }, standard deviation { H , 
0

 , W , B } 611 

and range { HR , 
0

R , WR , BR } of the four multifractal parameters representing every spatial 612 

cluster. The number of rain gauges belonging to every cluster is given in the first column 613 

within parentheses. Standard deviations for clusters with less than four rain gauges are not 614 

included. 615 

 616 

CI Z < -2 -2   Z < -1 -1  Z < 0 0   Z < 1 1   Z < 2 Z  2 

NDSL 9 31 74 115 27 2 

 617 

Table 3. Number of DSL series, NDSL, with Complexity Index, CI, within several standard 618 

deviation intervals. 619 

 620 
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 623 

 σ(days) Sk K R(σ, 2σ) (%) R(>2σ) (%) R(<-σ) (%) 

Minimum 1.71 1.85 4.43 0.0 2.90 0.0 

Maximum 29.48 5.19 31.20 9.21 5.27 8.28 

Average 4.64 2.55 10.91 7.03 4.69 4.55 

 624 

Table 4. Statistical summary (minimum, maximum and average) of the 267 samples of 625 

standard deviations, σ, skewness, Sk, kurtosis, K, and percentages of residuals within the (σ, 626 

2σ), R(σ, 2σ), exceeding 2σ, R(>2σ), and lowering −σ, R(<−σ), ranges.  627 
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-20 -15 -10 -5 0 5 10 15 20
DSL Residual (days)

0.00

0.05

0.10

0.15

0.20

0.25

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

                  Gaussian - - - - - -

            Average = - 0.2 days
 Strd. deviation =    3.6 days

      Average = -0.2 days 

 
Standard deviation = 3.6 days 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 

-15 -10 -5 0 5 10 15 20 25 30 35 40 45

30

35

40

45

50

55

60

65

70

75

           0 < MAD < 2.92        2.92 < MAD < 3.23       3.23  < MAD < 3.65

      3.65 < MAD < 5.41        5.41 < MAD < 19.61

MAD Index

-15 -10 -5 0 5 10 15 20 25 30 35 40 45

30

35

40

45

50

55

60

65

70

75

           15 < OAO< 181          181 < OAO < 192         192  < OAO < 196

         196 < OAO < 199         199 < OAO < 200

Optimum autoregression order, OAO

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 45 

a) 

b) 

 

 

 

 

Figure 13 

0 500 1000 1500 2000 2500 3000
Consecutive Dry Spells

-5

0

5

10

15

20

25

30

35

D
S

L
 r

e
s

id
u

a
ls

 (
d

a
y

s
)

VAEXJOE, Sweden
(56.87º N, 14.80º E) 

+2.0

+1.0

-1.0

0 500 1000 1500 2000
Consecutive Dry Spells

-10

0

10

20

30

40

50

60

70

D
S

L
 r

e
s

id
u

a
ls

 (
d

a
y

s
)

ZARAGOZA, Spain
(41.65º N, 1.02º W)

+2.0

+1.0

-1.0

0 25 50 75 100 125 150 175 200
p, autoregression order

3.06

3.08

3.1

3.12

3.14

3.16

3.18

M
A

D
 i
n

d
e

x
 (

d
a

y
s

)

VAEXJOE (Sweden)
56,87º N, 14,8º E

0 25 50 75 100 125 150 175 200
p, autoregression order

7.2

7.3

7.4

7.5

7.6

M
A

D
 i
n

d
e

x
 (

d
a

y
s

)

ZARAGOZA (Spain)
41.65º N, 1.01º W

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 46 

 

 

    (a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 
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Manuscript TAAC-D-14-00581: Multifractality and autoregressive processes of dry spell lengths in Europe: An 

approach to their complexity and predictability (Authors: X. Lana, A. Burgueño, C. Serra and M.D. Martínez) 

Response to Reviewer 1: 

a) In agreement with recommendations of the Reviewer and the Editor, the Section 3.1 has been 

notably shortened, being only introduced the basic concepts concerning the MF-DFA algorithm and 

the appropriate references (see also lines 162-165). The structure of Section 3.2 (Singularity 

spectrum) has not been changed, as many definitions of parameters and concepts used after are 

summarised in this Section. Additionally, in agreement with Reviewer 2, a detailed discussion about 

the range of qth-order has been added to this Section. 

 

b) Effectively, the interpolation method has been the “inverse distance”. We think that in our case the 

main problem of obtaining accurate plots of the spatial distribution of fractal parameters is the 

limited rain gauge density in some areas, as mentioned now in page 5 (lines 118-124). 

 

c) In Section 5, lines 575-580, several alternatives to the AR(p) process are cited as possible 

improvements on DSL prediction for very long DSL. Certainly, an ARIMA(p,d,q) modelling and others 

methods based on the Poisson distribution and Monte Carlo algorithms would improve the 

mentioned very long DSL prediction, but we think they are beyond the scope of the present paper. It 

is also worth of mention that the relatively simple AR(p) process has led to good results when 

predicting monthly Western Mediterranean Oscillation index, as the authors of this manuscript have 

found (manuscript nowadays submitted to the International Journal of Climatology). With respect to 

these questions, we have to mention that in line 224-225 a mistake concerning the definition of AR(p) 

has been amended. AR(p) has to be properly defined as an ARIMA(p,d,q) with d=1 and q=0. 

 

Response to Reviewer 2:   

a) With the aim of a more complete description of the DSL series, new Figure 1c includes a histogram of the 

number of DSL, NDSL, for the 267 DSL series. Additionally, two very different examples of DSL series 

(Vaexjoe, Sweden, and Almeria, Spain) are shown in a new Figure 1d. The corresponding comments are 

developed in Section 2, lines 136-143. 

 

b) A discussion about the appropriate range of the qth-order is developed in Section 3.2, lines 203-217. The 

paper suggested by the reviewer (*), the assumption that multifractal spectra should be fitted to a 

quadratic function taking as argument the Hölder exponent, and previous experience of the authors 

about this question have been used as reference points of this discussion. 

(*) Ivanov P. Ch., Nunes Amaral, L.A., Goldenberg A.L., Haulin S., Rosenblum M.G., Stanley, H.E., Struzik, Z.B. (2001). 

From 1/f noise to multifractal cascades in hearthbeat dynamics. Chaos, 11, 641-652. 

c) The process to obtain a configuration of 14 clusters is described with more detail in Section 4.3, lines 340-

356. The explanation is partially based on the concept of similarity index, Lij, which is defined and 

quantified by the new Equation 9.  

 

d) With respect to Figures 8, due to a technical problem with the writing software, the two first figures were 

plotted without appearing “C” codes designing the cluster number. The problem has been now solved.    
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http://www.editorialmanager.com/taac/download.aspx?id=73955&guid=f46a991a-3c35-45a9-8920-e8a45a4a3f36&scheme=1

