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Abstract

In recent years, many researchers have addressed the issue of making Unmanned Aerial

Vehicles (UAVs) more and more autonomous. In this context, the state estimation of the

vehicle position is a fundamental necessity for any application involving autonomy. How-

ever, the problem of position estimation could not be solved in some scenarios, even when

a GPS signal is available, for instance, an application requiring performing precision

manoeuvres in a complex environment. Therefore, some additional sensory information

should be integrated into the system in order to improve accuracy and robustness. In this

work, a novel vision-based simultaneous localization and mapping (SLAM) method with

application to unmanned aerial vehicles is proposed. One of the contributions of this work is

to design and develop a novel technique for estimating features depth which is based on a

stochastic technique of triangulation. In the proposed method the camera is mounted over a

servo-controlled gimbal that counteracts the changes in attitude of the quadcopter. Due to

the above assumption, the overall problem is simplified and it is focused on the position esti-

mation of the aerial vehicle. Also, the tracking process of visual features is made easier due

to the stabilized video. Another contribution of this work is to demonstrate that the integra-

tion of very noisy GPS measurements into the system for an initial short period of time is

enough to initialize the metric scale. The performance of this proposed method is validated

by means of experiments with real data carried out in unstructured outdoor environments. A

comparative study shows that, when compared with related methods, the proposed

approach performs better in terms of accuracy and computational time.

1 Introduction

There are still important problems to be solved in autonomous robotics, and simultaneous

localization and mapping (SLAM) is one of them. This paper tries to tackle this problem and

contributes to give even more autonomy to mobile robots. Regarding the term SLAM, it is

used to refer to a map building process in an unknown space and the use of this map to navi-

gate through such an space tracking the position in a simultaneous process. Usually this map is
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built using the sensors that the device (an aerial vehicle in this case) have on board, (see [1, 2]

for a complete survey).

Many different kinds of sensors can be used for implementing SLAM systems, for instance,

laser ([3–5]), sonar ([6–8]), sound sensors ([9, 10]), RFID ([11, 12]) or computer vision

([13–15]). The selection of such a sensor technology has a great impact on the algorithm used

in SLAM and, depending on the application and other factors, each technology has some

strong and weak points.

This work proposes a novel vision-based SLAM method to be applied to a quadcopter. In

the case of small unmanned aerial vehicles (UAVs), there exist several limitations regarding to

the design of the platform, mobility and payload capacity that impose considerable restrictions

on the available computational and sensing resources. Recently, the availability of lighter laser

range finders has allowed the use of this kind of sensors in small UAVs. Some examples of

SLAM systems with application to UAVs that make use of laser range finders are: [16, 17] and

[18]. While a good performance can be obtained with laser range finders, video cameras still

represent an excellent choice for its use in small UAVs. Those devices provide many data and

can be hardware-embedded in aerial vehicles for their low weight and consumption at an

affordable cost.

Specifically, monocular vision presents significant advantages respect other camera config-

urations (mainly stereo-vision). A single camera does not present the problem of a stereo rig

with a fixed baseline between cameras limitating the operational range. But as a drawback the

use of a single camera means to face some technical challenges: depth information has to be

retrieved with many frames and, therefore, robust techniques for recovering the feature depth

are needed. Some examples of recent works about general monocular SLAM systems that have

shown great results are: [19–21].

Related work: There are different approaches for implementing monocular SLAM systems

applied to aerial vehicles which some of them are variations of more general methods. In [22]

SURF visual features are used within an EKF-based (Extended Kalman Filter) SLAM scheme.

In this case, features are initialized into the state by using the undelayed inverse depth (UID)

method, proposed in [23]. In [24] an homography-based SLAM approach is proposed. In this

case homography-based techniques are used to compute the UAV relative translation and

rotation by means of the images. The visual odometer is then integrated into the SLAM

scheme via an EKF. The work in [25] also uses an homography-based method for estimating

the motion of the vehicle. The computed motion is used as input of an EKF-SLAM that fuses

inertial measurements. Initialization of features is done by the UID method. In [26], an EKF-

based approach is proposed where feature depth is computed by triangulation between visual

correspondences using SIFT descriptors. In [27] a method that estimates depth and vehicle

states, by exploiting the orthogonality of indoor environments, is proposed. The SLAM formu-

lation used in that work is the FastSLAM algorithm proposed in [28]. In [29] a fully navigation

scheme (control and estimation) is proposed. In this case the Parallel Tracking and Mapping

(PTAM) algorithm, described in [30], is used for implementing the SLAM system. In [31] an

EKF scheme is embedded into the PTAM algorithm for fusing IMU (inertial measurement

unit) data, in order to recover the absolute scale of estimations. In [32] a variation of the

PTAM algorithm is proposed to be applied in environments with very few visual features. In

[33] another variation of the PTAM algorithm is proposed. A Bayesian filter that explicitly

models outlier measurements is used to estimate the depth of feature locations: a 3D point is

only inserted in the map when the corresponding depth-filter has converged.

As it can appreciated from the above approaches in literature, most of them are filter-based

methods, Keyframe methods (PTAM), or a mixture of them. While Keyframe methods are
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shown to give accurate results when the availability of computational power is enough, filter-

ing-based SLAM methods might be beneficial if limited processing power is available [15].

Objectives and contributions: In this work authors propose a new filter-based monocular

SLAM scheme. The method presented in this research has been designed for taking advantage

of hardware resources commonly available in this kind of platforms. The performance of the

method is validated by means of experiments with real data carried out in unstructured out-

door environments. An extensive comparative study is presented for contrasting the operative

and effectiveness of this proposal respect to other relevant methods. One of the contributions

of this work is to present a novel technique for estimating the features depth. The proposed

approach is based on a stochastic technique of triangulation. While this technique is inspired

in a previous authors’ work [34], crucial and contributive modifications have been introduced

in order to accommodate it to the particularities of the current application:

• In this work, the camera is mounted over a servo-controlled gimbal that counteracts the

changes in attitude of the quadcopter. Due to the above assumption, the overall problem is

simplified and it is focused on the position estimation of the MAV. Also, the tracking process

of visual features is made easier due to the stabilized video.

• Instead of using an external pattern of known dimensions, in this work the GPS signal is

used during a short initial period of time for recovering the metric scale of the estimates.

• Features are directly parametrized in their euclidean form, instead of the inverse depth

parametrization. The consequence is a reduction of the computational cost of the filter due

to the reduction of the dimension of the system state.

• A novel technique for the tracking process of candidate points is proposed. In this case the

search of visual features is limited to regions of the image circumscribed by ellipses derived

from epipolar constraints. The consequence is an improvement in the execution time.

Compared with other methods presented in literature, one of the contributions of this work

is to demonstrate that the integration of very noisy GPS measurements into the system for an

initial short period is enough to initialize the metric scale. For example in [35] the monocular

scale factor is retrieved from a feature pattern with known dimensions. In [29] and [36], the

map is initially set by hand, by aligning the first estimates with the ground-truth in order to get

the scale of the environment. Additionally, the proposed approach is simpler when compared

with similar approaches, because the estimation of the camera orientation is avoided by using

the servo-controlled gimbal. In [26] feature depth is computed by direct triangulation between

visual correspondences using SIFT descriptors. In this work, a novel technique, which is based

on patch-correlation, is used for the tracking process of candidate points. It is well known that

local descriptors like SIFT or SURF are more robust that the use of patch-correlation tech-

niques for matching visual features. Nevertheless, the stabilized video and the stochastic nature

of the whole initialization method makes reliable the technique proposed in this work for

tracking candidate points, with the implicit gain in terms of computational cost.

Perhaps, the most extended technique that is used for initializing map features in EKF-

SLAM is the UID based methods (e.g. [22, 25]). Nevertheless, the comparison study presented

in this work shows that the proposed method can surpass the UID method in terms of accu-

racy and computational time, at least for the kind of application studied.

Paper outline: Section 2 states the problem description and assumptions. Section 3

describes the proposed method in a detailed manner. In Section 4 experimental results are

shown together with a comparative study and the discussion about those results and, finally,

Section 5 presents the conclusions of this work.

MonoSLAM for UAV
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2 Assumptions

The platform considered in this work is a quadrotor with free movements in any direction in

R3 � SOð3Þ, shown in Fig 1. However, it is important to highlight that the proposed monocu-

lar SLAM method could be applied to other kind of platforms. The proposed method is mainly

intended for local autonomous vehicle navigation. In this case, the local tangent frame is used

as the navigation reference frame. Thus, the initial position of the vehicle defines the origin of

the navigation coordinates frame. The navigation system follows the NED (North, East,

Down) convention. The magnitudes expressed in the navigation and in the camera frame are

denoted respectively by the superscripts N and C. All the coordinate systems are right-handed

defined. It is also assumed that the location of the origin of camera frame respect to other ele-

ments of the quadcopter (e.g. GPS antenna) is known and fixed. In this case, the position of

the origin of the vehicle can be computed from the estimated location of the camera.

In aerial vehicles applications, the attitude estimation is well handled by available systems

(e.g. [37] and [38]), therefore, this work will focus in position estimation. Also, it is assumed

that the monocular camera is mounted over a servo-controlled gimbal (see Fig 1). This kind of

accessory, used mainly for stabilizing video capture, has become very common in aerial appli-

cations. In our case, the gimbal is configured in order to counteract the changes in attitude of

the quadcopter, and therefore stabilizing the orientation of the camera towards the ground

(down axis in NED coordinates). The above consideration has two important consequences: i)

the tracking process of visual features is made easier due to the stabilized video, ii) the orthogo-

nal matrix RCN, defining the rotation of the camera frame to the navigation frame, is assumed

to be known.

An standard monocular camera is considered. In this case, a central-projection camera

model is assumed. The image plane is located in front of the camera’s origin where a non-

inverted image is formed. The camera frame C is right-handed with the z-axis pointing to the

field of view.

Fig 1. Coordinate systems: the local tangent frame is used as the navigation reference frame N. Monocular camera is mounted over a servo-

controlled gimbal that counteracts the changes in attitude of the quadcopter.

doi:10.1371/journal.pone.0167197.g001
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The R3 ) R2 projection of a 3D point located at pN = (x, y, z)T to the image plane p = (u, v)

is defined by:

u ¼
x0

z0
v ¼

y0

z0
ð1Þ

Let u and v be the coordinates of the image point p expressed in pixel units, and:

x0

y0

z0

2

6
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3

7
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0 f v0

0 0 1

2
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4

3

7
5pC ð2Þ

Let pC be the same 3D point pN, but expressed in the camera frame C by pC = RNC pN. Let RNC

be the rotation matrix that allows to transform from the navigation frame N to the camera

frame C. Also, it is fulfilled that RNC = (RCN)T, and RCN is known by the use of the gimbal.

Inversely, a directional vector hC ¼ ½hCx ; h
C
y ; h

C
z �

T
can be computed from the image point

coordinates u and v as

hCðu; vÞ ¼
u0 � u
f

;
v0 � v
f

; 1

� �T

ð3Þ

Vector hC points from the camera optical center position to the 3D point location and it can be

expressed in the navigation frame by hN = RCN hC. Note that for the R2 ) R3 mapping case,

defined in Eq 3, depth information is lost.

The distortion caused by the camera lens is considered through the model described in

[39]. Using the former model (and its inverse form), undistorted pixel coordinates (u, v) can

be obtained from (ud, vd) and conversely. In this case, it is assumed that the intrinsic parame-

ters of the camera are already known: focal length f, principal point (u0, v0), and radial lens dis-

tortion k1, . . ., kn.

3 Method description

3.1 Problem description

The main goal of the proposed method is to estimate the following system state x:

x ¼ ½xv; y1; y2; :::; yn�
T

ð4Þ

where xv represents the state of the camera-quadcopter, and yi represents the location of the i-
th feature point in the environment. At the same time, xv is composed of:

xv ¼ ½r
N ; vN �T ð5Þ

Let rN = [px, py, pz] represent the position of the vehicle (camera) expressed in the navigation

frame. Let vN = [vx, vy, vz] denote the linear velocity of the robot expressed in the navigation

frame. The location of a feature yi is parametrized in its euclidean form:

yi ¼ ½pxipyi ; pzi �
T

ð6Þ

3.2 Prediction

The work presented in this paper is motivated by the application of monocular SLAM to small

aerial vehicles. In this case, and due to limited resources commonly available in this kind of

MonoSLAM for UAV
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applications, the filtering-based SLAM methods seem to be still more appropriate than Key-

frame methods. Moreover, filtering-based methods are better suited for incorporating, in a

simple manner, additional sensors to the system. In this sense, most robotic applications make

use of multiple sensor inputs.

The architecture of the system is defined by the typical loop of prediction-updates steps in

the EKF in direct configuration, where the EKF propagates the vehicle state as well as the fea-

ture estimates. In this case, the camera-vehicle system state xv takes a step forward by the fol-

lowing simple model:

rNkþ1
¼ rNk þ vNk Dt

vNkþ1
¼ vNk þ VN

ð7Þ

(

At every step, it is assumed that there is an unknown linear velocity with acceleration zero-

mean and known-covariance Gaussian processes σa, producing an impulse of linear velocity:

VN ¼ s2
aDt.

It is assumed that the map features yi remain static (rigid scene assumption) so xk+1 =

[xv(k+1), y1(k), y2(k), . . ., yn(k)]
T.

The state covariance matrix P takes a step forward by:

Pkþ1 ¼ rFxPkrF
T
x þrFuQrF

T
u ð8Þ

where Q and the JacobiansrFx,rFu are defined as:

rFx ¼
@fv
@xv

06�n

0n�6 In�n

2

4

3

5;rFu ¼
@fv
@u

06�n

0n�3 0n�n

2

4

3

5;Q ¼
U 03�n

0n�3 0n�n

" #

; ð9Þ

Let
@fv
@xv

be the derivatives of the equations of the nonlinear prediction model (Eq 7) with respect

to the robot state xv. Let
@fv
@u be the derivatives of the nonlinear prediction model with respect to

the system input u. Uncertainties are incorporated into the system by means of the process

noise covariance matrix U ¼ s2
aI3�3, through parameter s2

a.

3.3 Detection of candidate points

The proposed method states that a minimum number of features yi is considered to be pre-

dicted appearing in the image, otherwise new features should be added to the map. In the latter

case, new points are detected in the image through a random search. For this purpose, Shi-

Tomasi corner detector [40] is applied, but other detectors could also be used. These points in

the image, which are not added yet to the map, are called candidate points (see Fig 2). Only

image areas free of both, candidate points and mapped features, are considered for detecting

new points with the saliency operator.

At the k-th frame, when a visual feature is detected for the first time, the following entry cl is

stored in a table:

cl ¼ ðtNc0Þ
T
; y0; �0; Pyi ; u; v

h i
ð10Þ

where yci ¼ ½ðt
N
c0
Þ
T
; y0; �0�models a 3D semi-line, defined on one side by the vertex ðtNc0Þ

T
, cor-

responding to the current optical center coordinates of the camera expressed in the navigation

frame, and pointing to infinite on the other side with azimuth and elevation θ0 and ϕ0,

MonoSLAM for UAV
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respectively, being:

y0 ¼ atan2ðhNy ; h
N
x Þ

�0 ¼ acos
hNzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhNx Þ
2
þ ðhNy Þ

2
þ ðhNz Þ

2
q

0

B
@

1

C
A

ð11Þ

where hN ¼ ½hNx ; h
N
y ; h

N
z �

T
is computed as indicated in Section 2. Let Pyi be a 5 × 5 covariance

matrix which models the uncertainty of yi. Therefore Pyi = JPJT, where P is the system covari-

ance matrix and J is the Jacobian matrix formed by the partial derivatives of the function

yci = h(x, zuv) with respect to [x, zuv]T. Let [u, v] be the location in the image of the candidate

point.

Also, a p × p-pixel window, centered in [u, v] is extracted and linked to the corresponding

candidate point.

3.4 Tracking of candidate points

At every subsequent frame k + 1, k + 2. . .k + n, the location of candidate points is tracked. In

this case, a candidate point is predicted to appear inside an elliptical region S centered in the

point [u, v], taken from cl, see Fig 3.

In order to optimize the speed of the search, the major axis of the ellipse is aligned with the

epipolar line defined by image points e1 and e2.

The epipole e1 is computed by projecting tNc0 , which is stored in cl, to the current image

plane by Eqs 1 and 2. The point e2 is computed by projecting the 3D point pN defined by the

Fig 2. New candidate points are randomly detected in image regions that are empty of map features

or candidate points being tracked. In this frame, the black rectangle indicates the current search region

where new candidate points have been detected (green cross mark). In order to speed up the tracking

process of candidate points, a search region is established constrained by ellipses (in red) aligned with the

epipolar lines (in yellow). Candidate points being tracked are indicated by blue cross marks. Visual features

already mapped are indicated by dots. Red dots indicate unsuccessfully matches.

doi:10.1371/journal.pone.0167197.g002
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data stored in cl, through Eqs 1 and 2 also, but assuming a depth equal to one (d = 1). In this

case, pN models a 3D point located at:

pN ¼ tNc þ dðm yi; �ið ÞÞ ð12Þ

where m(θi, ϕi) is a directional unitary vector defined by:

mðyi; �iÞ ¼ ð cosyi sin�i; sinyi sin�i; cos�iÞ
T

ð13Þ

The orientation of the ellipse Sc is determined by αc = atan2(ey, ex) where e = e2 − e1 and ey, ex
represent the y and x coordinates respectively of e. The size of the ellipse Sc is determined by its

major and minor axis, respectively a and b. In this case a and b are free parameters constrained

to b� a.

The ellipse Sc is represented in its matrix form by:

Sc ¼ Rc

a 0

0 b

" #

RT
c

Rc ¼
cosac � sinac

sinac cosac

" # ð14Þ

The ellipse Sc represents a probability region where the candidate point must lie in the cur-

rent frame. In this case, patch cross-correlation is applied over all the image locations [uS, vS]
within the search region. If the score of a location [uS, vS], determined by the best cross-corre-

lation between the candidate patch and the n patches defined by the region of search, is higher

than a threshold, then this pixel location [uS, vS] is considered as the current candidate point

location. Thus, cl is updated with [u, v] = [uS, vS].

Fig 3. The established search region for matching candidate points is constrained by ellipses aligned with the epipolar line.

doi:10.1371/journal.pone.0167197.g003
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At this stage, there is not yet reliable information about the depth of candidate points. For

this reason, it is difficult to determine an optimal size of the search ellipse. In this case, the

parameter a is chosen empirically in function of the particularities of the application as the

velocity of the vehicle and the frame rate of the video. In this work, good results were found

with a value of a = 20 pixels.

Nevertheless, the effects obtained by the variation of the relation of (b/a), which determines

the proportion of the ellipse, can be investigated. In this case, some experimental results were

obtained using the same methodology described in Section 4. The results can be summarized

as follows (see Fig 4):

• As the ellipse tends to be a circle, the time required to track a candidate point increases con-

siderably (left plot).

• When the ellipse tends to be a circle the number of candidate points being tracked is lower

(middle plot). This is because when the ellipse is too thin, some candidate points are lost and

new ones must be detected.

• When the parameter b is chosen in order to define a very thin ellipse, the total time required

for the whole tracking process of candidate points is much lower (right plot).

Based on the above results, the value of parameter b is recommended to be ten times lower

than a.

It is important to note that no extra effort is put in order to obtain a more robust descriptor.

There are two main reasons for supporting this approach: i) The method proposed for tracking

the candidate points is applied only during an initial short period when a new visual feature is

detected. During this initial period, prior to the initialization of the candidate point as a new

map feature, some information about the feature depth is gathered. ii) Different from the gen-

eral problem of the monocular SLAM, the stabilized video also makes easier the tracking pro-

cess of candidate points.

3.5 Feature initialization

Depth information cannot be obtained in a single measurement when bearing sensors (e.g. a

projective camera) are used. To infer the depth of a feature, the sensor must observe this fea-

ture repeatedly as this sensor moves freely through its environment, estimating the angle from

the feature to the sensor center. The difference between those angle measurements is the

Fig 4. Variation of the relation between ellipse Sc axes (b/a). Left plot: average tracking time for a candidate point. Middle plot: average number

of candidate points being tracked at each frame. Right plot: average total time per frame.

doi:10.1371/journal.pone.0167197.g004
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parallax angle. Actually, parallax is the key that allows estimating features depth. In case of

indoor sequences, a displacement of centimeters could be enough to produce parallax; on the

other hand, the more distant the feature, the more the sensor has to travel to produce parallax

(see Fig 5).

Every time that a new image location zuv = [u, v] is obtained for a candidate point cl, an

hypothesis of depth di is computed by:

di ¼
kelk sing

sina
ð15Þ

Let αi = π − (β + γ) be the parallax. Let el ¼ tNc0 � tNc indicate the displacement of the camera

from its first observation to its current position with:

b ¼ cos � 1 h1 � el
kh1kkelk

� �

g ¼ cos � 1 h2 � � el
kh2kkelk

� �

ð16Þ

Let β be the angle defined by h1 and el. Let h1 be the normalized directional vector m(θ, ϕ) =

(cos θ sin ϕ, sin θ sin ϕ, cos ϕ)T computed taking θ0, ϕ0 from cl, and where γ is the angle defined

Fig 5. An hypothesis of depth di of a candidate point is computed by triangulation between the first location when the point was detected and

the current location of the aerial vehicle.

doi:10.1371/journal.pone.0167197.g005
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by h2 and −el. Let h2 = hN be the directional vector pointing from the current camera optical

center to the feature location computed as indicated in Section 2 from the current measure-

ment zuv.
At each step, the hypothesis of depth di is low-pass filtered because the depth estimated by

triangulation varies considerably, specially for low parallax. In previous authors’ work [34] is

demonstrated that only a few degrees of parallax is enough to reduce the uncertainty in depth

estimations.

When parallax αi is greater than a specific threshold (αi> αmin) a new feature ynew =

[pxi, pyi, pzi]
T is added to the system state vector x:

xnew ¼ ½xold; ynew�
T

ð17Þ

where

ynew ¼ tNc0 þmðy0; �0Þdi ð18Þ

The system state covariance matrix P is updated by:

Pnew ¼
Pold 0

0 Pynew

" #

ð19Þ

Let Pynew be the 3 × 3 covariance matrix which models the uncertainty of the new feature ynew,

and:

Pynew ¼ J
Pyi 0

0 s2
d

" #

JT ð20Þ

In Eq 20, Pyi is taken from cl. Let s2
d be a parameter modelling the uncertainty of process of

depth estimation. Let J be the Jacobian matrix formed by the partial derivatives of the function

ynew = h(cl, di) with respect to ½ðtNc0Þ
T
; y0; �0; di�

T
.

3.6 Visual updates and map management

The process of tracking visual features yi is conducted by means of an active search technique

[41]. In this case, and in different way from the tracking method described in subsection 3.4,

the search region is defined by the innovation covariance matrix Si, where

Si ¼ rHiPkþ1rHT
i þ Ri.

Assuming that for the current frame, n visual measurements are available for features

y1, y2, . . ., yn, then the filter is updated with the Kalman update equations as:

xk ¼ xkþ1 þ Kðz � hÞ

Pk ¼ Pkþ1 � KSKT

K ¼ Pkþ1rHTS� 1

S ¼ rHPkþ1rHT þ R

ð21Þ

8
>>>><

>>>>:

where z = [zuv1
, zuv2

, . . ., zuvn]
T is the current measurement vector. Let h = [h1, h2, . . ., hn]T be

the current prediction measurement vector. The measurement prediction model hi = (u, v) =

h(xv, yi) has been defined in Section 2. Let K be the Kalman gain. Let S be the innovation

covariance matrix. LetrH = [rH1,rH2, . . .,rHn]T be the Jacobian formed by the partial
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derivatives of the measurement prediction model h(x) with respect to the state x, as:

rHi ¼
@hi
@xv

; :::02�3:::;
@hi
@yi

; :::02�3:::

� �

ð22Þ

Let
@hi
@xv

be the partial derivatives of the equations of the measurement prediction model hi with

respect to the robot state xv. Let
@hi
@yi

be the partial derivatives of hi with respect to feature yi.

Note that
@hi
@yi

has only a nonzero value at the location (indexes) of the observed feature yi. Let

R ¼ ðI2n�2nÞs
2
uv be the measurement noise covariance matrix.

A SLAM framework that works reliably in a local way can easily be applied to large-scale

problems using different methods, such as sub-mapping, graph-based global optimization [15]

or global mapping [42]. Therefore, in this work, large-scale SLAM and loop-closing are not

considered. Nevertheless these problems have been intensively studied in the past. Candidate

points whose tracking process fails are pruned from the system. In a similar way, visual fea-

tures with high percentage of mismatching are removed from the system state and covariance

matrix.

3.7 Metric scale and System initialization

Even when GPS signal is available, the problem of position estimation could not be solved for

some specific scenarios, for instance in an application requiring performing precision

manoeuvres in a complex environment. In this case, and due to several sources of error, the

position obtained with a GPS can vary even for meters in a matter of seconds for a static loca-

tion [43]. In such a scenario, the use of GPS readings, smoothed or not, as feedback signal of

the control system can be unreliable because the control is not able to discriminate between

sensor noise or actual small movements of the vehicle (see Fig 6).

Fig 6. Example of the GPS position measurements obtained for a flight trajectory. Top view (left plot) and lateral view (right plot). In this case, the

flight trajectory has been computed using the P4P method described in the Appendix. Observe the error drift in GPS readings.

doi:10.1371/journal.pone.0167197.g006
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On the other hand, in a robotics context, obtaining the metric scale of the world can be a

tough requirement. However, one of the most challenging aspects of working with monocular

sensors has to do with the impossibility of directly recovering the metric scale of the world. If

no additional information is used, and a single camera is used as the solely source of data to

the system, the map and trajectory can only be recovered without metric information [14]. In

this case, neither monocular vision nor GPS are suitable to be used separately for navigation

purposes.

In this work, noisy data obtained from the GPS is incorporated into the system at the begin-

ning in order to incorporate the metric information of the environment. After some initial

period of convergence, where the system is considered to be in a initialization mode, the sys-

tem can operate relying only on visual information.

Position measurements obtained from the GPS are modelled by:

yr ¼ rN þ vr ð23Þ

where vr is a Gaussian white noise with PSD s2
r ; and rN has been already defined in Eq 7.

Commonly, position measurements are obtained from GPS devices in geodetic coordinates

(latitude, longitude and height). Therefore, in Eq 23 it is assumed that GPS position measure-

ments have been previously transformed to their corresponding local tangent frame coordi-

nates. It is also assumed that the offset between the GPS antenna and the vehicle frame has

been taken into account in the previous transformation.

For system updates, the simple measurement model hr = h(xv) is used:

hr ¼ ½px; py; pz�
T

ð24Þ

In the next Section, the demonstration that the proposed method is robust enough to be ini-

tialized with noisy GPS measurements will be shown.

4 Experimental Results

4.1 Experimental setup

In Fig 7 is shown the vehicle that authors used to obtain real data for experiments, the platform

is a customized quadrotor. Such a platform uses an Ardupilot unit, [44], as flight controller. As

main sensors, the platform is equipped with a radio telemetry unit (3DR at 915MHz), GPS

unit (NEO-M8N), camera (DX201 DPS) with wide angle lens and a video transmitter (at 5–8

GHz). The camera is mounted over a very low-cost gimbal which is servo-controlled by stan-

dard servos. During the experiments, the quadrotor has been controlled by radio in a manual

way.

For capturing sensor data and digitalized video from the vehicle a software application has

been built by authors in C++ language. The protocol used for reception/transmission is MAV-

LINK protocol [45]. GPS and AHRS (Attitude and Heading Reference System) data are syn-

chronized between them and recorded in a database for their study. Video frames have been

acquired at a resolution of 320x240 gray scale pixels at 25 fps. All the experiments have been

performed in an outdoor park with trees, which surface is almost flat with grass and some dirt

areas. Flight observations include some plants and small structured parts. In average 9–10 GPS

satellites are visible at the same time. Finally, a MATLAB implementation of the proposed

method was executed offline over the dataset in order to estimate the flight trajectory and the

map of the environment. In experiments, for evaluating the performance of the proposed

method, the technique P4P described in the Appendix was used in order to have an external

reference of the flight trajectory. In the following website reader can download the different
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files containing all the data collected by robot sensors. This data has been used by authors to

perform the experiments contained in this research paper (https://figshare.com/articles/

Experiments/4029111).

4.2 Flight trajectories

Two different flight trajectories (Fa and Fb) were performed over the test field. In both cases,

an initial period of 5 seconds (from t = 0s to t = 5s) of flight was considered for initialization

purposes as it was explained in section 3.7. Fig 8 shows some frames of the video recorded in

flight Fa. At the beginning of the trajectory (left plot), at instant t = 2.84s, the first features are

added to the system state. Note that at this moment, most of the tracked points are considered

as candidate points. At instant t = 10.23s (middle plot), the system is operating relying only on

visual information for estimating the position of the quadcopter and the map of the environ-

ment. The right plot shows a frame at instant t = 30.11s. Fig 9 shows a 3D perspective of the

estimated map and trajectory for both flight trajectories Fa and Fb. In the next subsection, a

more detailed analysis of the experimental results is presented.

4.3 Comparative study

A comparative study has been performed in order to gain more insight about the performance

of the proposed delayed monoSLAM (DE) method. For this purpose, the DE method has been

tested against the popular undelayed inverse depth method (UID), and its variant, the unde-

layed inverse depth to euclidean method (UID2E). The implementation of the UID and

Fig 7. Data obtained from the sensors of a radio-controlled quadrotor has been used for testing the proposed method.

A urban park was used as flight field.

doi:10.1371/journal.pone.0167197.g007
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UID2E methods are based respectively on [23] and [46]. The UID and UID2E methods have

been chosen because the undelayed inverse depth method has become almost a standard for

implementing filter-based monocular-SLAM systems. In experiments, the 1-point RANSAC

method [47] has been used for validating the visual matches of map features. In the particular

case of the DE method, no extra validation technique was used for the matching process of

candidate points. For the DE method, a value of αmin = 5˚ has been used. For the UID and

UID2E methods, values of ρini = 1 and σρini = 1 have been used. In general all the methods are

tested under the same conditions. Only the parameter s2
r , used for modelling the uncertainty

in GPS readings during the initialization period has slightly been tuned for each method in

order to produce a good initial metric convergence.

The search of new candidate points in each frame is conducted in a random manner for the

DE method as well as the search of new features in UID and UID2E methods. For this reason,

Fig 8. Frames taken from flight Fa: instant t = 2.84s (left plot), instant t = 10.23s (middle plot) and instant t = 30.11s (right plot). Candidate points

being tracked are indicated by blue-cross marks. Visual features already mapped are indicated by dots. Red dots indicate unsuccessfully matches. Also

note the four marks used for computing the external P4P flight trajectory.

doi:10.1371/journal.pone.0167197.g008

Fig 9. Estimated map and trajectory 3D plots obtained with the proposed delayed monoSLAM method: flight Fa (left plot) and flight Fb (right

plot). Uncertainty in features position is indicated by 3D ellipses. Physical structure of the environment is partially recovered observing visual features.

doi:10.1371/journal.pone.0167197.g009
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the results of the methods can vary at each run. In this case, in order to have a better statistical

appreciation of the performance of each method, 10 Monte Carlo runs have been executed for

computing each result.

Tables 1 and 2 show the results obtained respectively for the flight trajectory Fa and Fb. The

number of visual features being tracked at each frame can affect the performance of monocular

SLAM methods. For this reason, the methods have been tested by setting three different values

of minimum distance (MD) between the visual features being tracked. In this case, the bigger

the value, the lesser the number of visual features that can be tracked. Also, in experiments, fea-

tures are removed from the system state if they are predicted to appear in the image but are

not tracked in 25 periods.

Under the above conditions, Tables show the results obtained after applying the three dif-

ferent methods at the end of their trajectories. Some features have been computed for each

method (DE, UID and UID2E) such as: i) number of the features initialized into the system

state (NIF), ii) number of features deleted from the system state (NDF), iii) execution time per

frame (ETF), iv) total time of execution (TTE) and v) average mean absolute error (aMAE) of

the vehicle position. For computing the aMAE, the P4P trajectory has been used as an inde-

pendent reference of the vehicle position (see the Appendix). However, it is important to note

that the trajectory obtained by the P4P technique should not be considered as a perfect refer-

ence of groundtruth. Despite this consideration, the results obtained still reflect in a very good

fashion the performance of every method.

Fig 10 shows the estimated position obtained with each method for the flight trajectories Fa
and Fb. A plot for each NED coordinate (north, east and down) is given. Only the results

obtained with a minimum distance between features higher than 20 pixels (MD = 20) are

Table 1. Results for flight trajectory Fa.

Method MD(p) NIF NDF ETF (s) TTE (s) aMAE (m)

DE 15 127 ±7σ 76 ±4σ .49 ±.11σ 268 ±16σ .19 ±.08σ
UID 15 302 ±20σ 233 ±32σ .62 ±.14σ 336 ±19σ .29 ±.18σ
UID2E 15 305 ±18σ 246 ±23σ .59 ±.11σ 323 ±9σ .50 ±.36σ
DE 20 90 ±8σ 56 ±11σ .34 ±.07σ 187 ±5σ .20 ±.11σ
UID 20 218 ±11σ 175 ±12σ .43 ±.09σ 234 ±17σ .31 ±.23σ
UID2E 20 216 ±6σ 171 ±5σ .40 ±.07σ 217 ±6σ .42 ±.30σ
DE 25 64 ±2σ 39 ±6σ .26 ±.06σ 141 ±7σ .23 ±.13σ
UID 25 159 ±9σ 124 ±5σ .29 ±.06σ 162 ±9σ .32 ±.19σ
UID2E 25 162 ±9σ 133 ±8σ .30 ±.05σ 164 ±12σ .53 ±.36σ

doi:10.1371/journal.pone.0167197.t001

Table 2. Results for flight trajectory Fb.

Method MD(p) NIF NDF ETF (s) TTE (s) aMAE (m)

DE 15 278 ±13σ 210 ±12σ .58 ±.10σ 364 ±20σ .29 ±.17σ
UID 15 319 ±11σ 244 ±13σ .69 ±.16σ 428 ±22σ .36 ±.16σ
UID2E 15 328 ±8σ 245 ±7σ .65 ±.13σ 405 ±15σ .52 ±.32σ
DE 20 185 ±11σ 140 ±8σ .39 ±.06σ 242 ±10σ .32 ±.20σ
UID 20 217 ±6σ 164 ±3σ .45 ±.10σ 281 ±16σ .34 ±.15σ
UID2E 20 220 ±4σ 167 ±2σ .42 ±.08σ 260 ±9σ .54 ±.36σ
DE 25 143 ±11σ 107 ±10σ .29 ±.05σ 180 ±11σ .31 ±.19σ
UID 25 162 ±4σ 121 ±5σ .34 ±.07σ 213 ±9σ .35 ±.17σ
UID2E 25 170 ±6σ 129 ±9σ .32 ±.08σ 201 ±15σ .52 ±.32σ

doi:10.1371/journal.pone.0167197.t002

MonoSLAM for UAV

PLOS ONE | DOI:10.1371/journal.pone.0167197 December 29, 2016 16 / 24



presented. Fig 11 illustrates an example of the estimated map and trajectory that have been

obtained with every method. For this figure, top and lateral views are presented.

4.4 Discussion

According to the results of the comparative study some implications can be inferred. A slightly

variation in the number of features, that are allowed to be tracked at each frame, can signifi-

cantly affect the number of features that are initialized into the system state. In this case, a

reduction of 10 pixels in the MD produces about twice of features initialized. Indeed, an incre-

ment of the features initialized into the system state implies an increment of the computational

time. On the other hand, theoretically and due to the increment of information available, the

increase of tracked features should improve the estimated trajectory. However, results do not

show a considerable improvement in this sense. In this case, only with the trajectory Fa, a con-

sistent but minor improvement was obtained with the increase of features, but with an incre-

ment of about twice the computational time.

Regarding to the average mean absolute error (aMAE) computed for the estimated trajec-

tory of the quadrotor, the DE method has shown consistently slightly better results with

respect to the UID method. However, it is important to note that the difference could be

within the margin of error of the methodology followed for computing de aMAE. Unfortu-

nately, statistics about this margin of error are not available. For this reason, according to the

results DE method can offer at least a similar performance in accuracy with respect to the UID

method. On the other hand, the UID2E method shows, in every case, the worst behaviour of

all the methods. It is worth noting that, for this application, the UID2E method has exhibited a

Fig 10. Comparative study of the estimated trajectory of the quadrotor obtained with: i) P4P visual reference (black); ii) DE method (blue); iii)

UID method (red); and iv) UID2E method (green). Results are presented in NED coordinates: north (upper plots), east (middle plots) and down (lower

plots).

doi:10.1371/journal.pone.0167197.g010
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Fig 11. Comparative study of the map and trajectory estimated for the flight Fa, with: i) DE method (upper plots); ii) UID

method (middle plots); and iii) UID2E method (lower plots). Only top and lateral views are shown (left and right plots

respectively). In each case the P4P visual reference is indicated in black. Features deleted from the system state are indicated by

small orange spheres. Features contained into the system state, at the end of the trajectory, are indicated by small blue and red

spheres. Blue and red spheres mean respectively successful and unsuccessful matches.

doi:10.1371/journal.pone.0167197.g011
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considerable tendency to drift in the metric scale of the estimations. In Fig 11 (lower plots), it

can be clearly appreciated this phenomenon where is specially notorious the degradation in

scale of the estimated map.

Regarding to the computational efficiency of the methods, it is clear that the proposed DE

method presents the best results. This result can be explained for two reasons: the use of the

euclidean parametrization and the use of less but stronger visual features.

In the case of the undelayed methods, the use of the inverse depth (ID) parametrization

becomes mandatory due to the nonlinear nature of the measurement equation when features

are initialized right after they are detected. On the other hand, ID parametrization requires

six parameters instead of three euclidean ones. Therefore, as the number of features increases,

with the ID parametrization the length of the state tends to have twice the length that it has

with the euclidean parametrization. For the EKF-based approaches, the above ID parametriza-

tion has as consequence a well known increment in the computational cost. In this sense, the

UID2E method was designed for improving the computational efficiency of the UID method.

Features whose depth converge are converted from the ID to euclidean parametrization.

Results validate this claim, however, for the application presented in this work, the benefit in

computational efficiency is minimal compared with the increase of error drift obtained with the

UID2E.

For DE method the period used for candidate points tracking is mainly intended for obtain-

ing information about the features depth, prior to its inclusion into the system state. This fact

has also the collateral benefit of pruning weak visual features that fail to be tracked in this

period. In contrast to the undelayed methods (UID and UID2E), where all the detected visual

features are initialized into the system, delayed methods (DE) initialize less but stronger visual

features. This is more evident if the number of initialized features is considered (see Tables 1

and 2), as well as the percentage of deleted features with respect to the number of initialized

features: DE = 68%, UID = 77% and UID2E = 78%. These figures mean not only that the unde-

layed methods initialize a lot of useless visual features, but they also mean that the features ini-

tialized with the delayed method are better retained into the system.

5 Conclusion

In this work a novel monocular SLAM method with application to a quadcopter has been pre-

sented. In this case, a monocular camera is integrated into an UAV in order to provide visual

information of the ground. Due to attitude estimation is well handled by available systems for

this kind of applications, this research is focused only in position estimation. In order to avoid

the need of estimating the camera orientation, a servo-controlled gimbal is used for stabilizing

the orientation of the camera towards the ground.

Traditionally, the position estimation of UAVs has been addressed by the use of GPS. How-

ever, the GPS is not a fully reliable service as its availability can be limited in urban canyons

and is unavailable in indoor environments. Moreover, even when GPS signal is available, the

problem of position estimation could not be solved for some specific scenarios, for instance in

an application requiring performing precise manoeuvres in a complex environment. There-

fore, some additional sensory information should be integrated into the system in order to

improve accuracy and robustness. In this context, the use of monocular vision has some

advantages in terms of weight, space, energy consumption, or scalability.

On the other hand, two challenging aspects related with monocular sensors have to do with

the impossibility of directly recovering the depth of visual features, and the metric scale of the

world as well. To address the first aspect, a novel technique for estimating the features depth

based in an stochastic technique of triangulation has been presented. Regarding the second
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aspect, it is assumed that GPS readings are available for some short period at the beginning of

the system operation. After this initial period used for incorporating information about the

metric scale of the world, the system can operate relying only on visual information for esti-

mating the position of the vehicle.

The performance of the proposed method has been validated by means of experiments

with real data carried out in unstructured outdoor environments. To check the contribution

of this research, an extensive comparative study is presented for validating the performance

of the proposed approach respect similar methodologies. For this kind of aerial application

presented in this paper, and according to the experimental results, the proposed method has

performed better, in terms of accuracy and execution time, than the UID and UID2E

methods.

6 Appendix

6.1 P4P reference trajectory

Experimental setups in natural outdoor environments can be a challenge for small aerial vehi-

cles. Some difficulty arises with the absence of resources available in laboratories (e.g. Vicon

system). In this particular case, for fine flight manoeuvres, the trajectory provided by the GPS

is useless to be used as a reference of the actual flight trajectory. In this work, in order to have

an independent reference for evaluating the performance of the proposal, the following meth-

odology is proposed.

Four marks are placed in the ground, forming a square of known dimensions, see Fig 8.

Each corner is a coplanar point with spatial coordinates [xi, yi, 0] with i 2 1, . . .4, and their cor-

responding four undistorted image coordinates [ui, vi] with i 2 1. . .4. Then, for each frame a

perspective on 4-point (P4P) technique [48], is applied iteratively in order to compute the rela-

tive position of the camera with respect to the known metric reference. At each frame, the

image location of the four corners is provided by a simple tracking algorithm designed for this

purpose.

The P4P technique used for estimating the camera position, defined by RCN and rN, is based

on [49]. The following linear system is formed with the vector b as unknown parameter:

x1f y1f 0 0 � u1x1 � u1y1 f 0

0 0 x1f y1f � v1x1 � v1y1 0 f

: : : : : : : :

x4f y4f 0 0 � u4x4 � u4y4 f 0

0 0 x4f y4f � v4x4 � v4y4 0 f

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

b ¼

u1

v1

:

u4

v4

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð25Þ

where

b ¼
r11

r3

r12

r3

r21

r3

r22

r3

r31

r3

r32

r3

r1

r3

r2

r3

� �T

ð26Þ

The linear system represented in Eq 26 is solved for b = [b1 b2 b3 b4 b5 b6 b7

b8]T. The camera position is computed from:

RCN ¼

r3b1 r3b2 ðR21R32 � R31R22Þ

r3b3 r3b4 ðR31R12 � R11R32Þ

r3b5 r3b6 ðR11R22 � R21R12Þ

2

6
6
6
4

3

7
7
7
5

rN ¼ r3b7 r3b8 r3½ �
T

ð27Þ
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where

r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2

b2
1
þ b2

3
þ f 2b2

5

s

ð28Þ

In Eq 27 the third column of matrix RCN is formed by the combinations of the values of first

and second column of the same matrix. The results obtained with the above procedure can be

very noisy, (see left plot of Fig 12). For this reason, a simple lowpass filter is applied in order to

obtain the flight trajectory (right plot, Fig 12).

The P4P trajectory is computed with respect to the metric reference. Trajectories obtained

through visual SLAM have their own reference frame. In experiments, both reference frames

are aligned in order to make the trajectories coincident at the beginning. In other words, it is

assumed that the initial position of the quadcopter is known.
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